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ABSTRACT 

The developmental stages of fish eggs and the growth of larval fishes of several species can be 
represented by a Gompertz-type curve based on the observation that in widely different living systems, 
exponential growth tends to undergo exponential decay with time. Further, experimental studies and 
field observations have shown that the effect of temperature on the growth process follows the same 
pattern, i.e., the rate of growth declines exponentially with increasing temperature. Evidence suggests 
that prehatch growth rates determine ideal or optimum trajectories which are maintained after hatch 
in the middle temperature range but not a t  either extreme. Also, posthatch growth exhibits a 
temperature optimum which is not apparent in the incubation period. These studies have also shown 
that for the same spawn both the prehatch and yolk-sac growth curves reach asymptotic limits 
independent of temperature. Other biological events (e.g., jaw development) occur a t  the same size for 
all temperatures. 

The growth of post-yolk-sac larvae follows a curve of the same type and hence the posthatch growth 
trajectory may be represented by a twc-stage curve. For starving larvae, the second stage shows a 
decline in size but maintains the same form, Le., the rateof exponential decline decreasesexponentially 
with time. 

Recent success in spawning and rearing marine 
fish larvae at the Southwest Fisheries Center 
(SWFC) (Lasker et al. 1970; May lflLeong 1971) 
has made possible a much more fundamental 
examination of the growth process than has here- 
tofore been possible. Controlled laboratory exper- 
iments can now be utilized to investigate both the 
inherent nature of the growth process as well as 
the effect of some environmental factors. 

Considerable care is required, however, in con- 
structing a model2 which is meaningful both 
mathematically and biologically. For example, 
almost all growth models currently in use can be 
derived as variations of the differential equation: 

or 

(von Bertalanffy 1938; Beverton and Holt 1957; 
Richards 1959; Chapman 1961; Taylor 1962) where 

'Southwest Fisheries Center La Jolla Laboratory, National 
Marine Fisheries Service, NOAA, La Jolla, CA 92038. 

2A model is here conceived to be a mathematical representa- 
tion of change in length or weight with time under measureable 
environmental conditions. 

W is weight, L is length, and Q, K ,  m, n, mi and n'are 
arbitrary constants. These are the equations used 
most often to describe growth as a function of 
anabolic and catabolic processes of metabolism. 
The ra te  of anabolism, 1, is considered to be 
proportional to W" and the rate of catabolism, K ,  

proportional to W". Equation ( l a )  requires, in 
addition, the allometric relationship W = qLp, 
where again q and p are arbitrary constants. In 
practice a dilemma arises from the fact that  while 
such models yield a good empirical fit to the data, 
the estimates of parameters Q and K are often 
negative, thereby negating the assumptions on 
which the model is based. For n = 1 and m = 0,1, 
2, respectively, Equation (1) gives rise to the von 
Bertalanffy growth in length, Gompertz, and  
logistic growth functions. Although we have not as 
yet made any extensive comparisons, the fact that  
for mz l  and n = 1, 1 and K must be negative, 
suggests that  in many instances the Gompertz and 
logistic rather than the von Bertalanffy functions 
may provide more appropriate models of fish 
growth. In  particular, the simple von Bertalanffy 
growth model has no inflection point and hence 
curves such as the generalized von Bertalanffy, 
Gompertz, or logistic must be used when an  in- 
flection in the growth trajectory is evident. 

Laird e t  al. (1965) have presented a Gompertz- 
type mathematical model of growth based on the 
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observation that the specific growth rate d W /  Wdt 
of animals and their parts tends to decay expo- 
nentially with increasing age. They have shown 
tha t  this relation offers a practical means of 
analyzing the growth of parts of embryonic and 
postnatal animals (Laird 1965a), the growth of 
tumors (Laird 1964, 1965b), whole embryos of a 
number of avian and mammalian species (Laird 
1966a), and early stages of postnatal growth of a 
variety of mammalian and avian organisms (Laird 
196613). Further, Laird (1966b, 1967) has shown 
that postnatal growth of a variety of mammalian 
and avian organisms can be fitted by compounding 
this model with a linear growth process beginning 
a t  birth and extending on beyond the asymptotic 
limit of the underlying Gompertz growth process. 
Overall growth is assumed to be genetically de- 
termined by programming only the initial specific 
growth rate and the rate of exponential decay, 
these governing growth processes then act on a 
genetically determined original mass to produce 
the observed course of growth to a final limiting 
size characteristic of the species and individual. 

Mathematically,  these  assumptions a re  de- 
scribed by the two equations: 

= Y(t)W(t) 
d t  

and3 

which have the solution 

0 A "  ( 1 - r - q  

W ( f )  = Woe f 

where W, is weight at t = 0, A. is the specific 
growth rate at t = 0, a is the rate of exponential 
decay and the specific growth rate a t  time t ,  A ,  = 
A,e -a'. 

Laird e t  al. (1965) indicated that an additional 
growth component not included in the Gompertz 
equation may be due to  the accumulation of 
products t ha t  a r e  not self-reproducing or t o  
renewal systems that are not in exact phys- 
iological equilibrium and suggested the com- 
pound growth curve: 

.,In the usual Gompertz reprcscntation the rate of exponential 
growth is assumed t o  dcrlinc logarithmirally as I\ '  approarhes 
the asymptote .!I = ll',,~ a , i.e., $ = n NIn(.V~ a') 

where W, is the mass due to the Gompertz growth 
process, ,!3 is the rate of linear growth, and M is the 
asymptotic limit of the growth process. She also 
suggests that  this linear process starts in the early 
embryonic period, if not a t  conception. For the age 
interval covered in this paper, however, the linear 
growth component (W - W,) was not found to be 
important. 

Several characteristics of the curve are worthy 
of mention: 

1. The asymptotic limit M is W, Exp (A,/a). 
2. The point of inflection (t,, W,) = 

3. The zero point on the time scale may 
be shifted to any point ti? without changing the 
form of the equation with new parameters W ,  = 

W(A), A, = Age4, where a remains un- 
altered. 

The fundamental concept of the Laird- 
Gompertz model is one of change in weight or 
mass with time, being due primarily to the self- 
multiplication of cells and genetically determined 
limitations on the growth parameters. The use of 
length as the measured variable is thus a matter of 
convenience due to the fact that  weight measure- 
ments are much more time consuming, especially 
in early larval growth, but also in juvenile and 
adult fishes. As indicated in Equation (la),  if a true 
allometric relationship existed, the choice would be 
unimportant. However, all experimental evidence 
indicates tha t  both length and weight can be 
described by a Gompertz-type curve. Hence, it can 
be shown that 1) the growth rate for both changes 
continually with time and 2) the form of the  
length-weight relationship will change continually 
except for two special instances. Laird e t  al. (1968) 
has shown that this occurs only when the rates of 
exponential decay are the same and either the two 
measured variables begin growth at  different 
times a t  the same initial rate or a t  different rates 
a t  the same time. In all other cases the allometric 
plot will be nonlinear. For 

and 
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the length-weight relationship is 

Only when a = p does the relationship reduce to 
the linear form 

As shown in Figure 1, departure from linearity 
will not always be great, but for extrapolation the 
effect of overestimation a t  larger sizes may 
become serious. 

Throughout this paper, growth will, by necessi- 
ty, be measured in terms of length rather than 
weight even though t h e  model equation i s  
developed from the opposite point of view. I t  
should be remembered, however, that no allomet- 
ric relationship is assumed, i.e., no relationships 
among the two sets of parameters are assumed 
except as they are jointly a function of age. 

i -il 
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WEIGHT (mq) 

FIGURE 1.-Length-weight relationship in larval anchovies: Solid 
line fitted from log W = a + h log L dashed line fitted from 
Equation (4); estimates are coincident up to 10 mm. 

INITIAL ESTIMATES 

Equation (2) may be rewritten as follows: 

Let K = Ao/a  

and M = WoeK, 

then ~ ( t )  = 

or In[-In( W(V(t)/M)] = In K-at,  

and hence the logarithm of the logarithm of the 
ratio of size to the asymptotic limit M with the 
sign changed will be linearly related to time t with 
parameters In K and -a. Wo may be obtained 
from the relationship In M = In Wo + K. Note: For 
decreasing curves, use the reciprocal of the ob- 
served values. 

VARIABILITY, ESTIMATION, A N D  
TRANSFORiMATION BIAS 

I t  is an unfortunate circumstance tha t  the 
determination of the “best” estimation procedure 
can rarely be separated from the determination of 
the “best” mathematical model, i.e., there is no 
recognized best estimation procedure except in 
some specialized. instances. This is brought about 
by the fact that almost all parametric estimation 
procedures assume sope  information concerning 
the form and stability of the “error” distribution. 
This requires, a t  the very least, the knowledge that 
the variance is constant and, a t  the most, the exact 
form of the error distribution. Since the term 
“error” in the biological sciences takes a meaning 
quite different from that in the physical and 
mathematical sciences in that it represents, in the 
main, natural variability rather than measure- 
ment or experimental error and since natural 
variability is large (especially so in cold-blooded 
organisms), few a priori assumptions can be made. 

Since most estimation procedures assume a 
normal distribution of errors a t  each point along 
the curve with equal variance (homoscedasticity), 
the obvious approach, when no more plausible 
alternative is available, is to fit the situation to 
this mold. 

Some general recommendations are helpful. 
“Although no clear rule may be safely offered for 
the taking of logarithms to reduce data to man- 
ageable configurations, nevertheless, this trans- 
formation (logs) is probably the most common of 
all. Almost all data that arise from growth phe- 
nomenon, where the change in a datum is likely to 
be proportional to its size and hence errors are 
similarly afflicted, are improved by transforms to 
their logarithms” (Acton 1959: 223). Specifically, it 
can be shown that the logarithmic transformation 
will induce homoscedasticity in those instances 
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TABLE 1.-The relationship of mean and standard deviation for 
both length and weight measurements in fishes. 

Analysis of covariance 
deviations from 

log u-a + p  iogp regreasion 

(1 R dt S.S. Ill... 

where the standard deviation is proportional to  
the population mean, i.e., u = P p  or  log u = log ,8 + 

log p. Hence, a plot of log u on log p will have a slope 
of unity and the antilog of the intercept will define 
the proportionality constant. Plots of log u on log p 
were made for  several experiments where data  
were available for  extended periods of time. None 
of the  regression coefficients was significantly 
different from unity. These experiments cover a 
variety of life stages and environmental situa- 
tions from controlled laboratory experiments on 
larval anchovies (Lasker et al. 1970) to  large tank 
feeding of anchovies captured from the wild at 75 
mm (Paloma, SWFC, unpubl. data)  to samples of 
adult sardines obtained from bait boats (Lasker 
1970). Growth for  the 75-mm anchovies was slow 
and much more uniform than for the other esper- 
iments as indicated by the  mean square errors in 
Table 1. The analysis of covariance (Table 1) shows 
no difference in slope for  either length or weight 
from larval, juvenile, and adult fishes. The average 
slopes are 0.9981 for  larvae and adults and 1.1061 
for  juveniles. With a slope of unity, the propor- 
tionality constant can be estimated by Exp (5 - 
G). The results from the several experiments are 
shown below: 

U'P 
Length Weight 

Lasker et al. (1970): 
Experiment 1 0.12 0.39 
Experiment 2 0.12 0.33 

Paloma' 0.06 0.20 
Lasker (1970) 0.04 0.13 

Not unexpectedly, variation in weight exceeds 
that  of length and both decrease with increasing 
age. 

The question of normality and its relationship to  
homoscedasticity is more tenuous, but again some 
help is available. In practical work, it is generally 
assumed that  both s and log r can be regarded as 
normally distributed as long as the coefficient of 
variation C = u/p< '/5 or  uloe ~ <0.14 (Hald 1952: 
164). This allows transformation for  one desidera- 
tum without noticeably affecting another. 

Paloma (see footnote 4) collected one or  two 
samples per month of laboratory-reared anchovies 
for a period of nearly 2 yr. Approximately 25 fish 
were taken for  each sample. We examined nor- 
mality in terms of skewness (G,) and  kurtosis 
(mean absolute deviation A ) .  Although sample 

Paloma, P. Unpublished data available at SWFC 

~ 

Larvae and adults: 
Length' exp. 1 -1.5568 1.6979 6 0.3308 0.0551 

exp. 2 -0.8303 0.8281 8 0.7167 0.0898 
Weight' exP. ! -0.4192 1.0373 6 0.1572 0.0262 

9xP. 2 -0.4852 1.0077 6 0.4241 0.0530 
Length* -1.6093 1.0848 60 2.2933 0.0382 
Weight' -0.4748 0.7906 60 2.5913 0.0432 

Within 148 6.5134 0.0440 
Between 5 0.1425 0.0285 
Common 153 6.6559 

F = 0.0285/0.0440 5 0.65 

Juveniles: 
Length? -1.3975 1.1644 31 0.3658 0.0118 
Weight3 -0.8000 1.1029 31 0.1511 0.0048 

Within 62 0.5169 0.0083 
Between 1 0.0002 0.0002 
Common 63 0.5171 

F = 0.0002/0.0083 = 5.02 

'Lasker et al. (19701, larval anchovies. 
zLasker (1970), adult sardines. 
IPaloma: unpublished data available at SWFC, Juvenile an- 

chovies. 

sizes are  small, in terms of positive (>mean) and  
negative (== mean) coefficients, the transformation 
was effective in normalizing both fish weight and 
length as  shown below: 

G I ( k l  = 0 )  > 19 17 24 16 
5 14 16 19 17 

A(pA = 0.7979) 18 17 17 17 
5 15 16 16 16 

For these same samples, length and weight were 
assumed bivariate-log normal and  confidence 
regions were calculated for  each sample. On the 
average, 96% of the observations fell within the 
95% confidence ellipse. 

In summary, there is strong evidence tha t  the 
logarithmic transformation will be required t o  
stabilize the variability in all phases of fish growth 
and that  such a transformation will support the  
assumption of a normal distribution at least in the 
intermediate size range (75-100 mm) and  most 
likely at other sizes as well. 

Seemingly then, the conditions have been met  
for implementation of either the maximum 
likelihood or least squares  es t imat ion process. 
However, two problems remain, neither of which 
has a n  entirely satisfactory solution. The first, the 
absence of a n  explicit solution of t h e  normal 
equations, arises because the parameters en ter  the  
model in a nonlinear manner and, as is usual in 

L log L w log w 
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situations of this kind, an iterative procedure is 
required. The one employed for this paper is 
Marquardt's algorithm (Conway et al. 1970). 
Procedures such as this are usually justified on the 
basis that  for large samples and independent 
observations the estimates obtained are "very 
close" to those which would be obtained by plot- 
ting the likelihood function itself (Box and Jen- 
kins 1970: 213). In truth, the small sample bias and 
variability of such estimates remains unknown. In 
growth data the second problem is that sequential 
observations are not likely to arise from entirely 
independent processes. This fact is usually man- 
ifested as a series of runs above and below a fitted 
curve rather than random variation. One simple 
explanation is that growth is in reality a series of 
asymptotic curves and that oscillations around a 
fitted curve indicate more than one growth cycle. 
In this case, the basic assumption of the estima- 
tion procedure and the likelihood function itself 
will not be met. No satisfactory solution to this 
problem has been proposed and none is proffered 
here. However, since the same larvae were not 
measured a t  different ages and since correlated 
observations usually have little effect on the 
estimates of mean values, such estimates will 
likely not be seriously biased. Using these es- 
timates, "goodness of fit" is examined through the 
magnitude of the residual mean square and the 
pattern of residuals along the growth curve, rather 
than using significance tests or confidence 
intervals. 

One further point often considered but left 
unsaid is the effect of transformations on the 
estimated means. Such changes of scale can lead to 
serious biases and  errors in interpretation, 
especially when the coefficient of variation is 
large. When the exact form of the error distribu- 
tion is known the bias can usually be determined 
mathematically. For the log normal, for example, 
it  is necessary to add one-half of the error mean 
square before calculating the antilog mean. Un- 
fortunately, in practical work, i t  is generally 
impossible without very large samples, to dcter- 
mine the distributional form. As stated above. for 
many situations, x and log x can both be considered 
to be normally distributed. In these intermediate 
cases, however, the bias correction for log z will be 
small so, that as a general rule, one can state that 
whenever a transformation is made, the correction 
for transformation bias should be used. 

RESULTS 

Growth Cycles 

Previous work on the growth of larval anchovies 
(Kramer and Zweifel 1970) suggested that the 
Laird form of the  Gompertz equation might 
provide a useful model of larval growth. Figure 2 
reveals several phenomena found to be almost 
universal in larval growth: 1) there is a moderate 
increase in length during the interval following 
hatch that is followed by 2) a period of minimal 
growth accompanied by nearly uniform variabili- 
ty, and 3) at the onset of feeding, the mean size 
increases rapidly with variability proportional to 
the square of the mean size. 

Farris (1959) noted the rapid leveling off in 
growth following hatch for the Pacific sardine and 
three other species and approximated the growth 
rate by two discontinuous curves and indicated 
that "a more detailed study would probably reveal 
a nonlogarithmic continuous growth function." 

' 0  4 4 8 I2 16 20 24 29 32 36 

DAYS AFTER HATCHING 

FIGURE 2.-Change in length of yolk-sac and feeding larval 
anchovies at two temperatures, 17' and 22°C from Kramer and 
Zweifel(l970); curves are two-cycle Laird-Gompertz. 
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Although the  single s t age  model used by 
Kramer and Zweifel (1970) provides an adequate 
growth curve, two growth cycles are evident: one 
extending from hatching to the depletion of the 
yolk sac and the other a more rapid growth a t  the 
onset of feeding. Thus, a two-stage model was 
used to obtain the curves in Figure 2. The fitting 
procedure is outlined in the Appendix. 

I t  is evident that early larval growth of this 
species can be represented by a two-stage Laird 
growth curve. The charcteristics of the growth 
curves of feeding larvae, i.e., the second cycle, may 
be related to several environmental factors of 
which the two most important are probably food 
ration and temperature. However, an examination 
of data available on nonfeeding larvae (Figure 3) 
indicated that even in food-limited situations, 
change in size may be represented by the two- 
stage Laird curve. 

Growth From Hatch to Depletion 
of Yolk Sac 

The characteristics of the early posthatch 
growth of larval fishes is more completely de- 
scribed by Lasker (1964). In this series of exper- 
iments, growth in length of the Pacific sardine, 
Sardinops sagax, was measured for up to 10 days 
following hatching a t  12 temperatures in the 
range 11"-21.3"C. The parameters of a single 
stage Laird curve (Equation 2) were estimated for 
each of these experiments. Data only up to the day 
preceding the first decrease in size were used in 
the calculations. 

Even though for such short time series, the 
parameters are highly correlated due to near- 
redundancy of one of the parameters, two obser- 
vations were striking; there was a nearly constant 
estimated hatching length of about 3.75 mm and 
a nearly constant estimated maximum length of 
about 6.1 mm. .4ccordingly, those experiments 
with hatching lengths near 3.75 mm and a mea- 
sured increase in size of at least 3 days were fitted 
to the reparameterized model: 

L(t)T = LoeK(l-e"T" 

where K = A,,,/ a? 

and the T subscript indicates temperature in "C. A 
plot of aT on tempera ture  revealed another 
Laird-Gompertz curve approaching an asymptote 
a t  higher temperatures. 

A five parameter model: 
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FIGURE 3.-Change in length of yolk-sac and starving larvae; 
curves are two-cycle Laird-Gornpertz. 

was used to fit the growth data from all exper- 
iments and provided an excellent fit except at the 
highest temperature where growth was always 
overestimated. This suggested a temperature 
optimum with growth rates decreasing as the 
absolute difference j T - Top, 1 increases. Following 
Stinner et  ai. (1974), who used a different temper- 
ature function, we assumed symmetry around the 
optimum. 

Using Equation (sa). the origin of the tempera- 
ture scale may easily be shifted to the optimum 
To,, by the relationships: 

m(1. @'opt) 
a o p t  = a"e 

and mopt = me-@Topt 
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and letting 1 = IT - To,) 
we have the  symmetric relationship 

aT = aoptemopt(l -e.pA). 

Substituting Equation (5b) for Equation (5a) and 
t reat ing To,, as a n  unknown parameter ,  a six 
parameter model was fitted to the growth da ta  
with the results shown in Table 2. 

TABLE 2.-Growth in length of yolk-sac larvae of the Pacific 
sardine at several temperatures. 

Length Temper- 
Age alure 

Observed1 Estimated2 SE (days) ("C) N 

3.76 3.72 
4.30 4.27 
4.78 4.71 
4.97 5.06 
3.77 3.72 
4.50 4.40 
4.71 4.91 
5.04 5.26 
5.50 5.54 
3.73 3.72 
4.50 4.55 
4.97 5.12 
5.46 5.49 
4.60 4.72 
5.39 5.33 
5.65 5.67 
3.93 4.08 
4.06 4.09 
5.14 4.89 
5.59 5.51 
5.96 5.61 
3.71 3.72 
5.01 5.07 
5.66 5.67 
5.99 5.91 
6.23 6.00 
3.74 3.72 
5.20 5.21 
5.77 5.76 
6.14 5.97 
3.69 3.97 
5.27 5.38 
5.86 5.88 
6.06 6.01 
3.71 3.72 
5.46 5.53 
5.98 5.95 
6.09 6.04 
3.73 3.72 
5.36 5.56 
5.73 5.97 
5.93 6.04 
5.10 4.63 
5.46 5.45 
5.43 5.32 
5.90 6.00 0.13 3.00 

'From Lasker (1964). 
2Calculated from Equations (5) and (5b) with parameters La = 

3.716. K - 0.4872.a oo, = 1.6523. rn = 3.3678, p = 0.0490. and 
roQt = 19.36. 

0.15 
0.27 
0.50 
0.25 
0.20 
0.24 
0.29 
0.44 
0.36 
0.16 
0.23 
0.41 
0.45 
0.20 
0.27 
0.36 
0.13 
0.13 
0.44 
0.35 
0.32 
0.25 
0.25 
0.26 
0.15 
0.11 
0.22 
0.16 
0.20 
0.20 
0.10 
0.19 
0.23 
0.22 
0.21 
0.18 
0.21 
0.15 
0.10 
0.19 
0.17 
0.25 
0.12 
0.16 
0.03 

0.00 
1 .oo 
2.00 
3.00 
0.00 
1 .oo 
2.00 
3.00 
4.00 
0.00 
1.00 
2.00 
3.00 
1 .oo 
2.00 
3.00 
0.30 
0.30 
1 .oo 
2.00 
3.00 
0.00 
1 .oo 
2.00 
3.00 
4.00 
0.00 
1 .oo 
2.00 
3.00 
0.10 
1 .oo 
2.00 
3.00 
0.00 
1 .oo 
2.00 
3.00 
0.00 
1 .oo 
2.00 
3.00 
0.50 
1 .oo 
1 .oo 

11 .oo 

12.00 

13.00 

14.00 

14.20 
14.30 
15.00 

16.00 

16.60 

17.80 

18.60 

19.60 

20.50 

21.30 

7 
4 
4 
2 
9 

11 
6 
6 
3 
6 

17 
11 
9 

22 
19 
9 

11 
5 

17 
20 
10 
21 
19 
23 
11 
9 

14 
16 
22 
13 
5 

16 
22 
19 
4 

18 
25 
16 
4 

18 
15 
16 
12 
12 
3 
5 

Growth From Fertilization to Hatch 

Coincident to  the investigation of early larval 

growth, a study of the incubation times for  the  
sardine showed tha t  they also could be character- 
ized by a Laird-Gompertz curve. The fitting of 
Equat ion (Sa) with aT being incubation t i m e  
showed no bias at a n y  point along t h e  curve 
(Figure 4). Unlike the posthatch growth curves, 
however, no evidence of a temperature optimum 
was found, Le.. incubation time did not increase at 
high temperatures. One possible explanation is 
that  larvae which expire cannot be included and 
hence mortality introduces a negative bias in the 
estimate of average or median incubation time. 

The question arises whether changes in growth 
rates occur at hatching, Le., is there a single curve 
from fertilization to onset of feeding? I t  can be 
shown t h a t  under  t h e  Laird-Gompertz model 
where growth is approaching a common asymp- 
tote from a common origin, i.e. fertilization, the 
incubation time IT is simple multiple of the decay 
rate a T. From Equation (5)  we may solve for  the 
time to  hatch IT at size I,, to obtain: 

Since incubation times were not available for  all 
temperatures used in the growth experiment, the 
sardine curve from Figure 4 was used to convert 
all data  taken at temperatures less than optimum 
to time from fertilization and fitted to  Equation 
(5 ) .  

The results for  sardines indicated a n  increasing 
size at hatch with increasing temperature which 
was not evidenced by the observed da ta  and a n  
overestimate of size at temperatures less than 
14°C. I t  was thus  concluded t h a t  a change in 
growth rate occurs at hatch. the more noticeably at 
extreme temperatures and that  the prehatch curve 
must be estimated separately. 

The parameters of the prehatch growth curves 
were obtained by fitting the equation 

to  only da ta  obtained less than 12 h following 
hatch. The average estimated hatching size was 
3.73 mm and the asymptotic limit was 6.13 mm. 
The plot for  several selected tempera tures  is 
shown in Figure .5. Laird (1963a) has shown that  
the length scale may be standardized and logically 
simplified by express ing  size re la t ive  t o  t h e  
a s y m p t o t i c  l imi t .  Biological e v e n t s  such  as 
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FIGURE 4.-Observed 10) and estimated (cun-el (parameters in parentheses are I,,, m ,  and 0 for the 

equation IT = I,,e and * indicates time from stage I11 eggs) incubation times for anchovy. 
Engraiilis mordar [combined data from Lasker (1964) and Kramer !unpubl. data) available a t  
SWFC]; hake, M e d i m i t t s  proditctiis: sheephead. Pindometopon  puiehrir nt: bairdiella. Balrdiella 
icistia; jack mackerel, Trachurm ;L/mmetrzeics: sardine, Sardinups *agar: Pacific mackerel, 
Scomber j a p n i c u s  (Watanabe 1970); sanddab. Cithamchthys atignrurtt.s; :urbot. Pleurortichthys 
decurrens; sefiorita. Oryjulis eal(fr,rnica. 

-m,, - .-fl r, 

developmental egg stages, hatching, and develop- 
ment of the functional jaw occur at fixed points 
along the curves. Ahlstrom (1943) reported time to  
several developmental egg s tages  a t  different 

temperatures from field observations. In addition, 
Lasker (1964) showed incubation times and t ime to  
the development of the functional jaw for a wider 
range of temperatures. Each of these events can 
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be identified as a fixed percentage point in Figure 
5 or the estimated value 

(7) 

as shown in Table 3. 
Lasker (1954) found that the functional jaw did 

not develop at the lowest two temperatures in 
agreement with the result that the critical size 
would not be reached until well after yolk 
absorption. 

Incubation Times 

Incubation times were available for several 
other species. The fitting of Equation (5a) for each 
species showed no clear bias a t  any point along the 
curve (Figure 4). As for the sardine, no evidence of 
a temperature optimum appeared for any of the 
species in the temperature ranges used in the 
experiments. However, it  was observed that the 
decay parameter was relatively constant varying 
from 0.03 to 0.09 with a mean value of 0.05. When 
Equation (5a) was fitted with the temperature 
decay parameter, /3, the same for all species, 
incubation times were closely approximated by 
Equation (5a) with parameters as shown in Table 
4. 

The incubation curves used here differ sig- 
nificantly from those calculated from the classical 
Arrhenius equation: log (incubation time) = a + 
b/absolute temperature. Using this method, near- 
ly all species showed a characteristic under- 
estimate a t  the temperature extremes and over- 
estimates in the middle range as shown for the 
northern anchovy, Engraulis mordax (Figure 6). 

Prehatch Growth Curves for 
Other Species 

In addition to incubation times for the northern 
anchovy, KramerJ recorded t ime to several  
developmental egg stages. Also, Lasker (1964) 
provided time to hatch from stage IV6 (Table 5) .  
Further, Hunter (pers. commun.) indicates that 

DAYS FROM FERTILIZATION 

FIGURE 5.-Prehatch growth curves estimated from Equations ( 5 )  
and (sa) for the Pacific sardine. 

'Unpublished data available at SWFC. 
Wages of embryological development are those described by 

Ahlstrom (1943). 

TABLE 3.-Obmrved (Ob.) and estimated (Est.)' time in hours to developmental egg stages2, hatch, and appearance of the functional jaw 
of the Pacific sardine. 

Lasker (1964) Ahlstrom (1943) 

Stage Ill Stage VI  Stages VIII-IX Stage XI Temp, Incubation time Functional Jaw 

I"C) Obs. Est. Obs. Est. Obs. Est. Obs. Est. ("C) Obs. Est. Obs. Est. 
Temp. 
. .  

- - 13.5 20.4 20.1 41.8 42.9 62.5 63.2 82.6 85.4 11 140 135 
114 - - 14.0 18.9 18.6 39.1 39.7 58.3 58.5 77.2 79.0 12 115 

14.5 17.4 17.3 36.6 36.8 59.4 54.3 72.2 73.3 13 93 96 213 218 
15.0 16.2 16.1 34.3 34.2 50.7 50.4 67.5 68.1 14 78.5 82.4 179 185 
15.5 14.9 15.0 32.1 31.9 47.2 46.9 63.1 63.4 15 68.1 71.0 156 160 
16.0 13.8 14.0 30.0 29.7 44.0 43.7 59.0 59.1 16 60.2 61.6 138 138 
16.5 - - 28.1 27.7 41.1 40.8 55.1 55.2 17 53.7 53.8 119 121 
17.0 - - 26.3 28.0 - - 51.5 51.6 18 48.4 47.3 105 106 

19 43.2 41.8 94 94 
85 84 20 39.3 39.2 

21 34.0 33.2 R 75 

'L - 0.0341. K - 5.20.a - 0.0317, m = 6.19, and p = 0.0489. 
ZEtg stages are defined in" Ahlstrom (1943). 
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TABLE 4.-Parameters for estimating incubation time Z a t  
centigr$e temperature T from the relationship I, = 
Z&d* - ’ for several fishes where fl  is the same for all species. 

Species t” m P 
Senorita 

Bairdlelia 

Pacific mackerel 

Jack mackerel 

Pacific sardine 

Northern anchovy 

Speckled sanddab 

California sheephead 

Turbot 

Pacific hake 

Oxyjulis calilornicus $6,103 -7.9531 0.0527 

Bairdiella iclstia ‘3.170 -6.8216 0.0527 

Scomber japonicus 3,580 -6.4896 0.0527 

Trachurus symmetricus 1,854 -6.2486 5.0527 

Sardinops sagax 2.121 -6.2322 0.0527 

Engraulis mordax 1,389 -5.5218 0.0527 

Citharichthys stigmaeus 1984.6 -5.42% 0.0527 

Pimelometopon pulchrum 11,316 -5.4194 0.0527 

Pleuronichthys decurrens l1.065 -4.7058 0.0527 

Merluccius productus 699.2 -4.1772 0.0527 

‘Time from stage Ill eggs. 

2.0 

3 1.6 
V z 

/ 
9% 

OBSERVED 
0 LAIRD - GOMPERTZ 

ARRHENIUS EQUATION 
0 COINCIDENT POINTS 

/ t 
8.- 

a00330 0.00340 a00350 0~10360 

I - TEMPERATURE (OK) 

FIGURE 6.-A comparison of two methods of fitting the tempera- 
ture-incubation time relationship in the northern anchovy. 

larval anchovy, on the average, hatch a t  about 2.9 
mm. 

Prehatch growth curves were obtained by 
fitting Equation (6) to hatch sizes of 2.85 at  all 
observed temperatures as shown in Figure 7 .  
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DAYS FROM FERTILIZATION 

FIGURE 7.-Prehatch growth curves estimated from Equations (5) 
and (5,) for the northern anchovy. 

Comparison with the sardine curves indicate that 
similar events (i.e., stages of development) occur 
relatively later for the anchovy. Observed and 
estimated event times are shown in Table 5.  

Except for size at hatch, development data for 
the prehatch stage was not available for any other 
species. The curves may, if desired, be easily 
constructed from the parameters as shown in 
Table 6. 

DISCUSSION 

Nothing seems more true than the statement of 
Thompson (1942:158), “Every growth-problem 
becomes a t  last a specific one, running its own 
course for its own reasons. Our curves of growth 
are all alike-but no two are ever the same. Growth 
keeps calling our attention to its own complexity. 
. . . not least in those composite populations whose 
own parts aid or hamper one another, in any form 
or aspect of the struggle for existence.” 

The truth of this statement has been realized in 
the disappointing search for growth models de- 
rived from physiochemical processes. While it is 
true that the mathematical form of some equa- 
tions arrived a t  from metabolic considerations are 
the same as those derived in other ways, more 
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TABLE 5.-Observed (Ob.) and estimated (Est.)' time in hours to developmental egg stages*, hatch, and appearance of the functional jaw 
of the northern anchovy. 

Kramer (unpubl. data) Lasker (1984) 
Stage IV to hatch Temp. 

Stage I l l  Stage VI  Stage V l l l  Stage XI  Incubation time Temp. 
("C) Ops. Est. Obs. Est. Obs. Est. Obs. Est. Obs. Est. ("C) Obs. Est. 

81 83 11.1 
- 98 95.1 12 65 71 12.5 

13.8 20 15.2 42 41.8 56 59.4 78 77.1 80 78.2 13 58 61 
38 37 15.2 15 12.6 35 34.6 50 49.1 65 63.7 

16.6 10 10.6 28 29.0 39 41.2 51 53.4 55 54.2 17.8 34 33 
18.0 9 9.0 24 24.6 35 35.0 44 45.4 49 46.0 18.8 31 29 

28 26 19.4 8 7.7 21 21.1 33 30.0 39 39.0 40 39.5 19.6 
25 24 20.8 6 6.7 19 18.4 2a 26.1 35 33.8 36 34.3 20.5 

113 118.8 11 - - - - - - - - - - - - - - - 
63 64.7 16.8 

'Estimates obtained from Equation (7) with parameters as shown in Table 6. 
ZEgg stages are defined by Ahlstrom (1943). 

TABLE 6.-Mathematical parameters for prehatch growth curves of six fishes. See text for 
notation. 

Average 
size at 

m /3 hatching Species Lo K a0 

Trachurus symmetricus 0.0005 9.0986 0.0226 5.8338 0.0588 1.95 
Sardlnops sagax 0.0341 5.1918 0.0317 6.1876 0.0490 3.74 
Engraulls mordax 0.0250 5.1493 0.0412 5.5338 0.0546 2.88 
Clfharichthys srlgmaeus 0.1814 5.0600 0.0270 6.2898 0.0319 1.97 
Oxyjulls calilornicus 0.0425 4.7164 0.0572 7.2126 0.0260 1.89 
Pleuronichthys decurrens 0.1843 3.2915 0.0480 4.5184 0.0528 3.00 

often than not no meaningful biological interpre- 
tation of the metabolic parameters can be made. 
The essence of the growth equation used here is 
genetically programmed processes of exponential 
growth and of exponential decay of the specific 
growth rate. The most probable source of expo- 
nential growth is, of course, self-multiplication of 
cells, the causes of decay are many but not well 
understood. Laird (1964, 1965a, b, 1966a, b, 1967) 
has shown that this kind of relationship offers a 
practical means of analyzing growth of all tumors, 
as well as embryonic and postnatal growth of a 
number of avian and mammalian species. We have 
shown that a t  least the early stages of the growth 
of fishes follows a similar pattern. 

As with other organisms, several growth cycles 
exist in fishes. The number of such cycles which 
will be recognized is determined by the time scale 
of measurements. We have used three cycles: 1) 
from fertilization to hatching, 2) from hatch to 
onset of feeding, and 3) feeding larvae. 

In addition, we have observed that the temper- 
ature specific growth follows a similar pattern, i.e., 
exponential increase with an exponential decay of 
the temperature specific growth rate. In some 
instances a temperature optimum exists beyond 
which the specific growth rate begins to decline, 
although this may be related to food requirements 
a t  onset of feeding. Further, we have observed 

that for the same spawn 1) the asymptotic limit of 
each growth cycle is independent of temperature 
and 2) the biological events such as developmental 
egg stages, hatching, functional jaw development, 
etc., occur at  the same size a t  all temperatures. 

Figure 8 shows posthatch growth curves of the 
sardine as 1) extrapolated from the prehatch 
curves and 2) obtained from posthatch data. Al- 
though the curves are quite similar at higher 
temperatures, differences in the lower tempera- 
ture range are large. Nevertheless, the time to 
development of the functional jaw is much more 
accurately determined from the extrapolated 
curve, indicating an intrinsic process independent 
E 

DAYS FROM FERTILIZATION 

FIGURE 8.-Posthatch growth curves of the northern anchovy. 
Solid lines are extrapolated from prehatch curve. Broken lines 
are fitted to actual growth data. 
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of actual realized size. Comparison of the  es- 
trapolated curves for  the sardine and anchovy, 
Figures 5 and 7 ,  shows that  for  the same temper- 
a ture  and relative to  the asymptotic size, hatching 
occurs later for the anchovy, but jaw development 
and first feeding occur a t  about the same time. 

In summary, each growth cycle may be repre- 
sented by a n  equation of the form 

L = L o e K ( l - u - “ T I )  

with aT = a,,e m i l  - P - B ~  

with 

when a temperature  optimum exists. The time 
required to  a t ta in  a given size S is 

which has the same form as the original equation. 
Most of the da ta  available were from studies of 

two species, Surdinops sagas and Engrazilis mor- 
dax, so tha t  generalizations must be made with 
caution. Nevertheless, incubation times for  sever- 
al other species fit the model well. 

Finally, it seems worthwhile to repea t  t h a t  
every growth problem becomes at last a specific 
one depending on many factors known or un- 
known, measureable or not. For  example, time of 
fertilization will o f ten  not he known and  age 
determinations will be inexact. Further, Hunter  
and Lenan’  have shown that  egg size is a mea- 
surable and probably important factor in growth 
and survival of anchovy larvae. For  feeding larvae, 
the quantity and quality of food is critical. Egg 
size appears to affect growth by a simple scale 
factor, all events being shifted up or down in 
proportion to the egg  size. Varia%ion in food may 
result in many “artificial” cycles when nutritional 
and caloric requirements are  not met. S e i e r t h e -  
less, it seems clear that  at least the early growth of 
many fishes may be described in terms of genet- 
ically de te rmined  b u t  dynamical ly  c h a n g i n g  
growth rates as defined by the Laird-Gompertz 
growth function. 

‘Hunter. J.. and W. Lenan.  1974. A discussion on the adaptive 
values of variation of fish egg  sizes. Cnpuhl. manuscr.. 7 p. 
Southwest Fisheries Center. Tiburon Laboratory. National 
Marine Fisheries Service. NOAA. Tiburon. CA 94920. 
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APPENDIX 

The estimation procedure of Conway e t  al. 
(1970) is a least squares procedure which requires 
only the definition of the functional relationship 
and the first derivative with respect to  each 
parameter. Although not stated explicitly, con- 
stant variance is assumed and, hence, the loga- 
rithmic form will be used throughout. For a sin- 
gle-cycle Laird-Gompertz curve the equations are 
as follows: 

InF = lnFo + A[1- Exp(-at)]/a 

b&F = [l- Exp(-at)]/a 
A 

'InF = A[(at + 1) Exp(-at) - l]/a' 
a 

For a two-cycle curve with the second cycle begin- 
ning a t  t = t *  the equations are: 

InF = InF, + A[1- Exp(aS,)]/a 

+ - Exp(-PA,)l/P 

= [l - Exp(-a/l,)]/a 
bA0 

bkF = A[(aAl + 1) Exp(-aA,) - l]/a2 
ba 

'LF = [l- Exp(-PL)]/P 
bl3 

'LF =p[(pA, + 1) Exp(-pA,) - l]/Pz 

blnF bt* = [ A  Exp(-aA,) - B Exp(-P&)] 

where AI  = MIN ( t ,  t * )  
1 2  = MAX ( t  - t* , 0). 

FORTRAN programs are available for fitting 
single-cycle, temperature-dependent and multi- 
cycle, temperature-dependent curves a t  SWFC. 
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