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ABSTRACT 

A modification of Gray and Hancock’s theoretical method for studying propulsion of spermatozoa was 
used to estimate the energy expenditure of swimming anchovy, Engraulis mordar, larvae. Wave 
parameters obtained from photographs of feeding anchovy larvae were incorporated into a time 
dependent sinusoidal body displacement function which is used in the iterated energy integrals of the 
model. The integrals were numerically evaluated by 2-dimensional 16-point Gaussian-Legendre 
quadrature. The results for the mean larval length of 1.4 cm was 144.8 ergdswimming excursion or 
4.91 x lO*cal/h using known excursion rates. O2 consumption measurement of similar size larvae 
indicate a 2.19 x 1WcaVh requirement. Extension to other larval sizes can be made using this model 
with certain qualifications. The relationships of swimming energetics to larval fish behavior are 
discussed. Current theories of large amplitude intermittent swimming are also discussed in light of 
the high swimming efficiencies encountered in this study. 

The theoretical evaluation of swimming fish 
energetics by hydrodynamic analysis has been an  
extensively treated subject in recent years. Most 
of these treatments however have concentrated 
on calculation of thrust and thrust efficiencies 
with the exception of Lighthill (1970, 1971) who 
gave direct estimates for the mean swimming 
work rate and has drawn attention to the impor- 
tance of the accelerative, virtual mass contribu- 
tions in estimates of mean swimming work rate. 
Most expositions, however, deal with situations 
where inertial effects predominate with all sub- 
sequent derivations being consistent with that 
assumption (Taylor, 1952a). The low Reynolds 
number range of swimming energetics primarily 
of spermatozoa, has also been extensively treated 
(Taylor, 1951, 1952b; Gray and Hancock, 1955; 
Carlson, 1959 Holwill and Miles, 1971). All these 
treatments disregard inertial and accelerative ef- 
fects in comparison with viscous effects in their 
treatment. Also, both viscous and inertial treat- 
ments calculate or estimate the mean swimming 
work rate after steady motion has been estab- 
lished. 

The problem attacked in this paper is a syn- 
thesis and extension of the two classes of treat- 
ments discussed above, specifically to determine 
the energy expended per excursion by the 1-cm 
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larval anchovy, Engraulis mordaJc. The term ex- 
cursion as used here requires some elaboration. 
Larval anchovies have a peculiar swimming be- 
havior because they do not continuously propa- 
gate caudally directed waves. In the adult form 
this behavior is noticeable by observing the tail, 
i.e., it does not beat continuously even though the 
fish appears to maintain constant forward mo- 
tion. In the larval stages, however, this behavior 
results in an  obvious discontinuous motion. The 
result is a series of bursts of motion from rest to 
rest which hereafter I refer to as  excursions. 

The estimation of excursion energetics by a 
theoretical model rather than indirect metabolic 
estimators during excursions is demanded be- 
cause of the small size of the organisms consid- 
ered, their discontinuous motion, and the inves- 
tigator’s inability to determine which fraction of 
the total energy consumption is due to swimming 
alone. 

The parameters used in the model to calculate 
the excursion energy are taken from photographs 
of a larval anchovy of a specified size executing 
excursions in search of prey organisms. Since the 
search for prey constitutes a large proportion of 
the larva’s activity, following Kerr (1971) we can 
write the total metabolism of the larva as, 

where T = total metabolism 
T = cost of search for prey 

~ 
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With the body approximated as a n  inextensible 
ribbon we find the  use of t he  normal drag 
coefficient, CN, and the  tangent ia l  drag 
coefficient, C,, eonvenient in addition to an  ap- 
propriate sagittal contour function h ( s  ) where s 
denotes distance along the spine of the fish (see 
Figure 4). 

The expression for the velocities V ,  and V ,  is 
first expressed in terms of the function which rep- 
resents the propagated wave along the body 
y(x,t), and V, . By noting, 

T = standard metabolism 
T ,  = internal cost of food utilization. 

The growth efficiency and subsequent relations 
derived from TT are important in estimating fish 
yields in relation to standing food resources and 
other factors important to fisheries management. 
It is this larger view which gives relevance to the 
rather involved procedure of simply calculating 
one part of the value of TT, namely TF. 

THEORY 

The derivation of the excursion energy esti- 
mate is based on Gray and Hancock’s (1955) de- 
velopment for spermatozoa. Instead of a cylinder 
with an  inert head attached, the anchovy larva is 
regarded here as a ribbon or plate of specified 
width attached to an  inert head (Figure 1). The 
assumption that the body is a ribbon is justified 
only if the ratio of the width to thickness (Wlt) is 
>> 1. In the larvae examined in this study this 
ratio averaged 2.5. While this ratio is not >> 1 I 
have assumed that it is to simplify the problem. 
However, the error introduced is, I believe, min- 
imal. 

From Figure 1 the following relation is noted 
and will be used in the following derivations: 

V ,  = V ,  cos 8 - V ,  sin e 
V T  = V ,  sin 8 + V ,  cos 8 

where V, = normal velocity of an element 
of body 

V T  = tangential component 
V ,  = y-component 
V, = x-component. 

Y 

f vn 

FIGURE 1.-Diagram illustrating the relationship ofthe velocity 
components of an element of body when moving transversely in 
the X-direction. 

dY and tan e =- v = -  ‘ dt dx 
dY 

we can rewrite Equations (1) and (2) as, 

1 - - 1 
Given cos 8 = 

[ I  + tan2 elli2 [ (dyj]1’2 
l+x 

weget V = - - V -  $3 1 + -  (;;)‘3”‘ (1’) 

Now we may proceed to write the contributions to 
the total work of excursion made by the head, 
body viscous reactive terms, and accelerative 
body virtual mass. 

The element of work performed in moving the 
inert head is given by, 

dV, dWH =1/2p C H A  K3 dt  + (m -t M )  - v, dt 

(Vlymen, 1970) 

dt  

where dW, = element of work performed by 
the head 

CH = drag coefficient of the head 
A = cross-sectional area 
m = virtual mass of head 
M = mass of head 
p = density of seawater. 
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Thus, given the time of excursion as tE we get, 

The element of work performed by the body 
contributed by viscous-reactive forces can be ap- 
proximated using experimental values for the 
normal and tangent ia l  drag coefficient of a 
smooth plate. The choices made are 

(4 )  CN = - "' = - 20.37 (Hoerner, 1965) 
Re Re 

and C, = !? = 1.328 (Schlicting, 1960) (5 )  
V i z G  

where Re is the appropriate Reynolds number re- 
spectively. Although these are primarily low 
Reynolds number approximations they a re  
within 1Wo a t  Re = 30. Thus F,, the normal force 
on a plate of frontal area A is given by 

Since for any position along the fish body 

v the kinematic viscosity, we get using CN from 
Equation (4) the normal force dFlxr on an element 
of body ribbon as, 

In a similar manner F, , the tangential force on a 
plate of total wetted surface area A ,  is 

VT 1 Since the formula for C, above uses Re = 7 
where 1 is distance measured along the body, we 
get the tangential force dF, on an element of 
body ribbon as 

Multiplying each element of force above by the 
element of distance in the direction of that force 
and summing yields, 

d W I R  = g k N  vV{ dsdt 

where dWgR.  is the element of viscous reactive 
work performed by an  element of body ribbon. 
Using the Equations (1') and (2') for V N  and V ,  
and integrating over the excursion time tE and 
projected body length excluding the head we 
get, 

where! H is thex-projected length ofthe inert head. 
Eliminating ds by the relation, 

ds = [l +(%) 2]1" dx 

yields finally, 

As will be noted s is present in the second of the 
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integrals above; however, later in the discussion 
s and h(s) will be converted to appropriate func- 
tions ofx and t so that the integrations may be 
performed. 

The accelerative or virtual mass element of 
work can be calculated using the fact that the 
virtual mass of a flat plate accelerating parallel 
to its normal vector is equal to the mass of the 
fluid enclosed in a circumscribing cylinder hav- 
ing the plate chord as diameter (Fung, 1969). 
Hence from Figure 2 the virtual mass is given by 

dM = pnh2(s) ds 

and the magnitude of the acceleration by 

a sin el= a sin(8 - 0,) 

where a = 161 

Now 8 = tan-' *and e2 = tan-' - v3 
dx V'X 

dVx where V'y = Ey and V'x = -, giving dt d t  

-1 dy - tan-' Q) 
V'X a s i n ( 8 - 8 , )  = a sin t a n  

Since I ci 1 = ( V I ;  + V ~ Z  ) "2 , we get 

L X  

Thus the magnitude of force F",,, on an element 
of body ribbon due to induced mass dA4 is 

I F , ,  I = adM = p nh2(s)(VG + VI; ) ' I2  

Since the element of work is given by 

where 

FIGURE 2.-Diagram illustrating body element undergoing ac- 
celeration ci and relationships of orientation ofelement t~ vector 
ci in terms of the angles e ,  8,. e * .  

and 

cos(Fv,,, I dx) = cos(tan-' V'Y 7 - tan-' - VY ), 
vx vx 

we get finally 

v 'IC 
.cos ( tan- '% - tan-' 2)  dsdt. 

Using the identities for cos (a - b ) ,  sin (a - b ) ,  
and ds gives finally, 

dW: = 
I 

P n h 2 ( s l [ g V f x  - V'y][V'x V X + -  dy dt dS] - dt2 drdt 

where dW&is part I of the element of work per- 
formed by the acceleration of the surrounding 
fluid. 

In addition to dWtrabove we alsowant the 
work done in accelerating the body itself. Calling 
p B  (s) the linear mass density of the body we get, 
using Figure 2, 
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dWG,r P B ( s )  (Vf; +($$)') 
.(vi + v j  ) ''2 
cos (tan-' 7 v '.v - tan-' - VY ) dsdt 

v x  vx 

where (VI; +(G)2)'" =I.\  , 
dt 

(vi +vj ) ' "  d t = ( d x ( ,  

p B ( s )  ds = dm. 

When the above terms are expanded we get, tak- 
ing account of ds, 

dy d'y dWA = P B ( ~ )  (Vx V'x + - -) 
BII dt  d t 2  

(1 + (z) dY 2 ) 'I' dxdt. 

Integrating d W t I  +dW&,from 0 to t ,  in t and l H  
to 1 in x we get the accelerative body work, 

pendent analogue of the function chosen in Hol- 
will and Miles (1971). 

The motion pictures used were obtained from 
John Hunter of the Southwest Fisheries Center, 
National Marine Fisheries Service, NOAA, and 
the techniques used in obtaining them are de- 
scribed fully (Hunter, 1972). The particular se- 
quences used were of fish larvae varying in  
length from 1.2 to 1.7 cm standard length. All 
sequences were analyzed starting with the larvae 
at  rest through the sine-wave execution and sub- 
sequent forward movement to rest again. The 
x-axis was considered to be parallel to the direc- 
tion of forward motion as monitored by a point 
midway between the eyes of the fish. This point 
was also used to monitor forward progression. 

The sequences were projected with a 16-mm 
Kodak2 analyst projector on an  elevated stand, 
through a right-angle mirror onto a table en- 
closed with a darkened viewing hood. At the be- 
ginning of an excursion the contour of the body 
was outlined with a fine-point pen on heavy-duty, 
low-absorbance paper. Once the outline was 
traced, the next frame was advanced (each frame 
representing %28 of a second) until the larva 

+ftlI .rrh2(s) 

The total work estimated per excursion is then 
given by the sum of W t ,  W z R . ,  and W,. 

METHODS 

Motion picture photographs (16 mm, 128 fps) of 
swimming and feeding anchovy larvae were>used 
to ascertain the various parameters in the pro- 
posed body displacement function y(x ,  t) = A (t) 
sin ( X  + t )  where A (t) is the wave amp- 
l i tude of the propagated wave, h ( t )  the  
wavelength and x, ( t )  the wave position as func- 
tions of time. Because of the intermittent charac- 
ter of the motion, variance with x was not consi- 
dered as important an independent variable as t 
in the various functions comprising y ( x ,  t).  The 
above displacement function is a general time de- 

h( t )  dt 

came to rest again. The mean excursion time of 
the larvae examined was 12.9 frames. The contour 
sequences thus obtained were taken to be repre- 
sentative of the feeding-searching behavior and 
were used in elucidating the wave-form param- 
eters. In addition to the wave-contour param- 
eters, the midpoint between the eyes was moni- 
tored for use in determining Vx and V'x. 

When the above contours and position points 
were obtained along with the proper 
magnification factors derived from knowledge of 
the lengths of the fish in a particular film, rele- 
vant parameter values from the tracings were 

*Reference to trade names does not im ly endorsement by 
the National Marine Fisheries Service, N8AA. 
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division by body length and plotted. The geometric 
form of the resulting function was then used as a 
guide in selecting an appropriate descriptive func- 
tion. The parameters of these functional forms 
were then fitted by computer in the least squares 
sense using a nonlinear steepest descent approach 
(Conway, Glass, Wilcox, 1970). The graphical rep- 
resentation of the proposed body displacement 
function with the internal functions fitted in this 
manner was found to coincide very closely with 
the actual body displacements seen in the films. 

In the derivations for total excursion work, 
W, , the integral for tangential viscous reactive 
work contains s, the distance along the fish 
body, explicitly. The function satisfying F ( x ,  t )  
= s is extremely complicated for the complete 
wave-form displacement function using all the 
fitted internal functions and is almost impossible 
to calculate explicitly. The alternative used 
here is to extrapolate back from the measured 
x,(t) to yield s ( x ,  t) .  

We know the functionF(x, t )  = s satisfies 

directly measured using a set of dial calipers 
read to 0.01 cm. 

Many of the initial sequences of an  excursion 
when viewed with respect to the x-axis as defined 
above showed the appearance of a wave along the 
proximal portion of the fish while the rest of the 
body coincided closely to thex-axis. This indicated 
strong x-dependence of the amplitude in the ini- 
tial portion of the excursion. However, after three 
frames an  almost symmetrical amplitude wave 
was observed. Thus the amplitude in the first sev- 
eral frames was taken as the maximum length of 
the wave above the x-axis (Figure 3). 

The wave length was taken as that length be- 
tween two successive crossings of thex-axis by the 
displacement wave form. During the later part of 
the excursions no crossings from positive to nega- 
tive were observed and a t  this  point t he  
wavelength was taken as twice the value from one 
tangent of the body on the line of motion to the 
other (Figure 3). 

The position of the midpoint between the eyes 
after each frame was monitored to yieldx(t). Each 
successive movement of that reference point was 
recorded in the manner outlined above and the 
distance moved during each frame noted. 

The projected length x P ( t )  was taken as the 
length between the two points representing the 
projection of the tail and snout tip position on the 
x-axis and was used in a manner to be described 
later. 

The wave position x, ( t )  was taken as the pro- 
jected length of the body from the point whereA ( t )  
is measured to the snout tip (Figure 3). 

The points representing the functions described 
above a t  each unit of time, i.e., one frame, were 
collected for 18 excursions which were randomly 
selected from the larval anchovy feeding films. 
The functions were then nondimensionalized by 

F(x,,  t) = L 

where L is the length of the fish body. Since the 
maximum amplitude ever encountered in this 
study was around 0.2 L and the mean integra- 
tion distance never greater than d 2 ,  we can 
calculate, for purposes of comparison, the differ- 
ences between the true length of a pure sine 
wave of amplitude A and its projected length. 

The dnperturbed or no sine-wave form for a 
d 2  interval of integration yields simply ni2. 
The sine-wave projected length is ,  for y - A  sine, 

Y 

where E ( @ ,  k )  is the elliptic integral of the sec- 
ond kind (in this case a complete elliptic in- 
tegral of the second kind). Taking X = 2.0 cm 
we get usingA = 0.2L. 

forward movement I 
FIGURE 3.-Diagram illustrating the identification of (012, 

X w ( t )  andA(t) from photographic records (see text). s = vl + 0.16 E ( d 2 ,  0.37) = 1.625. 
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The difference between this and nI2 is about 
4%. Thus, we expect the projected length and 
real body length to differ only slightly. With 
this confidence we make the following addi- 
tional assumptions: 

F(Xx,, t) = X L. h Sl 

This assumption based on the error calculation 
above postulates a linear relation between pro- 
jected length and real length. Now XPIL =xp(t) 
and is obtained from excursion analyses. We 
can rewrite this as 

X - = s  
xp(t )  

Thus we chose to identify 

A S 1  

X S X P  

F(x, t) = xlxp(t)  = s(x, t). 

The determination of the contour h(s) was 
made using biologically accurate drawings of a 
1.84-cm anchovy larva. The term h(s) was es- 
tablished for the body distal to a vertical line 
tangent to the gill plate as shown in Figure 4. 

l . t lrt  1,:1 
1, /L=O. I55  
1 , lL  0.751 
T,IL:0.094 
T,/L-o.l I 

FIGURE 4.-Lateral CMSS section of 1.84-cm anchovy larvae dis- 
playing relationship of idealized contour function h ( ~ )  (see text) 
to appropriate nondimensionalized morphometric parameters. 

From that point to the beginning of the tail h(s) 
was taken as a constant and the relation h(s) = 
0.038 L was found to hold. The dorsal and anal 
fin contributions were neglected because the 
plate approximation already constitutes a n  
upper bound estimate for W,. Thus, the neglect 

of these fins quantitatively yields a more realis- 
tic estimate of W T .  Using the notation of Figure 
4 we have, 

h(s) = 0 f o r s d ,  

or using values in Figure 4 the last relation 
may be written 

h ( ~ )  = 0.03% + 0.766 (S - 0.906L). 

The cross-sectional area AH which appears in 
the work integral for the head was determined 
by randomly selecting Formalin-preserved an- 
chovy larvae from 0.5 to 1.5 cm in length and 
affixing them, via the Formalin surface tension 
on their bodies, upright on the side of a small 
inverted beaker. The largest cross section of the 
head was then viewed directly with a Nikon op- 
tical comparator and an outline traced from the 
lighted viewing screen. Lengths of the bodies 
were also measured with dial calipers a t  the 
time the tracings were made. Subsequently the 
tracing areas were measured with a planimeter 
and corrected to the true value. A least squares 
analysis of the results yielded the relation 
AH = 0.00423L 1.23 where L is in centimeters and 
AH is in square centimeters. The graph is plot- 
ted along with the data in Figure 5. 

The representation for p (s), the linear density 
of the body, was regarded as constant for any 
given length and calculated from data  in  
Lasker, et al., (1970). Assuming 90% water, the 
wet weight of 0.5- to  1.6-cm larvae is then 
given by 0.00319L2."37 = p ( s )  where L is in 
centimeters and p ( s )  is in grams per centime- 
ter. 

The density of the seawater was taken for 
T = 17°C and was 1.02454. This value was ob- 
tained from tables published by the US.  Navy 
Hydrographic Office (1956). 

In my formulation I assume that the head is 
propelled through the water as an inert object 
attached to an  undulating body. We want to 
know the virtual mass and drag coefficient of 
the inert head for use in the WH integral. Since 
the shape of the anchovy larva's head is 
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where C, is the frictional drag coefficient based 
on wetted surface area and C D .  is the drag 
coefficient based on frontal area. We can use 
this relation to approximate C,. (Zid =2.9) as- 

suming Cf(lld = 2.9) Cf(l /d  = 2.3), and use 
the above ratio to modify the measured drag re- 
lation already obtained for the copepod. Sub- 
stituting lld = 2.9 and lld = 2.3 into the rela- 
tion for cD./cf we get on dividing 

-=2.3) 

X 

= 41) a 

// .. 

I/ I. 

t 
aoo~ a2 0.4 a6 as 1.0 1.2 1.4 1.6 1.8 

L (cm) 

FIGURE 5 .4ross  sectional area oflarval anchovy head,A ,, as a 
function of length L . 

roughly ellipsoidal or a bluff body, I decided to 
modify, with due consideration for the geomet- 
ric differences, the drag relationship observed 
for a copepod (Labidocera trispinosa), which is a 
naturally Occurring bluff body of similar shape, 
to represent the relevant characteristics of the 
anchovy larvae head. 

If the copepod is taken as an  equivalent ellip- 
soid, we get, from data in Vlymen (1970), 

(2) = 2.9 

where a, is the major axis length and b, is the 
semimajor axis length of the copepod L. tri- 

L spinosa and is given respectively by a, = 9 
AH (one-half the metasome length) and b, = ( ~ y  

For the anchovies studied 2 = 0.155 (Figure 4) 
and for = 1.4 cm andA, = 0.007 cm2, 1 = 0.217 

cm yielding (2) = 2.3. 

For high Reynolds numbers (-104-105) and 
rotationally symmetrical bluff bodies of various 
lld ratios, where 1 is the bluff body length and d is 
diameter, we have 

- 

22- Cf = 3($+ 4.5(9)112 + 2 l ( g  

At lower Reynolds numbers we expect the 
geometric differences to cause a greater 
discrepancy between C,. (lid = 2.9) and C D ,  (lld 
= 2.3). In particular cD, (lld = 2.9)> cD,(l/d = 
2.3). However, since in my experiments Re was 
from 0- to 100, the region where we expect the 
C D  (Re) curve to flatten out to a fairly constant 
value we take CD (Re) for the copepod as a first 
approximation to the C,. (Re) for the anchovy 
head. That function is CD (Re) = 85.2/Re.80, 
Vlymen (1970). The virtual mass; m, occurring 
in the integrals for WH is then calculated by 
considering the head as if i t  were an equivalent 
ellipsoid. Using (aalba) = 2.3 we can calculate 

7 m as m = k ,  p V, where k., = ~ (2 -7) 

I- 1 

7 = 2 ( q 1 2  log (E) - € ]  

€ = I - -  ( ?)’” 
V, = 4 / 3 ~ a , b , ~  Vlymen (1970). 

For a 1.4-cm larva m has a value of 1.80 x g 
and assuming the head density is the same as 
seawater we get M = 7.9 x lo* g. Thus W ,  
may be rewritten as 

(Hoerner, 1965) 
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where v is the kinematic viscosity of seawater 
0.0119 cm2-s-l (U.S. Navy Hydrographic 
Office, 1956). 

A computer program by Stroud (1971) using 
16-point Gauss-Legendre integration, and the 
above outlined integration scheme was used to 
compute the integrals comprising W,. The pro., 
gram was translated into Algol and executed 
on a Burroughs 6700 a t  the University of Cali- 
fornia, San Diego Computer Center. Accuracy 
of the program was checked by evaluation of the 
iterated integrals 

[ e-ya d y l y  e x 2  dx for various w and 

The results showed the integration scheme to be 
accurate to the eighth decimal place in the former 
integral when compared with tables in Rosser 
(1948) and accurate to the fourth decimal place in 
the latter integral using standard tables. Details 
of the mathematical scheme are found in the ap- 
pendix. 

In the integrations of WT a relative convergence 
was computed by first doing the integration over 
the whole interval, that is, 

I o  =it 4; F(x, t) dxdt. 

Then the value corresponding to one subdivi- 
sion is computed, namely, 

Zl  =lf‘%,,:”’ F(x, t) dxdt 

F(x, t )  dxdt. +Lf lf: 
The relative convergence is then computed as 

If this value is less than 0.05, the value Z2 is taken 
as the value of the integral. If it is greater, the 
intervals comprising Z2 are further subdivided 

and the process continued until convergence is 
reached. Thus, if I , ,  corresponding to 2 subdivi- 
sions, and In + I ,  corresponding to 2, + 1 subdivi- 
sions, are of such values that 

In + <0.05, 

then Io is assigned the value I n  + 1 

I n + 2  

The convergence is set higher than one might 
expect because computation of the complex in- 
tegrals ofthe type used in this study is manifested 
by slow and oscillatory relative convergences 
necessitating a great deal of computer time. How- 
ever, when the convergence criteria was set a t  
0.05 in the integrations performed, convergences 
were better than the critical value. The effect of 
the higher convergence criteria is thus seen as 
being an economic and computational conveni- 
ence. 

RESULTS 

The plotted values of the nondimensional 
amplitude, A(t ) /L ,  wave position, X,(t) /L,  and 
projected length, Xp( t ) /L ,  along with the de- 
scriptive functions fitted by the methods discus- 
sed are shown in Figures 6 and 7. The points 
comprising the curves of each represent the 
mean value of the particular parameter in  
question a t  successive units of time where one 
time unit is lI12s s. 

“r - MEASURED MEANS 
* FITTED FUNCTON 

I 

Woum 6.-Nondimensional amplitude, AWL and wave p i -  
tion, x, @)&, of body displacement function as functions of 
time, t ,  in motion frame units. The graphs display the fitted 
curves (line) together with the original data (open circles) and 
points of the fitted curve at corresponding time units (closed 
circles). 
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would have h = 30 a t  both end points. This, I 
believe, does not drastically affect the results 
since the only modulatory component at the end 
points is the amplitude which is zero a t  these 
points. This accounts for the Lennard-Jones type 
of function which was chosen as a functional rep- 
resentation of X(t)/L and is shown in Figure 8 
along with the function itself. The values at  other 
than the end points together with the fact that 
A ( t )  = 0 a t  these points is sufficiently descriptive 
of the contour wavelength to vitiate any physical 
inconsistencies or mathematical problems that 
may arise from the end point modification of 
X (t) /L discussed. 

The integrals representing the work per excur- 
sion namely W;", W t ,  W, were subdivided 
further into smaller iterated integrals and, using 
the mean excursion time of 12.9 frame time units 
(-0.10s) integrated by the method already out- 
lined. The values obtained were taken to repre- 
sent the worWexcursion of an  anchovy larvae of 
length equal to the mean of the animals used in 
the study or 1.4 cm. 

The values of the work are divided into five 
categories as follows: 1) head energy representing 
the value ofthe integral in Equation (3), 2) normal 
energy representing the value of the 1st integral 
of W: R, 3) tangential energy representing 2nd 
integral of W , 4) body inertial energy rep- 
resenting the 1st integral of Wi , and 5) inertial 
energy representing the 2nd integral of W t  . The 
value of these five integrals in ergs/excursion 
and their fraction of the total excursion energy 
is given in Table 1. I t  is observed from the table 
that accelerative terms such as body inertial and 
inertial energies account for more than three- 
fourths of all the energy used in swimming. It 
is worthwhile noting that although this is an ex- 
pected outcome of the peculiar behavior of the 
anchovy larvae, it is possibly true that neglect of 
such terms in many analyses of fish energetics 
is cause for errors. Attention to these matters has 
been given thorough theoretical discussion in 
Lighthill (1970, 1971). The analysis in this paper, 

TAELE 1 -Excursion energy components in ergs for the 1 4-cm 
anchovy larva 

Energy1 Percent 
Item excursion of total 

Normal energy 1 1  5 7 9  
Tangential energy 0 35 0 2  

Head energy 0 15 0 2  

Inertial energy 33 6 23 2 
Body inertial energy 99 2 68 5 

Total energy 144 8 

x p i i v ~ .  am291 it -o.ow i + 1.00 

FIGURE 7.-Nondimensional position,X(t)/Z,, and projected body, 
length, Xp(t)IL, as functions of time, t ,  in motion frame units. 
The graphs display the fitted curves (lines) together with the 
original data (open circles) and points of the fitted curve at 
corresponding time units (closed circles). 

The curve for h (t)/L,  deserves some discussion. 
Since the amplitude of the propagated wave was 
known to be zero a t  t = 0,  both h = 30 or 1 = 0 would 
be descriptive of the  init ial  straight-l ine 
configuration. However, X = 0 implies an infinite 
number of oscillations varying like sin t /h  with 
neither the function nor the first derivative exist- 
ing as h --* 0. Since a t  the end points of an excur- 
sion a slightly perturbed wave form was observed, 
i.e., a finite wavelength, the nondimensional 
wavelength of the t = 0 excursion wave form was 
adjusted to be equal to the last. A perfect relation 

0 MEASURED MEANS 
FITTED FUNCTION 

0.8- 
z 
Y -  

% -  
E 0.4 - 

0 MEASURED MEANS 
FITTED FUNCTION 

4 2.0. 

, " " I "  t + 1.02 ]+2.2g 

5 
t 

FIGURE 8.-Nondimensional wavelength, x ( t ) /L,  as a function of 
time, t ,  in motion frame units. The graph displays the fitted 
function (line) together with the original data (open circles) and 
points of the fitted curve at corresponding time units (closed 
circles). The dotted portion of the fitted curve is discussed in the 
text. 
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however, depends on incorporating what actually 
occurs into an  easily manipulated theoretical 
energy construct. 

Although the point of this study is to evaluate 
the swimming energetics in an  indirect but non- 
manometric manner, i t  is nevertheless interest- 
ing to compare the calculated energy using the 
theoretical model with values obtained using 0, 
consumption measurements obtained with an- 
chovy larvae. Such experiments in limited num- 
bers have been performed by Lasker (pers. com- 
mun.) using more than one larva per experiment 
and with the animals confined to small volume 
containers. No knowledge of activity levels was 
possible during these experiments and the values 
obtained reflect total 0, uptake per experimental 
period averaged for the number of larvae per con- 
tainer. Lasker believes, however, that activity 
levels during such experiments are below natural 
levels because of the inhibiting effects of the con- 
tainer surfaces and crowding. The value obtained 
from such experiments was 4.36 2 1.05 ~ 1 0 , i m g  
dry wtih. Assuming an  RQ of 0.70 we get 1 p 1 0 ,  
= 0.005 cal t 0.00035 (Lasker, 1962). Thus, the 
caloric equivalent of the anchovy larval respira- 
tory rate is between 0.0153 caVmg dry wth and 
0.0289 calimg dry wtih with a mean value of 
0.0218 callmgk (n = 23). A comparison between 
the theoretically determined energy value and the 
mean 0, uptake value given above requires a 
simultaneous knowledge of swimming activity 
expressed as an  excursion frequency. Such infor- 
mation is not available and it is precisely our 
inability to make simultaneous observations of 0, 
consumption and activity of fish larvae that neces- 
sitates the type of study undertaken in this paper. 
Excursion rates observed during 5-min feeding- 
searching periods have been measured (Hunter, 
1972) using large containers. For the periods ob- 
served the excursion rate appropriate to a 1.4-cm 
larvae was found to be 1.57 2 0.03 excursions/s 
with the  mean time devoted to intermittent 
swimming being 82.6% 2 1.2%. This value is prob- 
ably a maximum for activity since satiation would 
probably lead to a decrease in excursions as would 
the lack of observable food particles. Since avail- 
able 0, measurements were not collected during 
feeding, some modification of the above activity 
value has to be made to compensate for the inhibi- 
tion of the container and the absence of food before 
these values can be used for comparison. 

The 0, consumption measurements of anchovy 
larvae were performed in small 70-ml containers 

in light and darkness. The only relative activity 
measurements that have been performed for simi- 
lar situations were on 28-day-old herring larvae 
ca. 1 cm in length in a variety of light conditions by 
Blaxter (1973). Although herring are continuous 
swimmers, unlike anchovy larvae, the use of rela- 
tive activities was deemed an appropriate way of 
estimating the activity variation of a similar sized 
nonfeeding organism in the following manner. For 
herring larvae a t  10 different light levels the 
mean percent difference between maximum and 
mimimum activity levels was found by Blaxter 
(1973) to be 78.6%, maximum activity being 
defined as mean activity plus two standard errors 
and minimum activity as mean activity minus two 
standard errors. Although this change is large, it 
probably reflects behavioral modulation more 
than effects of the container since in Blaxter's 
experiment the container (a long tube) contained 
approximately 1,500 ml of seawater. Thus, re- 
garding the 0, consumption experiments on the 
anchovy as repi esenting the minimum activity 
levels ofthat organism in the same relationship of 
active to inactive as found from Blaxter (1973), we 
can, using known maximum excursion rates dur- 
ing feeding from Hunter (1972), calculate the 
minimum excursion rate or activity correspond- 
ing to our 0, measurements and hence the energy 
consumption for swimming based on that excur- 
sion rate. This analysis assumes the geometric 
swimming behavior during feeding and nonfeed- 
ing is the same, an  assumption confirmed by ob- 
servation. 

Using the mean O2 consumption value 0.0218 
calimg dry wt/h and the dry weight of a 1.4-cm 
larva from Lasker et al. (1970) we get an expendi- 
ture of 22.6 x 10-'cal/h. Taking 1.57 excursionsis 
as the mean maximum activity value, decreased 
by 78.6% to convert to minimum activity levels, 
and multiplied by the theoretically determined 
energy per excursion of the 1.4-cm larva of 144.8 
ergs/excursion, we get 4 . 9 1 ~  lo-' calih. This value 
yields a n  est imate  of metabolic swimming 
efficiency of 24.6% for the 1.4-cm larval anchovy 
assuming a poikilothermic basal metabolic rate of 
0.05 pl O,/mg wet w th .  This efficiency is quite 
high when compared to valdes obtained for larger 
fish where efficiencies in the range of 8 to 15% 
(Webb, 1971) are observed. However, such exper- 
iments are usually done on large fish constrained 
by relatively small tanks, swimming continu- 
ously, and using a caudal propeller mode of pro- 
pulsion, Thus any comparison of the above results 
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with the wide-range Reynolds number motions 
and large amplitude wave forms encountered in 
this study must be done cautiously and with ap- 
propriate consideration of hydrodynamical dis- 
similarities. However, using the most obvious be- 
havioral differences between the two types of 
studies, a higher overall efficiency might be sus- 
pected based on the viewpoint of Lighthill (1971) 
that the large amplitude tail motions exhibited by 
some fishes be interpreted as a means of producing 
reactive thrusts which balance the enhanced vis- 
cous drag produced upon the commencement of lat- 
eral movements. Lighthill thus implies that large 
amplitude movements interspersed with periods 
ofgliding are more efficient than continuous small 
amplitude oscillations as a mode of propulsion. 
This appears to be confirmed in the results of this 
study where the behavior is of this type and the 
efficiency apparently high. It should be stressed 
that a range of efficiencies can exist due to the 
intrinsic variability in 0, consumption values 
and associated activity measurements and the 
fact that synchronous determinations of both have 
not yet been performed. The purpose of the swim- 
ming efficiency calculation and the associated 
comparison curves with 0, values (Figure 9) is to 
demonstrate the relationship the theoretical val- 
ues determined here  have to the  available 
physiological parameters obtained with simple 
experimental designs. If excursion energies could 
be obtained by simpler means, one could circum- 
vent the involved procedures presented in this 
paper. 

It is interesting to note that the Pacific sardine, 
Sardinops caerulea, whose ecological niche was 
primarily taken over by the anchovy, Engraulis 
mordux, in the California Current (Murphy, 1966) 
does not exhibit, in the larval stages, the same 
swimming behavior as the anchovy, i.e., swim- 
ming bursts followed by glides. Instead it swims 
by constant, small amplitude oscillating move- 
ments of the body. In light of the results here and 
theoretical work by Lighthill i t  is possible that the 
propulsive efficiencies in the larval stages of the 
sardine and anchovy are slightly different, the 
sardine being less efficient. Thus a small 
behavioral-propulsive difference between the an- 
chovy and the sardine might have permitted the 
anchovy to compete more favorably when there 
was a decline in sardine population. 

The evaluation of propulsive energetics as 
outlined in this study is directed at only one 
size of the anchovy larva because the method 
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CURVE OBTAINED FROM OL 
CONSUMPTION MEASUREMENTS 
(SEE TEXT). 

THEORETICAL MOOEL VALUE 
COMPUTE0 WITH WAVE PARA- 
METERS FITTED TO 1.4 cm 
LARVAE (SEE TEXT). 

HUNTER AMPLITUDE INTERCEPT 
MOOlFlCATION OF THEORETICAL 
MODEL FOR LENGTHS OTHER 
THAN 1.4cm (SEE TEXT). 

R P 
/ / 

/ 

L (cm) 
FIGURE 9.-Energy consumption of swimming based on theoret- 
ical model (open circles and open square) and total energy con- 
sumption based on 0; utilization (closed circles) as a function of 
length. Vertical lines on both curves span one standard error of 
the data. 

requires detailed knowledge of the  various 
wave-form parameters as functions of time for 
each length of the organism studied. Valid re- 
sults cannot be obtained for other sizes by a 
mere alteration of the length of the organism in 
the wave-parameter functions. By the method 
outlined here, the only way to properly evaluate 
propulsive energetic costs for different lengths 
would be to repeat the  course of wave- 
parameter determination completely. However, 
with such limitations in mind it is interesting 
to compare results obtained when modification 
of the existing wave-parameter functions is 
made using extensions of known length- 
dependent wave-parameter quantities which 
have been measured for larval anchovies. The 
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only such wave parameter available for 
modification and incorporation into the energy 
formulation is the wave amplitude. 

Hunter (1972) measured the relationship be- 
tween tail-beat amplitude and larval length for 
intermittent swimming and found the relation- 
ship, 

A = 0.112 + 0.170L 

where L and A are in centimeters. Since minimal 
amplitude dependence on length exists because of 
the exaggerated whiplike motion of the tail, 
Hunter’s amplitude value is greater than my 
value for the maximum wave amplitude of 1.4-cm 
larvae. This is because amplitudes used in this 
study are measured as the wave crest progresses 
caudally a t  each successive time unit, whereas a t  
the tail, wave progression ceases along the body 
and may even become retrograde due to the whip- 
like motion. The important point is the intercept 
a t  zero length where both measurements must be 
consistent, i.e., equal. Thus, admitting equality of 
the interception point at  L = 0 and adjusting the 
first order coefficient in Hunter’s equation to yield 
the correct value for maximum amplitudes at  L = 
1.4 cm we get, 

A = 0.112 + 0.094 L 

This value was substituted for A,, = 0.026 L 
in the amplitude function A(t) = 0.206 L exp 
[-0.044 (t - 7.19)2] and its first two derivatives 
used in the L = 1.4 cm formulation. The work 
integrals were then recomputed a t  the three 
new points L = 0.4 cm, L = 0.7 cm, and L = 
2.0 cm. Because the A values coincided a t  L 
= 1.4 for both treatments this value was not 
used again in the integration procedure. The 
values obtained are shown in Table 2. Least 
squares regression of the data assuming the 
functional form E = a L b  where E is 

TABLE 2.-Excursion energies for five larval anchovy lengths 
using Hunter’s modified intercept amplitude function (see text 
for complete discussion) for extension to larval lengths other 
than 1.4 cm. 

Length 
fcm) 

Energy1 
excursion 

(ergs) 
2 0  881 4 
1 4  144 8 
1 0  163 
0 70 3 6  
n dn 0 76 

energylexcursion in ergs and L length in cen- 
t imeters yielded E = 27.5 L4.48 .  The 
energylexcursion calculated for the four addi- 
tional lengths was then converted to hourly 
energy rates using the excursion frequencies 
cited earlier. The results obtained were plotted 
with scales of calories per hour vs. length in 
centimeters. For Comparison, another curve of 
the form dOz= fa) was computed and plotted 
along with the curve formed using the addi- 
tional model points above (Figure 9). The line 
shown connecting these points is fitted by eye. 
The comparison curve was based on the respira- 
tion value of 0.0218 cal/mg dry w t h  and the 
following relationship between dry weight in 
milligrams and length in millimeters, log W = 
3.3237 log L - 3.8205 (Lasker et  al., 1971). 
This comparison curve is isomorphic to the 
length-weight curve with no allowance being 
made for specific respiration changes with in- 
creasing weight. Therefore the curve is to be 
regarded as the best approximation to the total 
O2 consumption rate for swimming larval an- 
chovies. It provides only a means of judging the 
physiological reliability of the energy summa- 
tion method employed here. However, because 
the changes in specific respiration as a function 
of weight would not change this comparison 
curve appreciably, it can probably be regarded 
as sufficiently reliable. With this understanding 
some comparison of these curves can be made. 

From laboratory observation of larvae i t  
seems apparent that nondimensional amplitude 
and wavelength do not remain constant but de- 
crease in absolute value as length is increased. 
That is, functions descriptive of these non- 
dimensional parameters do not remain descrip- 
tive of animals of all lengths. That is exactly 
what is observed as we deviate from the origi- 
nal L = 1.4 cm point where the nondimensionak 
wave parameters a re  fitted. Even with 
modification of A max used to compute the origi- 
nal curve this effect is still observable. Part of 
the deviation is, however, due to the behavior of 
the larvae as age increases. Very small larvae 
float 9O?h of the time with occasional bursts of 
intensive activity (Hunter, 1972) which, as I 
pointed out earlier, is quite inefficient. As the 
larvae get older, however, intermittent, more 
efficient swimming becomes the dominant mode 
of locomotion. This trend is partially reflected 
in these two curves. As the larvae get older and 

dt 
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and loan of larval anchovy feeding films. Appreci- 
ation is also expressed to the staff of the National 
Marine Fisheries Service computer facility for 
their assistance in this project. This work was 
supported by NOAA, Office of Sea Grant, Depart- 
ment of Commerce, under g ran t  #UCSD 
04-3-158-22. 

larger  the  intermit tent  swimming r a t e  de- 
creases and the nondimensional amplitude and 
wave functions decrease also. This accounts for 
the large locomotion energy computed for lar- 
vae greater than 1.4-cm in length. It is interest- 
ing to note how behavioral factors, when un- 
avoidably neglected in  extending this curve, 
become ev’ident when compared with reasonable 
estimates for total energy consumption. 

In view of the behavioral-mathematical fac- 
tors influencing the shape of the theoretical 
curve in the directions observed here and the 
physiologic reasonableness of the  metabolic 
swimming efficiencies obtained when exact 
wave parameters descriptive of the L = 1.4-cm 
larva are used, it is reasonable to conclude that 
the energies calculated from the model are the 
best estimates of the swimming energetic re- 
quirement per excursion of the larval anchovy, 
excursion being regarded as a discrete, repro- 
ducible behavioral entity, currently available. 

Therefore, the major results of this study are 
1) the demonstration that modifications of exist- 
ing methods of computing energy of translation 
yield information on behavior when consider- 
ation is given to differences in behavior, shape, 
and flow scale, 2) that a good correlation exists 
in terms of metabolic swimming efficiency ob- 
tained between direct 0, measurements and 
the model, 3) a confirmation of the  high 
efficiency of large amplitude, intermit tent  
swimming behavior, and 4) quantitative esti- 
mates of swimming energy requirements de- 
rived from this model may be used for other 
larval anchovy research. 

Theoretical studies such as random walk 
analyses and correlations with feeding behavior 
and migration which are being studied cur- 
rently could incorporate these data to provide a 
comprehensive and quantitative picture of lar- 
val ancho-zy energetics and behavior. 
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APPENDIX 

The integration of the iterated integrals was 
accomplished via a two-dimensional extension of 
the standard Gauss-Legendre guadrature. The 
one-dimensional fixed limit integration formula 
was used by Holwell and Miles (1971) for similar 
classes of functions with good results. The type of 
integrals requiring evaluation were of the general 
form 

a, b, fixed. 

Defining 

we get 
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By n- point Gauss-Legendre quadrature Ab- 
ramovitz and Stegun (1966) this is given approxi- 
mately by, 

b - a  b + a  where t i  = - Yl f2 2 

y i  = i t h  zero of P,,(x),  the n-order 
Legendre polynomial and 

w ,  = 2/(1 - Y,.) [ P I , ,  ( t , i J 2  

Using Gauss-Legendre quadrature on G ( t  i) 
yields, 

wJ* = 2/(1 - y J )  [P,',(v,)]* and 

yJ = j th root of P ,  (x). 

We have finally the result, 

where the above definitions hold. 
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