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Synopsis 

A prcy concentration dependent random \\:ilk model o f  fced- 
ing behavior in larval anchovy bawd on Ixhavioral cxperi- 
merits \viis used in conjunction with an cspcriincntally vcri- 
fied Markov chain prcy attack rate niodcl t o  evaluate t h c  
relationchip between anchovy larval grou t h  froin 0.4 t o  
2.0 cm a t  various levels of cont.igion and tcnipcraturc in the 
food prey cnvironinent. Contagion w a s  rcpirdcd as being dc- 
scrihed by tlic negative binomial distribution \\ liilc the actual 
prcy particle size distribution \{;I\ t dkcn  lioiii actual prey 
particle surveys m areas liere anchovy larvae arc found.  
0tht.r iniportmt physiological paranictcr\ ncccsur!' for the 
i.on\truction of thc model arc taken from csi\tirig 1itcr:iturc 
and a description of t h c  coniplctc coiiipiltcr intcgrntion o f  
the various subinodcls presented. Results dcmonqtratc the cx- 
trenie importance of food microstructure gcomctry and bcha- 
vior in the growth rates and gro\$tli curves of thc anchovy 
larvae. In particuldr cxtrcrncly nonlincar growth :.itcs as func- 
tions o f  contagion arc observed in the modcl \ v t h  the highest 
gro\bth ratus not occurring at  thc highest levcl of prcy con- 
tagion. Tlic implications thcsc results have in cuplaininp cur- 
rent paraduxe\ betwccii laboratory-grown I;irval anchovy 
prcy conccntration requirements and thew found in the  
oce;in arc discussed. Also, the relationship hctwccn physical 
oceanography and larval survival is discu\\ed in light of the 
result:, iii addition to thc  need tor a iiiorc dctalled undcr- 
standing o f  food prey microstructure in larval rcolopy. 

Introduction 

The survival o f  fish larvae in the open ocean has long 
been a question o f  great interest t o  biological oceano- 
graphers for both practical and theoretical reasons. 
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Froin a practical standpoint this interest steins pri- 
m a r i l ~ ~  from the rather inconsistent relationship ob- 
served between the sue  o f  spawning populations o f  
fish aiid the sire of subsequent yea1 classes. This rela- 
tionship is beiieved to  exist because of large scale 
tluctuations in larval rnortality due to unassessable 
changes i n  predation, food availability, and other ini- 
port;in t etivirontnental variables affecting larval sur- 
vival and tlie effect larval survival ultimately has on 
recruitinent. Thus, the practical importance of larval 
suivival is its relationship to recruitment and how re- 
cruitment IS variously used i n  fisheries management. 
Gulland ( 1973), however, states that  at present, de- 
spite the vast amount o f  laboratory and field work on  
food chain analysis and its relationship to fish pro- 
duction, no proniising arid practical method exists t o  
predict adequately recruitment sliort of vast and 
costly enterprises extended over long periods of time. 

The theoretical interest ill larval fish survival pri- 
niarily ccriters ori the  relationship the young fish have 
t o  the whole ecological structure in which they find 
theniselves. I n  the case of the  larval anchovy, an in- 
triguing aspect o f  such studies lias been the apparent 
discrepancy between the density of appropriate food 
in the laboratory required for moderate growth and 
the density o f  analogous food types in the ocean 
where anchovy larvae are distrihuted (Kramer & 
Zweifel 1970, L a s h  et al. 1970, Hunter 1972, 1976, 
1977). This discrepancy has  led most observers t o  
conclude that rich feeding grounds must exist iri the 
areas where anchovy larvae live which are not ade- 
quately detected by current sampling schemes. That  
is, although the mean densities of food particles ob- 
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served would no t  support larval anchovy growth, iso- 
lated areas must exist in the sea, despite the niean 
density estimates, which can very adequately support 
such growth. 

It was this reasoning which led Lasker (1975) t o  
the  successful search for such advantageous feeding 
grounds in the habitats o f  the larval anchovy and t o  
study tlie relationship of such habitats to successful 
first feeding. This work pciinted up  tlie importance of 
more focused analysis on  environniental food aggrega- 
tions arid how possible alterations of these aggre- 
gations could have impoi-t:irit iiiiplications for larval 
survival. Lasker is no  doubt  correct that such habitats 
are triily advantageous to first feeding larvae as evi- 
denced by  the ability of h i s  laboratory-reared larvae 
to fill their guts rapidly when placed in water drawn 
from these regions. 1Ion ever, these rich food areas 
probably cannot alorie ,wiipletely account for tlie 
immense success o f  tlie ,iiicliovy larvae which support 
the  siLe o f  the population believed to exist off tlie 
California coast. That is. tlie blooms of Gjwiiiodi- 
riiztn7 and other phytoplankters found by Lasker 
(197s) .  although excellent for first feeding larwe. 
will no t  support  the  yourig fish t o  a length exceeding 
5.0 niin (Hunter 1977). Therefore, either other ap- 
propriate food types arc aggregated in the blooms 
which allow the larvae to continue to glow or young 
fish can and do survive in other areas where sucl i  
appropriate food types c m  exist in sufficient densit),. 

These considerations naturally give rise to tlie 
question o f  the  relationsliip between tlie aiiiount and  
geometric distribution o f  food in the environinent o f  
larval anchovies and the  animal’s growth rate and d t i -  
mate survival. However, such questions require for 
their solution relatively det:iiled understanding of 
both the structure of tlie i!;iportant environmental 
paranieters on  small scales :ind t h e  beliavioral and 
physiological modifications of tlie larvae induced hy 
such parameters. Unfortunately, too little is known a t  
the  necessary scale about tlie food structure of the 
larval anchovy t o  permit ;I complctely realistic formu- 
lation of these relationships. A sufiicient amouiit o t  
inforination. however. is now available about the 
changes induced i i i  the beliavior and physiolog) of 
mchovy larvae 0.4 to 2.0 ciii in leiigth hy different 
environineiital factors t o  allow a n  attempt at such an 
understanding dependelit on building a realistic 
model o f  the food microstructure from available data. 
Such an approach lias the advantage of heing spccics 
specific and o f  being able to test environniental struc- 
tures at scales not detected with current sampling 
schemes. The results obt:iiiied can be cornpared with 
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k n o w  laboratory growth studies and provide an in- 
sight into thc sinall-scale relationships in the ocean 
which may h w e  significant consequences for the sur- 
vival o f  these organism and which cannot be assessed 
with present methods. 

It is tlie purpose o f  this paper to construct and 
analyze a model that will simulate dynamically the 
interrelationship between the anchovy’s larval physio- 
logy a i d  behavior and its food microdistribution, par- 
ticularly as they affect larval growth. The model will 
simulate tlie growth o f  the  larvae at  the beginning 
of exogenous nutrition from 0.4 cni to the onset of 
scliooling at  2.0 cni for various levels o f  contagion of 
food organisms. This range was selected because our  
k n o w  IC d ge o f  be li avio r;i 1 and pli y si 01 o gi c al mod 111 a- 
tions by  the environnient have only been determined 
quantitatively for these size ranges. The model will be 
presented in five sections each dealing with the niajor 
components required t o  construct the complete sys- 
tem. The assumptions underlying each subniodel will 
be discussed and data presented to verify tlie predic- 
tions of the subinodels when such data exists. The 
complctc system o f  submodels and tlie flow diagram 
of their interactions will be presented in a final sec- 
tion, and the growth simulations created using the 
complete system analyLed and discussed. The iniplica- 
tions these studies have for larval growth require- 
ments in tlie ocean and the need for possible alterna- 
tive investigative methods or approaches to the study 
of the  larval food microenvironiiient will then be re- 
evaluated in light of tlie model obtained. 

A random walk iiiodel of larval anchovy 
f e e d  i iig bel1 avior 

I h e  foraging behavior of the larval anchovy has been 
\vel1 documeritcd and analyLed (Hunter 1972, Iiunter 
& llioiiias 1073) and. in general, i s  well suited to  
matlien~atical riiodeling. This is priiiiaril). because lar- 
val anchovy forage behavior can be easily separated 
into discrete excursion elements in three dimensions 
(l luri ter 1972, Vlyinen 1974). Foraging behavior by 
tlie lan:il ancliovy is not a purely random three di- 
iiierision;il motion but rather one that within dis- 
tances comparable to the larval length ‘exhibits only 
small excursions perpendicular t o  the previous direc- 
tion of motion. This allows for  the  application o f  a 
behaviorally-modified three dimensional random walk 
which niodcls the significant elements of tlie animal’s 
foraging behavior as observed in the  laboratory. 

The classical random walk problem in three di- 



niensions effectively seeks to calculate the mean dis- 
tance traveled after N steps or excursions of  fixed 
length when each subsequent excursion is taken at  a 
random orientation or heading from the preceding 
(Debye 1946). Casual observation of  foraging an- 
chovy larvae may suggest this to be an appropriate 
description hut  if such a description was correct it 
would imply that at  each motion the probability of 
relatively ‘behind’ excursions i.e., in the opposite 
direction t o  the previous excursion, was approxi- 
mately the same as relatively ‘forward’ excursions i.e., 
in the same direction as the previous excursion. For  a 
fish larva which has forward binocular vision and 
which morphologically is designed for basically for- 
ward motions, this s e e m  to  be a t oo  unrestricted and 
unrealistic description. The more likely description of 
the situation is that  forward excursion probabilities 
are weighted or preferred by the larva with the degree 
of preference being determined by  environmental fac- 
tors. 

This type o f  behavior was quantitatively eluci- 
dated by Hunter & Thomas (1973) who utilized a 
four direction, t w o  dimensional hounded random 
walk analysis t o  investigate the effect of  prey distri- 
bution and density on the searching and feeding be- 
havior of larval anchovy. They found a distinct pref- 
erence for ‘ahead’ motions that were continuously 
modulated by prey density and which ultimately af- 
fected the amount of area searched as calculated by 
their analysis. That is, high food density tended t o  
equalize the value of each of the four directional 
probabilities they measured and to  decrease the area 
covered by the anchovy, while low food densities 
tended to  increase the ahead probabilities coniparcd 
to  the other three and to increase the atr’ ,unt  of  area 
covered. Hunter & Thomas (1973) felt this behavioral 
niodulatiori had significant survival implications be- 
cause it allowed anchovy larvae to remain in areas of  
high food density longer and thus increase their food 
ration and ultimate survival. 

The data obtained by Hunter & Thomas (1973) 
suggests that an adequate continuous mathematical 
description of  this behavior could be attained by use 
of the circular normal distribution. This distribution 
has had wide application in the study of  biological 
phenomena and a thorough discussion of  its use in 
the biological sciences can be found with relevant 
bibliography in Batschelet (1965). Using the nota- 
tions of  Batschelet (1965), the density function, f(a), 
for the circular normal distribution is given by 

where + is the angle where f(a) takes its maximum 
value, k is a coefficient of  concentration or, as I call it 
here, the dispersion coefficient ( to  prevent confusion 
with particle concentrations later on)  and Io(k) is the 
modified Bessel function of  the first kind. This den- 
sity function says in effect that  the probability of  an 
angle heading by the feeding larval anchovy in the 
range cy t o  cy t d o  is given by f(cy)da and is greatest for 
headings or angle directions in the vicinity of $. That 
is, the circular normal distribution has an inherent 
central tendency, the degree of  which is deterniiried 
by k, the dispersion coefficient. The analogy to  the 
results of Hunter & Thomas (1973) is now clear and 
the foraging pattern can be described by a circular 
normal distribution with a food concentration de- 
pendent dispersion coefficient k(c), where c is the 
food concentration in pa r t i~ l e s -cm-~ .  For simplicity 
and without loss of  generality. $ can be assumed to 
be zero, as the choice of the coordinate system is 
arbitrary. Thus, the ‘forward’ direction will be re- 
garded as having tlie heading 0, ‘left’ ~ / 2 ,  ‘behind’ T ,  

and ‘right‘ 3n /2  where the directions are in the sense 
of Hunter & Thomas (1973). Now the description o f  
the foraging behavior as I have reformulated it is as 
follows. Let an anchovy larva be allowed to execute 
foraging excursions starting at an arbitrary angle 
heading 0 in a concentration of  food particles c. The 
probability that the ith excursion has a heading be- 
tween Bi and B i  t dOi is then given by 

and constitutes the forniulation f o r  the heading prob- 
abilities tliat will he used in tlie subsequent random 
walk derivation. 

Tlre functional relationsliip k(c) can be found by 
computing k using the directional probabilities for 
each concentration of  food type as given in Hunter & 
Thonias ( 1  973). The method used is outlined in Bat- 
schelet ( 1  965) and consists of  first finding the enipiri- 
cal niean vector which points toward the center of 
mass o f  the food concentration data. If we designate 
the directional probabilities at each concentration of  
food type by pi(c) then the components of the mean 
vector are given by 

p ,  (c) = C pI(c)siri O i  , 
I 

(3) 

(4) 

where the B i ,  refer to the four directions given above. 
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The magnitude of p is given by 

P (c) = rm 
and for the circular normal distribution this turns out 
to  be related to  k in the following manner 

(5) 

where Il(k(c)) is the modified Bessel function of the 
second kind. The results of the above analysis using 
the data in Hunter & Thomas (1973) are shown in 
Figure 1 and the least squares fit to the data yields the 
relation 

k(c) = 1.47 ~ - 0 , ~ ~ '  . ( 6 )  

This relation has the desired characteristic of a de- 
creasing dispersion coefficient i.e., reducing the ten- 
dency to go straight ahead as the food concentration 
increases. 

The anchovy larva's movements may now be re- 
garded as a random walk in three dimensions with a 
circular normal heading probability distribution which 
in turn incorporates a food density dependent disper- 
sion coefficient. What is needed is an estimate of the 
mean square distance traveled, (r2 ), where brackets 
refer to  an average over all geometric configurations 
of the system, after N excursions or steps of length 1 .  
Since the larva's foraging activity has a constrained or 
restricted heading probability in three dimensions, re- 
course can be made to a large body of literature deal- 
ing with such systems namely, the statistical mechan- 
ics of chain molecules and in particular their growth 
by sequential covalent linkap?. The definitive exposi- 
tion of such systems is the treatise by €;lory (1969) 
and his development of an expression for the charac- 

teristic ratio, C N  3~ u i  a polymer chain with N 
angle restricted covalent bonds of length 1. Following 
the notation of Flory (1969), the identical develop- 
ment can be done making appropriate changes consis- 
tent with the different heading probability distribu- 
tion being used. 

The configurational average of the projection of 
the i + k-th excursion vector on the i-th is 

(r2 ) 

(7) 

where,[ i i  I = 1 for all i and B i  is the angle heading 
regarding the i - 1 -th as zero. This expression can then 

be used in the expression for (rZ) which is 

where 0 < i < j 5 N. Thus from the above 

h'- 1 j 
=NIZ t ? I 2  k =  C I ( N -  k) m = i  I1  COS^, , (8) 

where in the last step we have combined terms where 
j - i = k. In this case the last step is not totally justi- 
fied because the set { e i }  does not have the property 
that for j - i = j' - i' = k 

j' j n case,, = n C O S a m  
m = i '  m = i  

as in the analogous development for the polymer 
chain where B i  = 8, fori, j<N. However, in our de- 
velopment the O i  are nonnally distributed about the 
initial heading, and since the ensemble average is de- 
sired, the average over 0 ,  KN)e, where such an iden- 
tity is correct is computed and the derivation foIl4,yls 

accordingly. To show this replacing n cos O m  by 
J 

m = i  

(mii cos 0,) e we must show that (i=i n cos 0, ) 0 

= (mti, cos 8,) when j' - i' = j - i = k. Because of 

the probability distribution of the 8, we get, 

Thus f o r j  - i = j ' -  if = k 
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Thus 

(r2 ) N -  1 3 _ N - 1  

N -  N12 k =  1 N k = l  
C - __ = 1 + 2 C Npk(c)-  - C kpk(c) 

from the above expression for (r2) and using the rela- 

just derived. Now since 

pk(c) 5 1 for all c, we have via the geometric series the 
relationship 

Thus our estimate of the distance traveled after N 
excursions, R,, by an anchovy larva of length L in a 
concentration of food particles c is given by 

R, = (N12 (L) C, (c))”* , 

where CN(c) is given above. The excursion length or 
step size 1 is shown as a function of L, an explicit 
relationship of which will be given later. 

Model of attack rate in various concentrations 
of food prey 

The random walk model derived above constitutes 
the quantitative relationship between the behavior of 
the larval anchovy and of food prey concentration. 
Since this relationship is expressed in terms of a dis- 
tance which is a function of a given pre\ concentra- 
tion, it constitutes a geometric connection between 
behavior and prey environment. Also, since the num- 
ber of excursions and larval length are known for any 
distance traversed in a given prey environment, one 
can easily calculate the energy debt incurred by these 
excursions from the relationship derived by Vlyinen 
(1974). However, an element of crucial importance to 
any growth simulation is an assessment or estimate of 
the amount of energy or food taken in by the larva in 
the course of these foraging excursions. 

A widely held concept in fish growth simulations 
used in estimating energy input or ration size is that 
of search volume. That is, one assumes or determines 
experimentally a given visual perceptive area, which 
when multiplied by swimming speed and prey con- 
centration during foraging gives an estimate of the 
amount of food consumed by the fish. Such models, 

however, severely underestimate the minimum en- 
vironmental food content necessary to meet basic 
metabolic and activity caloric requirements, primarily 
because they assume the fish react and successfully 
capture every available prey organism that enters 
their perceptive field. Even the most cursory observa- 
tion of  laboratory reared anchovy larvae will reveal 
this to be false and demonstrates the necessity for a 
more sophisticated and realistic approach to  the prob- 
lem. Because of the absence of adequate empirical 
data to formulate a well grounded relationship be- 
tween feeding rate and food consumption, an alter- 
nate theoretical solution to this problem will be pre- 
sented and the results of the proposed theory corn- 
pared with the data gathered in the laboratory. 

Observations of feeding anchovy larvae reveal that 
feedjng during foraging can be basically regarded as a 
two event system. The anchovy larva swims in dis- 
crete steps or units mentioned earlier and referred to  
as excursions. At the end of each excursion the larva 
either sights an appropriate prey particle and com- 
mences an attack or does not attack. During the epi- 
sodes where attacks take place only one appropriate 
prey is perceived and attacked even though many 
identical acceptable prey ITKIY be in the same area. 
Because of the nature of the subsequent attack se- 
quence (Hunter 1972), the anchovy larva ends up 
many perceptive distances away from the region 
where the attack was commenced and hence must 
initiate the whole forage procedure again -- in a new 
area. There is also an extremely low incidence of at- 
tacks occurring immediately one after another, i.e. 
attacks separated by nonattack excursions. These ob- 
servations lead to  two important assumptions which 
will be used in the theoretical development to  follow. 
(i) Each excursion is associated with a new random 
sample of the environment by the larva via the per- 
ceptive volume, and 
(ii) attacks on prey occurring immediately one after 
another, occur with a non-zero but infinitesimally 
small probability. 
We cannot proceed, however, with only these two 
assumptions to  a development of the attack rate of a 
larval anchovy in various concentrations of food prey 
until we make the one additional assumption that 
(iii) the three dimensional distribution of prey par- 
ticles is locally random. 

It is important to  understand that this last assump- 
tion does not mean that the prey particle distribution 
is random, an assumption made by most growth 
models. In fact, a crucial feature of this work will be 
the importance of exactly the opposite condition, 
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i.e., nonrandomness, or global contagion on the 
growth of the anchovy larvae. Assumption (iii) im- 
plies only that within the  scale of the anchovy larva 
the prey distribution is spatially random or manifests 
extremely low degrees o f  contagion. Large scale con- 
tagion, however, is extremely important and will be 
considered quantitatively later in the section on prey 
distributions and environmental geometries. 

From assumption (i) we know that each excursion 
presents the anchovy larva with a new sample of the 
prey field, the volume of the sample being deter- 
mined by the size specific reactive perceptive volume 
of t he  larva. From Hunter's (1972) measurements of 
the 95% confidence limits of  the reactive perceptive 
field for anchovy larvae feeding on dense concentra- 
tions of similar sized prey organisms, we can regard 
the reactive perceptive volume as a segment of a spe- 
cific solid of revolution. Hunter's (1971) figures 7 
and 8 provide that this volume be equivalent to a 
circle of radius 0.37L lying in the plane of motion 
with one point on the circumference coincident with 
the larval snout and a diameter parallel to the dircc- 
tion of motion rotated approximately 53" about an 
axis passing through the snout and perpendicular to 
the direction of motion. This volume corresponds to 
a portion of a torus foiiiied by the corresponding 
circle but  with the distance to  the rotation axis taken 
as one circle radius. The volume for a completc rota- 
tion is then 2nzr3 and for a 53" rotation the volunie 
is 

llsing the numbers given ahove we get 

V p = . 1 4 7  L3 , 

where L is the length of the larva. 
Before using the relation above let us examine the 

consequences and underlying assumptions in the use 
of  the perceptive volume concept and the possible 
modifications of that concept for more generality. 
The perceptive volume concept is an attractive and 
simple one but  suffers from the fact that it is not 
prey size dependent nor is there one simple method 
generally agreed upon to delimit the boundary of 
such a volume. The limits used here are 95% confi- 
dence intervals and the geometry of the field chosen 
by eye fit t o  the data. No detailed visual field studies 
were done t o  determine 95% confidence limits in 
three dimensional space nor is prey size varied over a 
wide enough range in the c'ata available 10 elucidate 

the functional relationship between these two vari- 
ables even with a priori fixed perceptive field bounda- 
ries o r  geometries. However, for the purposes of this 
niodel the visual field concept gives a reasonable esti- 
mate of the perceptive field. Thus, assume that the 
volume calculated above is proportional t o  the real 
visual field for any size prey and, in general for any 
larval size, the field being larger for large prey and 
snialler for small prey, 

where k,,(dp) is a monotonically increasing function 
of  mean prey diameter dp.  Since data are insufficient 
to evaluate the function k,(d,) but data on smaller 
larvae exist to test the theory to be developed on 
attack rates, the k, appropriate for this set of data 
can be determined arid retained throughout the mod- 
el. The net effect is t o  underestimate the visual sam- 
ple size for larger larvae which feed on larger, but 
scarcer prey but is appropriate t o  first feeding larvae 
which feed on  smaller, more abundant prey. Since the 
attack rate is derived from probabilities of occurrence 
of  prey in the visual sample, this choice of  k, will not 
have as large an effect on the model were one to 
determine k, for larger larvae. 

is cal- 
culated as k, V, where k, is now not a function but a 
constant and V, is as given previously. The attack 
model can now be developed by determining the k, 
that yields the best f i t  to the data or, alternately, 
corrects V,, t o  a functional visual field. This is differ- 
ent than comparing observed with expected values of 
attack rates obtained by an adjustable constant since 
the model is nonlinear and k, occurs within the mod- 
el as an independent variable and not a constant. 
Thus, good correlation between observed and ex- 
pected values of  attack rates can be regarded as sup- 
port for the general model hypothesis and not an 
artifact of variable manipulation. The constant kv is 
introduced only to obviate some of the inaccuracies 
and simplicities of  the perceptive volume concept as 
they have been discussed. 

From assumption (i) at each excursion the larva is 
confronted by a perceptive field of  volume k,Vp or a 
visually evaluated sample of the prey field of  the 
same volume. Then with assumption (iii) and an ac- 
ceptable* volumetric prey concentration of X the 

Thus the true or corrected visual field V 
P r  

* It will he slioun later that  as anchovy larvae grow older 
their tood size prelcrenccs change so that even in the face of 

216 



probability of kparticles in the perceptive field is 
Poisson distributed and is given by 

In a prey size compensated visual field, we can 
assume that the minimum number of prey particles in 
the perceptive volume necessary for awareness by the 
larva is one. The probability of one or more accept- 
able particles in the visual field is given by 

P(k 2 1) = 1 - exp (-AkvVp) . 

This is termed the probability of 'awareness' of prey 
in the visual field. 

Now the probability of attack on a food prey 
must be less than or equal to the probability of 
awareness because the larva makes decisions about 
the appropriateness of the prey of which it IS ' aware. 
Although as shown, the animal is sampling visually 
from a concentration of A, the probability of aware- 
ness must be multiplied by the probability of occur- 
rence of the acceptable sire range in the population as 
a whole to  obtain the probability of attack 

P (Attack) = P (k 2 I )  P (Acceptable Size Range). 

The acceptable prey size range is determined as 
the difference between a length dependent lower 
bound which is known from observations of larvae 
collected from the ocean and an  upper bound chosen 
as the maximum mouth diameter. Calling these two 
limits dL and d, respectively, and E, the event 'at- 
tack' we can rewrite thc equation above .IS, 

where P(dL + d,) represents the probability of prey 
siLes in the mean diameter range of dL to d,. If Ez is 
defined as the event 'not-attack' we have together 
with E ,  a two-event Markov chain from which can be 
constructed the stochastic matrix using the above 

abundant sniallcr prey a ccrtain size range is selected. Thus A 
above caii be more approprintely regarded as a function of 
length. Hoa.ever, this is not accomplished in the tlnal model 
by using a specific lengtll dependent function for A but is 
determined scparatcly each time because of its rnultifuctorial 
nature and reinserted iterativcly in to  the model as needed. 
Thus the length dependence of A will not be shown explicitly 
in the equations to follow, but will become manifest as the 
whole model is described. 

probabilities, assumption (ii), and hence allowing 
calculation of the mean recurrence time, p l ,  for the 
attack event. If the excursion frequency is given by 
fE the attack rate, ,I, can be identified simply as 

A two event Markov chain stochastic matrix contains 
four elements or transition probabilities, pij, where 
pij refers to  the probability of the event E, given that 
the event Ei has occurred at  the previous trial or ex- 
cursion or alternatively the probability of the transi- 
tion Ei +E,,  I choose to identify p l ,  as 6 << 1 ac- 
cording to assuinption (ii) and because of the require- 
ment that any stochastic matrix satifies the relation 
f pjk = 1,  plz  is aiitoniatically determined as 1 -- 6 ;  1 

also identify P(El) above with pZl and hence pzz 
with 1 ~~ P(E,). The resulting stochastic matrix is 
then 

The event E l  is persistent and aperiodic and hence in 
this case 

p(") + /q' 
11 

n-a- 

where pi:) is the probability of finding the system at 
time r t n in state El given that at time r it was also 
at El (Feller 1957). For this two event system it can 
be shown, taking 6 x 0 (Feller 1957), that the pi;) 
matrix is given by 

whence 
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To test this theory and also to determine k, we 
have recourse to  a single block of data collected, 
using very young larvae at a variety of temperatures 
and feeding on a laboratory-grown stock of the dino- 
flagellate Gymnodinium splendens (Hunter 1977). 
The exact size distribution of this stock is known 
from multichannel Coulter Counter* analysis and the 
variable temperatures allows for testing the theory on 
animals with basically the same visual apparatus but 
at different excursion frequencies. Before testing the 
theory, however, the relationship between excursion 
frequency and temperature must be determined. 

Hunter (pers. comm.) has collected data on swim- 
ming speed for anchovy larvae of different lengths 
and at various temperatures from 13" to 19" C.By 
averaging the swimming speed in body lengths (B.L.) 
- sec-I for each temperature, the sets of data corre- 
sponding to  larval lengths of 0.6, 0.8, 1.0, and 1.2 cm 
yield a straight line with least squares equation (B.L.) 
- sec-I = 0.1 1 OT-0.941, where T is in degrees Celsius. 

From Hunter (1972) we know that at 17" to  
18" C the mean excursion frequency for feeding lar- 
vae of all sizes is 1.57 excursions-sec-'. From this 
swimming speed data it is seen that at temperatures 
higher than 16" C there appears to be no further in- 
crease in swimming speed with temperature. Part of 
this trend is artifactual because of the random walk 
character of the motion. That is swimming speed is 
determined as distance per time but distance increases 
as the square root of the number of excursions which 
is temperature dependent. Thus, at high temperatures 
or excursion frequencies the slope of the swimming 
speed versus temperature curve should decrease as in- 
deed it does, even though the excursion frequency 
per se is not exhibiting this b e h a  lor. Hence, given the 
inflexion point at T = 16" C of the swimming speed 
versus temperature curve which corresponds to an ex- 
cursion frequency of 1.57 excursions-sec-' the body 
length per second curve may be converted into an 
excursion frequency curve by simply multiplying by 

= 1.916 or excursion frequency 

= 0.21 IT-1.80. That is, the two curves are isomor- 
phic. 

In addition to the excursion frequency relation for 
various temperatures, the distributional characteris- 
tics of the prey population used in Hunter (1977) 
are needed. It is generally agreed (Lasker 1975) that a 

1 . 5 7  
0.1 lO(16)-0 .941  

* 
National Marine Fisheries Service. 

Use of trade names does not imply endorsement by the 

minimum critical sized particle is necessary before 
even the smallest first feeding anchovy larvae will at- 
tack prey. Although no &I1 defined lower limit to  
prey size exists, larvae of approximately 5.0 mm in 
length, as occur in the data we are considering, will 
require prey particles at least 40 pm in mean diameter 
before any significant feeding takes place. Thus, for 
purposes of calculation we will take 

P(EI ) = P(k 2 1) P(dp 2 40 pm). 

Now the concentration of G. splendens in the data of 
Hunter (1 977) is - 200 ~ e l l s - c m - ~  and multi-channel 
Coulter Counter analysis of this culture reveals that 

P o p  2 40 pin) = 0.168. 

Thus all data are available to test the theory except 
for the determination of k,. The theoretical attack 
rate in attacks-min-I for these data is then given By 

P ( k 2 1 ) P ( d p 2 4 0 p m ) t  1 
A=[-- P(k > 1) P(dp > 40 pm) 

(0.2 1 1 T - 1.801 60 sec-min-1 , 

k(c )  = I47c 

:I 01 

001 I I 
10 IW 1.ooO 

CONCENTRATION NO ML 

Fig. 1. The food prey concentration dependent dispersion 
coefficient of the circular normal distribution, k(c), com- 
puted from the heading probabilities in Hunter and Thomas 
(1973) for anchovy larvae feeding on the dinoflagellate 
Gymnodinium and the rotifer Brachionus. 

218 



where P(k> 1) = 1 - exp (-29.4 k,L3) and the 
values in parentheses are derived from the appropriate 
constants already giyen t o  these data. 

Calculation of A with the previous equation for 
larval lengths of 0.45-0.50 cm and temperatures of 
13.1' to 18.9" C as given in Hunter (1977) yields an 
extremely good correlation with measured attack 
rates as shown in Figure 2, with k, = 0.108. As pre- 
dicted for small sized prey k, s 1, and although k, as 
alluded to earlier is prey-size dependent, we will re- 
tain the k, determined here for all size prey and re- 
gard the length dependent volume visual field as given 
by 

V =0.0159L3. 
Pr 

A brief discussion of this attack rate model is in 
order, together with some modifications to make it 
correspond specifically to the larval anchovy. As is 
obvious, this model is not species specific save for the 
inclusion of a perceptive volume indigenous to  the 
larval anchovy. Of great interest is the observation 
that at any specific excursion frequency the attack 
rate increases asymptotically with prey concentra- 
tion. This is a feature found in numerous studies on 
plankton grazing rates in marine animals (Steele 
1974a) and is a gratifying and a priori unexpect- 
ed result of the Markov model. However, because 
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OBSERVED STRIKE RATE (STRIKES PER MINUTE) 

Fig. 2. Observed prey strike rate f o r  0.5 o m  anoliovy larvae 
feeding on laboratory grown stock of Gymnodinium with 
known size distribution from Hunter (1976a) plotted against 
strike rate calculated from Markov chain attack rate model 
(see text). 

of this character the attack rate exhibits a maxi- 
mum asymptotic value that obviously occurs as 
P(k 2 1)P(dL 4 d,) + 1. Since p1 --f 2 in this case the 
model predicts at any excursion frequency a maxi- 
mum asymptotic attack rate of A,,, = fEpi '  = 
f ~ / 2  or an attack sequence every other excursion. 
Obviously such high attack rates cannot be main- 
tained for physiological reasons and to  use this model 
effectively it is necessary to limit the maximum at- 
tack rates to those observed in the laboratory. Hunter 
(personal communication) has data which reveal a 
maximum attack rate of - 10 strikes-min-I under all 
circumstances. If we take the mean excursion fre- 
quency to be t .57 excursions-sec-I , this requires the 
recurrence time for the attack event to be no less 
than 9.46 excursions-attack-' to yield a maximum 
attack rate of 10 attacks-min-' . Thus, the attack re- 
currence time will be taken as the calculated value 
above for p1 > 9.46 and equal to 9.46 when the cal- 
culated p1 is less than 9.46. 

With the inclusion of  this asymptotic attack recur- 
rence time we now have an attack rate model that 
yields results similar to those found by experiment 
and is completely consistent a posteriori with the lab- 
oratory determined criteria for successful larval an- 
chovy feeding as outlined in Lasker (1975) and the 
qualitative and quantitative description of anchovy 
larval feeding behavior as contained in Hunter 

However, an adequately descriptive attack rate 
model cannot be used to determine energy input pri- 
marily because not all attacks on prey are successful. 
This characteristic. of the anchovy larval feeding be- 
havior has been well documented and quantitatively 
described by Hunter (1972). The relationship eluci- 
dated by Hunter suggested that success of capture of 
various appropriate food types displayed the form of 
a learning curve and the data obtained was adequately 
represented by the equation 

(, 1977). 

percent success = 93.2 log,, t - 33.30, 

where t is the larval age in days. I t  should be pointed 
out that success in capture of prey is only important 
for determining energy input. Each attack has an as- 
sociated energetic cost to the larva whether or not the 
attack is successful and constitutes one of the energy 
debts incurred by the organism in the course of for- 
aging. 

Thus the rate of successful attacks on prey is given 
by the Markov attack rate given above times the suc- 
cess percentage associated with the age of the larva. 
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Prey size distribution and environmental 
geometries 

The attack event probabilities P(El)  given in the pre- 
ceding section depend quantitatively on the charac- 
teristics of the prey size distribution. The size of the 
particle consumed, which will be regarded later as the 
mean in the acceptable range or segmental mean of  the 
prey size distribution, is also dependent on the char- 
acteristics of the prey distribution. The only efficient 
means of integrating a prey size distribution into a 
dynamic model that has ecological significance is to 
use a size distribution that is representative of  the ac- 
al particle spectrum in the region where anchovy lar- 
vae are found. 

A particularly ubiquitous and simple size distribu- 
tion found in nature and one wluch possibly could 
apply equally well t o  the size distribution of living 
organisms in the ocean is the hyperbolic size distribu- 
tion. A thorough discussion of  this distribution and 
its applicability t o  the description of  various naturally 
occurring particulate systems can be found in Bader 
(1970). According t o  Bader (1970) this size distribu- 
tion is characterized by an associated cumulative 
number distribution of the form 

where Nd is the number of particles cm-3 greater than 
mean diameter d and m and k H  are characteristic con- 
stants. The term hyperbolic is given to the distribu- 
tion because on linear scales the function can be plot- 
ted as a hyperbola when m = 1 .  

The inshore region of  the Los Angeles Bight is one 
of the major spawning grounds of the northern an- 
chovy. To get an assessment of' the mean particle size 
distribution anchovy larvae are confronted with in 
this region, data from multichannel Coulter Counter 
analysis of  Niskin casts from approximately 1 to 
20 m in depth (R. Eppley pers. comm.) were averaged 
over the water column and plotted as a cumulative 
distribution via equation (14). As can be seen from 
Figure 3, the  hyperbolic distribution adequately de- 
scribes the total particulate size distribution. Least 
squares evaluation of  the constants kH and m in equa- 
tion (14) yield the values of 446,963 and 2.81, re- 
spectively. It must be stressed, however, that various 
environmental and biological conditions can affect 
the magnitude of  these constants, but the effects are 
remarkably small. Recalculation of the constants kH 
and m during blooms o f  dinoflagellates for instance, 
does not  affect m and has only a limited tendency to  

increase k H .  Thus we will regard the constants calcu- 
lated here as representative of the particle size dis- 
tribution in the major spawning ground of the north- 
ern anchovy and the distribution which will be used 
in modeling larval growth. 

From the hyperbolic relation (14) two important 
quantities necessary for the model are derived, name- 
ly the segmental means J ( d L ,  d,) and the range con- 
centration C(dL, du).  

If the number of pa r t i~ l e s -cm-~  with mean dia- 
meter > d is kkld-"', then the probability of a particle 
having a mean diameter between dL and d u  is given 
by 
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Fix. 3. Hyperbolic distribution of particle sizes in the Los 
Angeles Bight where N d  is the number of particles ~ 1 1 1 . ~  

greater in mcan diameter than d, where d is in Mm. 
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where N, is the total number of particles greater 
than some extremely small reference size. Now for 
anchovy larvae only particles > 20 pm in smallest 
dimension are found in the gut at even the earliest 
stages of the larval period (Berner 19.59). Thus we 

Since the density function f(r) for this range must 
satisfy 

l l d " f ( r )  dr = P(d1 - -  5 d 5 d,) , 

l i f ( r )  dr = 1 

and 

f(r) 2 0. 

mkHr-"' 
we get f(r) = --__ . The segmental nieati is 

Nt 

I -1 

The particle concentration in the range dL to d,, is 
simply 

In the above formulations it will be noted that 
particle concentration and particle mean siLe are only 
between an upper and lower limit referred to  as d, 
and dL respectively, because, as discussed previously, 
anchovy larvae of given length demonstrate a specific 
particle size preference in their diets. To determine 
these limits the field observations on gut contents in  
larval anchovy by Arthur (19.56) and Rojas de Men- 
diola (1974) may be used. Although Rojas de Men- 

diola was concerned with a different species, namely 
Etzgra~rlis ritrgens, a comparison with Arthur's (1956) 
data for Etrgruzrlis tnordu.u reveals no fundamental dif- 
ferences between the two species. 

Certainly an upper bound, d,, for the size prefer- 
ence range is the inaxinium width of the mouth. This 
does not indicate that the animal selects food prey as 
large as its niouth but rather the mouth size limits the 
maximum prey size it can eat. Data from Hunter 
(1977) reveals that the maximum mouth width for 
anchovy larvae can be adequately described by the 
relation. 

d,(L) = 54.303 t 345 L , (17) 

where d,(L) is in pin and L is in cm. 
The lower size range is determined directly from 

the observational data quoted above. From Rojas de 
Mendiola (1974) and Arthur (1956) we see that as 
anchovy larvae get larger, the smallest prey they are 
observed to  take also get larger. Even in the face of 
abundant small prey they are observed to  remain true 
to this preference. The data suggest that up to  2.0 cm 
in larval length the lower size limit of food prey taken 
rises linearly. Above 2.0 cm larval length, however, 
the lower limit remains relatively constant at least up 
to 3.0 cm larval length. Using a linear two point equa- 
tion the lower size range is given by 

dL(L) = 1001, L 5 2.0 cm ( 1  8) 

where dL(L) is in pm and L is in cm. 
It is interesting to plot d(dL,  d,) from equation 

8ool 
0 0 6  I 2  18 

L E N G T H  krnl 

Fig. 4. Stoiiiacli L.oiitcnt size langes for particles found in 
guts of larval ancliovics from Kojas dc Mendiola (1974) plot- 
ted with segmental m w n s  calculated f r o m  hyperbolic particle 
sire distribution (see text). 

22 1 



(1 5) using the d,(L) and dL(L) above and the particle 
distribution for the Los Angeles Bight. It is seen from 
Figure4 that these means always lie within the 
bounds of the particle sizes actually found in anchovy 
larvae from Rojas de Mendiola (1974) and are almost 
equal to  the observed means themselves. It also is 
observed that the mean size particle from the hyper- 
bolic size distribution in a size range where the upper 
bound is increasing very rapidly is not much larger 
than the lower limit itself and corresponds well to 
what is observed in anchovy larvae feeding in a natu- 
ral environment. With this quantitative concept of the 
particle size distribution fed on by anchovy larvae 
and the length dependent ranges of selection that the 
larvae feed upon, we can address the most complex 
of all environmental questions, namely prey particle 
microdistribution and patchiness. 

Virtually no data exists on the three-dimensional 
distribution of prey particles of approximately 20 to 
200 Dm on a scale of 1 to I O  cni. It may well be 
asked if such a distributional scale even exists. To 
such questions there is no singular answer but it may 
be said, to  quote J. H. Steele (1974b) on the struc- 
ture of marine ecosystems: ‘patchiness or spatial het- 
erogeneity can occur on nearly every scale of mea- 
surement and must depend on the nature of the re- 
sponse of organisms to their aquatic environment.’ 
Older descriptions of patchiness, particularly Bain- 
bridge (1957) concentrated on discrete patches of 
phytoplankton a few meters wide to hundreds of 
square kilometers. More recently detailed distribution 
maps of certain species of zooplankton in a small bay 
(Anraku 1975) have shown the dramatic three dimen- 
sional diversity and character o f  plankton patchiness 
at scales of - 1 m. It, therefor:. seems inevitable that 
when devices become available to investigate even 
smaller distributional scales patchiness will again be 
observed as a prominent feature. 

Although no general model of the spatial distribu- 
tion of all species in the ocean could exist, various 
attempts have been made to elucidate some of the 
relationships between the physical and biological 
parameters in the ocean at the mesoscale level, i.e., 
10 m to 10 km, for phytoplankton. An excellent re- 
view of such studies may be found in Wroblewski et 
al. (1975). However, it is obvious from such studies 
that phytoplankton have certain advantages over LOO- 

plankton regarding modeling and that most such mod- 
els elucidate only general characteristics even at the 
extremely large scales considered. Thus, if one is to 
consider the spatial characteristics of the larval an- 
chovy food microenvironment at small scales, re- 

course must be made to theoretical models based on 
reasonable assumptions. This is exactly the theoreti- 
cal analog of the situation considered experimentally 
in Ivlev (1961) when he analyzed the variation of 
food ration in fishes as a function of the aggregation 
of food material. The results of his study will be dis- 
cussed at the conclusion of this work. 

Before presenting a spatial model of the food 
microstructure it is important to discuss a fine point 
in the reasoning of the dynamics of the structure to 
be presented. Since the spatial characteristics of the 
food microstructure are a result of the operation of 
both deterministic and random forces, any purely de- 
terministic model of that structure is strictly not rep- 
resentative. Thus the geometric properties attributed 
to  that environment are not representative of the true 
environment but rather to an ‘environment-like’ re- 
gion with well defined spatial properties. Hence, the 
results of interactions of a behavioral submodel with 
the environmental submodel really pertain only to 
the specific characteristics of the environmental sub- 
model used. By the exigencies discussed above this 
environmental submodel may differ significantly 
from reality. However, the behavioral submodel, be- 
cause of its secure experimental foundation, does not. 
Hence significant correlations observed between larval 
growth and environment as a result of the submodel 
interactions does indeed address itself meaningfully 
to the question of environmental effects on larval 
growth. Only when detailed data on the exact charac- 
ter of the environmental geometry is elucidated will 
the magnitude and significance of the correlations 
demonstrated in the model become known. 

The theoretical determination of the spatial rela- 
tionships in the environnient taking into account the 
contagiousness of the prey population will be done 
using the concept of mean crowding developed by 
Lloyd (1967). However, even with this concept some 
assumptions about the nature of the underlying 
patchy distribution must be made. The negative bino- 
mial distribution is the one chosen here as a global 
description of the underlying distribution because it 
has been shown to be ecologically sound and fits ade- 
quately many sets of empirical data (Feller 1943, 
Skellman 1952). Under these conditions Lloyd 
(1967) demonstrated that the ratio of mean crowd- 
ing, c*, to mean density c is given by 

C* 1 
- = I + -  
C k ’  

where k is the nondimensional contagion parameter 
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of the negative binomial distribution. Mean crowding 
as developed by Lloyd is a measure of the mean num- 
ber per particle of other particles in the same patch. 
This, of course, implies that we have sampled the 
distribution with sample sizes approximately equal to  
the mean size of the patches which in our case is 
unknown. However, whatever range concentration we 
consider, the approximate relationship between the 
concentration of particles in the patch, c p ,  will be 
regarded as related to the mean particle concentration 
by 

cp 2 c ( l  t l /k)  . (20) 

Given the patch concentration in the contagious dis- 
tribution by equation (20) and assuming as before the 
particle distribution is locally random, we can calcu- 
late the distance to the nearest neighbor in the patch 
using Chandrasekhar’s (1943) numerical solution of 
the Hertz distribution of the nearest neighbor in a 
random distribution of particles 

Rnearest  = 0.554 (%)  , 

where g is the mean mass of a patch particle and D is 
the particle mass density. From the above relations 
this is given by 

Rnea reS t  = 0.554 [c ( l  t 1/k)]-’’3 . (22) 

Once we have an estimate for the patch concentration 
we must provide some measure of the patch’s geo- 
metric radius, r p a t c h .  This is obviously a random van-  
able whose value is a function of multifractional bio- 
logical and physical forces. However, since we are 
interested in the response of a larva to a giveq en- 
vironmental geometry we will provide a reasonable 
but deterministic estimate of the mean patch radius 
by assuming that the mean patch diameter is R,,earest 
weighted by a nondimensional factor proportional to 
the number of particles per patch or c* t 1. That is, 

R 
rpatch = - nearest (c: t 1) where c: = c,/c‘ and c’ is - 
an arbitrary reference concentration. Taking c’ as 
1 -- and using (22) we get the following esti- 
mate of patch radius: 

rpatch = 0.277 ([c(l t 1/k)]2’3 

t [c(l t 1/k)]-.’l3) . (23) 

This will constitute our estimate of patch radius for a 
degree of contagion k and range concentration c. 

The relation is seen in Figure 5 plotted for c values 
of 5, 10, and 15 parti~les-cnl-~ and where rpatch  is in 
cm. It can be seen that this relation has certain heuris- 
tically desirable properties. Namely, the patch radius 
for any degree of contagion is greater for higher mean 
concentrations of particles, and patch radius increases 
with progressivcly higher degrees of contagion (i.e., 
lower k). It is of no consequence that there exists a 
specific value of r p a t c h  as k -+ - for any given c be- 
cause in this case the behavioral model makes no dis- 
tinction between patches despite a finite r p a t c h  be- 
cause cp = c. 

T ~ U S  far, only one portion of the food microstruc- 
ture geometry has been determined, namely the patch 
radius and concentrations for any given value of k 
and c. To complete the structure an estimate of the 
mean interpatch distance and interpatch concentra- 
tion is needed. This can only be done if one considers 
a specific volume and a specific number of particle 
patches. Both of these quantities are random variables 
if we regard one or the other as fixed. To obviate this  
difference and make these estimates more determi- 
nistic the same formalism is applied so that the patch 
itself can be regarded as the elementary particle. 

Since the patches are regarded as distributed ran- 
domly in space, we use equation (2) to  calculate the 
Knsarest of the patches themselves. In this case 

rpotLh  (cm)  

Fig. 5. Theoretical patch radius, rpatclt, plotted as a func- 
tion of prey contagion parameter. k,  for three particle con- 
centrationa (see text) .  
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where X is mean mass per patch particle. D then is the 
mass density not of elementary particles but of 
patches. Obviously an upper bound for D is patch 
mass per patch volume or cp X. However, this would 
make the environment uniformly composed of 
patches which is not a realistic model. Thus we will 
set an upper bound for D of c X rather than cp X. This 
yields a patchy environment that retains the impor- 
tant feature of patch discreteness. Thus r i l l t e r  in this 
case becomes 

R n  e a rest 

2 = 0.277 [4/3 71 (1  t l/k)riatc,, ] ' I 3  . (24) 

The interpatch concentration will then be approxi- 
mated as the value of c or the mean concentration of 
the system. The relationship (24) is shown in Figure 6 
and demonstrates the desirable properties of in- 
creasing interpatch distance with increasing patch dia- 
meter and with degree of contagion Le., decreasing k. 

The total environmental geometry as developed 
here, although not derived explicitly from particle 
mass conservation methods, does have properties of a 
mass conserved system. That is, high k or low con- 
tagion yields closely spaced small patches of particle 
concentrations not significantly higher than the 
mean, whereas low k or high contagion yields widely 
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Fig. 6. Interpatch radius, r i l l t e r ,  ;I\ :I lutlctton ( 1 1  patcil ~;i- 

dius, rRa(tch, f o r  five different valucs of prcy cotit;igion p;rra- 
meter cee text) .  

spaced large patches of particle concentrations signifi- 
cantly greater than the mean. The only aberrant prop- 
erty of the system presented here from an ideal mass- 
conserved system is the assumption of the mean parti- 
cle concentration for the interpatch regions. This im- 
plies that when this environmental structure is inter- 
faced with the behavioral model larvae will grow 
more rapidly at high degrees of contagion than they 
would in an analogous mass conserved system for the 
same degree of contagion. However, the trends will be 
similar because of the basic similarities discussed. 

In essence then we have an environment with ex- 
plicit contagion dependent geometric and prey den- 
sity parameters that can be interfaced with the be- 
havioral submodel already developed. This interaction 
will yield various growth curves for larval anchovies 
from 0.4 to 7.0 cm in length that can be viewed as 
functions of these contagion dependent parameters 
and hence as functions of purely geometric and prey 
density elements and show how interactions between 
behavior and environmental substructure affect 
growth in the larval anchovy. 

Additional physiological components 

Certain quantitative relations for elements of the vari- 
ous suhmodels must be determined before any simu- 
lations can actually be perfomied. These components 
are not discussed in any great detail since their use 
has been described implicitly or explicitly in the pre- 
ceding sections or will be described in the section on 
computer simulation. 

Excwsiori length: The step length as a function of 
larval lendit l(L) in equation (10) is an example of 
such an  element that must be determined from ex- 
perimental data. tluntcr (197') provides data demon- 
strating that a t  17" C the relationship between larval 
anchovy swimming spced and larval length is given by 
S = 1.038L-0.215, where S is in cni-sec-I and Lis  in 
cm. The excursion frequency at this temperature is 
1.57 excursions-sec-' and dividing the speed equation 
above by the excursion frequency yields the desired 
relation 

l(L) = 0.661L -- 0.136 (25) 

Maximum g t f  vohrrrze: A length dependent func- 
tion for maximum gut volumes of anchovy larvae is 
also needed in the following simulation. To determine 
this gut content data (Hunter pers. comm.) of newly 
fed larval anchovies of  various lengths were examined 
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for those animals displaying the largest quantities of  
gut contents for any particular larval length. The food 
types varied from nauplii o f  the brine shrimp Artemia 
and the rotifer Brachionus for small larvae to  numer- 
ous copepods of  t he  genus Tisbe for larger larvae. ?'he 
gut contents analysis data included the exact size and 
number of  each prey type in the gut. The total vol- 
ume o f  these prey in p 3  was determined using analo- 
gies t o  appropriate geometric shapes. The results were 
analyzed by least squares and yielded the relation 

~ , , , = ( i . 3 0 ~  1 0 9 j ~ l . ~ ~  , 

where Gvol is in p 3  and L is in cni. 
Caloric values of prey particles: A representative 

relationship between mean particle diameter and 
caloric value for a spectrum of food prey types ac- 
ceptable to anchovy larvae is also needed for this 
model and was determined from data in Hunter 
(1977). Least squares analysis of  the data yielded the 
rela tion 

C p a r t i c l r  = (8.319 x lo-") d,3.39 , 

where C p a r t i f l c  is in calories and d, is in pm. 
Digestive times: Digestive tinies in anchovy larvae 

wluch will become important in our studies have not 
been intensively studied. Arthur (1956) provides 
some inferential data concerning anchovy larvae di- 
gestive times in which he concludes that digestive 
time depending on  temperature is between 1 and 
3 hours. This is a very rapid rate compared with de- 
tailed studies by Blaxter (1965) on herring larvae, ;I 

related clupeoid, in which a rate of 4 to 8 hours was 
observed. More recently as a result of studies in pro- 
gress on  predation by young adults ( l iunter pers. 
conim.) digestion rates of 2 hours or less were ob- 
served. Thus, the digestive time of an anchovy ap- 
pears to be extremely rapid and not t o  vary greatly 
throughout life as evidenced by the studies above. 
Also, although digestive times are teniperature de- 
pendent, insufficient data on anchovy larvae are avail- 
able to  elucidate such a relationship. We will thus 
assume that the mean digestive time for a full gut by 
anchovy larvae of all sizes is 2 hours which is the 
median o f  the times given by Ar thur  (1956) and par- 
tially supported by  Hunter. 

Basal metabolic rate: A basal metabolic rate as 
determined by controlled experiments where activity 
has been observed to  be at  a minimum is not available 
for the anchovy larvae. However, such studies are 
available for sardine larvae, a similar species. Lasker & 

Theilacker (1962) found that the respiration rate of 
inactive sardine larvae was 1.33 pl 02-mg dry wt-' 
h r l  a t  14" C. From Lasker e t  al. (1970) we know the 
length weight relationship of the larval anchovy is 
given by 

W = 0.3186L3.3237 , 

where W is in nig dry wt and L is in cm. Multiplying 
the basal respiration rate above by the length-weight 
relationship yields a basal metabolic rate (B.M.R.) of  

(5.08 x 10-2)L3.3237 . 

B.M.R. in calories-day-' , L in cm, and assuming a 
caloric equivalent of  5 Kcal-I 0;' and 2 4  hours-day-'. 
This equation is very similar to the figure obtained by 
using Winberg's (1 056) basal metabolic value for fish of 
24 calories-gm wet wt-l-day-' which yields an alternate 
basal metabolic rate relation of B.M.R. = (5.10 x 
1 0 - 2 ) L 3 . 3 2 3 7 .  Using equation (28) and assuming a 
Qlo  of 2 we can then write the temperature and 
length dependent B.M.R. for larval anchovy as 

B.M.R. = 5.06 x [ I  t 0.1 (T ~ 14)]L3'3237 
(29) 

T in degrees Celsius. 
Escrirsiori criergics: The energy required for swim- 

ming during foraging is an extremely iniportant ener- 
getic debt and is equivalent t o  the energy per excur- 
sion multiplied by ihe excursion frequency. The 
energy required per excursion is given by Vlynien 
( 1  974) as 

Es = 27.5 L4.4B 

where E is in ergs and L in cm. According to  Vlymen 
(1974) the efficiency of this motion is 24.6%. Con- 
.derting to calories the energetic cost per excursion t o  
the anchovy larvae is then given by 

Proccwrtig criergi' rcquirmzerit: In all fish there is 
an energetic requirement for the mechanical pro- 
cessing of food, primarily for the manipulation of 
prey and intestinal propulsion of gut contents. Al- 
though this value has not been calculated for anchovy 
larvae it may be estimated from studies on other fish. 
Kerr (1971) has detemiined this value for trout and 
found that it is linearly related to the ration o f  the 
animal in the following nianner 

225 



E, =0.39R , (31) 

where E, is the processing energy and R is the total 
energetic equivalent of  the ration. This value is prob- 
ably smaller than the corresponding value for a larval 
fish because of  the different amount of musculature 
devoted t o  these processes in the larval versus the 
adult fish. In this study I use the above relation as an 
estimate of  this energetic debt in the anchovy larvae. 

Digestive efficieiic:v: It is generally observed that 
digestive efficiency is very high in most fish species, 
being 80% or greater in value (Winherg 1961). How- 
ever, once digestion has taken place the absorbed 
food has to be converted into usable energetic sub- 
strates. The efficiency of  this process varies with dif- 
fering food categones and with what are regarded as 
the conversion end-points. I t  is doubtful. however, 
that  this efficiency exceeds 60% (Sharp and Francis 
1976). Thus, of the daily ration, approximately 484 
(Le., 0.6 x 0.8) is available energy and is taken as the 
estimate o f  available energy for use in t!ie model. 

Conversioii of excess eiiergj, growth: Assuming a 
caloric equivalent of  5 Kcal-g dry wt-l and using the 
length-weight relation from Lasker et al. (1970) we 
have the energy difference between two lengths L,l+I 
and L,, as 

Thus given an energy excess of AE during a day when 
the larval length is L, the larval length for the next 
day is L,+, and is given by ( 3 2 )  

Computerized growth simulation 

The flow sheet of computer operations for the 
growth simulation model (Figure 7) uses the actual 
Algol coniputer names for the various functions dis- 
cussed. These names, their definitions, and the cor- 
responding equation in the text where the function 
and its associated discussion may be found will he 
used in the description to  follow. The description of 
the simulation will follow the direction of  the arrows 
in Figure 7 from left to right, down, and then np. 

The first part of the simulation involves the estab- 
lishment of  initial conditions for day and length at 
the time of complete yolk absorption, namely 

L = 0.4 cm and N = 0. It is important to remember 
that the initial condition for the number of days does 
not represent time from hatching but time from com- 
plete yolk absorption. Once the initial conditions are 
set the iterative loop values are designated under 
which the simulation is t o  be performed. The rec- 
tangles represent these iterative loops and show that 
the simulation is t o  be performed for water tempera- 
tures of 14", 15", 16", and 17" C and for each tem- 
perature the simulation executed for prey contagion 
or h values of  0.001, 0.005,0.01,  0.05,0.075,0.085, 
0.095, 0.1, and 0.15. Considering that k = 8 is vir- 
tually identical t o  a completely random distribution 
of prey it might appear that these k values represent 
unnaturally high a priori values of contagion. How- 
ever, in many ocean investigations where the negative 
binomial has been fitted to  collected data, low k val- 
ues in this range have been routinely obtained (Zwei- 
fel & Smith MS*). 

In the iterative loops the first two  operations are 
the computation of the temperature dependent ex- 
cursion frequency, BTFQ, and the age-dependent-suc- 
cess-of-cal,ture-futiction,, SUCL, derived in an earlier 
section. I t  is seen that the independent variable of  
SUCL is N t 4.  This is so because the success of  cap- 
ture function was coinputed for days after hatching, 
not days post yolk absorption. A 0.4 cm larva is on 
the average 4 days old, hence the addition of four in 
the argument. 

Next in order are the calculations of the length 
dependent upper, CIPLM, and lower. LOLM, prey 
concentration limits as given by equations (17) and 
(IS), respectively. These are used to calculate the in- 
terpatch concentration, CI, given by equation (16) 
using the hyperbolic distribution constants k H  and m 
determined f o r  the Los Angeles Bight o f446 ,963  and 
2.81 respectively. This value of CI is then used to  
calculate CY, the intrapatch concentration, using the 
loop contagion value k ,  which is then used t o  calcu- 
late the patch radius. DP, via equation (23 ) ,  and 
the intrapatch distance, DI, via equation (24). All 
computed concentrations and distances are given in 
numbers of par t ic les-~rn-~ and cm, respectively. 

These calculations have an important but implied 
geometric meaning, namely, that every ontogenic 
stagc of the anchovy larvae, because of  dontinuously 
changing food size preferences, is modulated con- 
comitantly by continuously changing prey geo- 

* I h t a  f r o i n  ;I manuscript Iiy J.  Zwei fc l  & 1'. 1:. Smith tcn- 
tativcly t i t l c d  'I.ornial conf idence interval e\ti ir iates f o r  Fur- 
vey estiinntcs o f  fish egg and larval abundance.' 
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MAIN PROGRAM __ ~ 

I 1 

w N t l - N  

4 

FOR 

BTFQ = . 2 i l T  - 1.80 
FOR K=.001 , .005, . O l  , .05 

DO .1, . 1 5  
T = 1 4 ,  1 5 ,  1 6 ,  17°C ,075, .085,  ,095 

i 00 

SUCL = . 9 3 2  LOG(N + 4 )  
- , 3 3 3  

ELSE 

6 (  GVOL/PVOL)  *ENET ENOUTl = 
( A T T I  t ATTP)*ENET 

& E  = ENAV - ENOUT 

t 
ENOUT = 

(ENOUTl + ENOUT?) 
t 

BMET 
t 

. 2 9  ENIN 

ENOUT 2 = 

1,214*STENtNE 

t t 
NPP * NE 
NPP + N I I  

N I I  * NE N I  = 7 ,IPP + X I 1  

NP = ~ 

SUCL = 1.0 u 
CALCULATE I N  ORDER: 

LOLM, UPLM, C I  i CP, 01, DP. 

i 

N I I  = NEXIP(D1,  L ,  C I )  

I 

NE = 4 3 2 0 0 *  
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nietries. Thus, any given value of  k throughout the 
growth span of  0.4--2.0 cm gives rise to  a continuous 
spectrum of  spatial prey geometries. 

The next sequence of  calculations involves the in- 
vocation of  the procedure NEXIP (D, L, C) using the 
parameters L and the previously calculated quantities 
CI, CP, DI, and DP. The procedure NEXIP (D, L, C) 
determines the number of  steps of length given by 
equation (25) required to  traverse a distance D in a 
concentration of  food particles C as given by equa- 
tion (10) and discussed in the first section. Thus NPP 
= NEXIP (DP, L, CP) is the number of  excursions a 
larva of length L will require to traverse a patch of 
radius DP and concentration CP, and NII = NEXIP 
(DI, L, CI) is the number of  excursions for a larva of 
the same length to traverse an interpatch distance of 
length DI and particle concentration CI. I t  will be 
noticed that according to  equations (23)  and (24) DP 
and DI represent respectively the mean patch radius 
and l /Z the mean intrapatch distance. These numbers 
are used rather than the total values of patch dia- 
meter and intrapatch distance because calculations 
are being made of  the niean growth of  a larva of 
length L swimming through a particular prey environ- 
ment for 1 day. That is, the ensemble average of such 
motions requires thc number o f  larval excursions to 
traverse the patch radius and I / ’  the interpatch dis- 
tance on the average since the patches are randomly 
distributed in space. 

The following two calculations in the flow dia- 
gram are the number of excursions during the 
12 hour  foraging period, NE = 43,?00*BTFQ, and 
the proportion of  the total daily foraging excursions 
spent in patches, NP, and in between patches, NI. 
Only a 1 2  hour foraging period is considered because 
it is well established that anchovy larvae feed only 
during the day (Arthur 1956). 

The procedure ATTACK (L, C. N) calculates the 
number of  attacks on  prey made by an anchovy larva 
of length L executing N excursions in prey concentra- 
tion C by the method outlined in the second section. 
This calculation is performed differently from the 
example in the second section in two details. First, 
the recurrence time is limited by the calculated mini- 
mum of  9 .46 excursions and second, we n o  longer 
multiply P(k 2 1)  by P (d i  + d,) since P(dL --L d,) is 
always 1 when P(k 2 1)  is calculated from the range 
concentration. Thus ATTP = ATTACK (L, CP. NP) is 
the total number of  attacks on prey made by an an- 
chovy larvae of length L in patches during the day 
and ATTI = ATTACK (L,  CP, NP) is the number of 
such attacks between patches. 
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Next calculated is the mean size, MMN, of the 
particles attacked and consumed given by equation 
(15), CALP, the caloric value of particles of size 
MMN given by equation (27), GVOL, the maximum 
gut volume ot an anchovy ot length L given by equa- 
tion (26), and PVOL the volume of the mean particle 
using standard mensuration formulae. 

The calculation of the daily ration which follows 
is based on the following decision. If, assuming a di- 
gestion time of 2 hours, as discussed in under ‘Addi- 
tional physiological components’, the maximum num- 
ber of  particles that could be processed in a day, 
6(GVOL/PVOL), is greater than the number of parti- 
cles successfully attacked, SUCL*(ATTI t ATTP), 
then the number attacked successfully is regarded as 
the daily ration. If the inequality is false, then al- 
though conditions may have existed for consuming 
more food, the most that  can be processed is taken as 
the maximum. Thus, in the first case the daily ration 
in calories is ENIN = SUCL*(ATTI t ATTP)*CALP 
and in the second case ENIN = 6(GVOL/PVOL)* 
CALP. 

Following this decision and sclecting the appro- 
priate value of ENIN we calculate BMET, the tem- 
perature and length dependent basal metabolic debt 
for 24 hours given by equation (3_9), STEN, the en- 
ergy per excursion given by equation (30), ENAV, 
the available energy of 0.48 ENIN discussed above, 
and ENET, the attack energy of  3 STEN. This latter 
estimate is made from data in Vlymen (1974) and 
Hunter ( 1 9 7 3  

Next, depending on  the preceding decision 
ENOUTI, the first component of  the energy debt, is 
calculated. This component, the energetic debt of 
the attacks made during the foragmg period and de- 
pending on the truth or falsity of the previous deci- 
sion is ENOUTl = (ATTI + ATTP)*ENET or 
ENOUTI = 6(CVOL/PVOL)*ENET*SUCL-’, respec- 
tively. 

ENOUT?, the second component of the energy 
debt is the energetic debt of  swimming for a 24 hour 
period. I f  the excursion frequency remained the same 
during the day and night, the number of excursions 
made during a 24 hour period would be 2*NE. How- 
ever, anchovy larvae reduce their activity at night and 
although we d o  not know the exact Inagriitude of this 
reduction, experiments with other clupeoid larvae can 
give an  estimate of  this factor. Blaxter (1973) found 
an activity reduction of  78.6% in herring larvae expe- 
riencing maximally decreased light levels. Thus the 
number of larval anchovy excursions at night using 
this figure would be estimated as 0.214*NE the total 



for day and night being ENOUT;! = 1.214*NE*STEN. 
Following this calculation the total energetic debt, 

ENOUT, for a larvae of length L swimming for 
24 hours at temperature T in a prey environment of 
global contagion k is estimated. This is simply 
ENOUT = ENOUTl + ENOUT2 + BMET + 
0.29 ENIN. The last summed debt is the cost of hand- 
ling and processing the daily ration as discussed 
above. 

The excess energy for the day, AE, is calculated as 
the difference between the available energy from the 
daily ration. ENAV, and the energetic debts incurred, 
ENOUT. This difference, if positive, is converted into 
a length via equation (32). If the difference is nega- 
tive the process is terminated and a statement printed 
in the computer output that growth has ceased at 
day N + 1. If the new length is 22.0 cm the day is 
incremented by 1 and the new length used in the loop 
again. When the length reaches 2.0 cm the process is 
terminated, the loop control limits shifted and the 
process continued with new loop variables starting 
with L = 0.4 cni and N = 0. 

Results and discussion 

The computer simulation outlined in the previous sec- 
tion was converted into an Algol program and exe- 
cuted on a Burroughs 6700 computer. Although the 
results of that execution can be displayed in a variety 
of ways because of the multifactorial nature of the 
problem, two methods are selected here which vis- 
ually yield the greatest amount of information. In 
Figure 8, for each temperature selected, the average 
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Fig. 8. Average growth rate in cin day-' plotted as a function 
of prey contagion parameter k for temperatures of 14" to 
17"  C. 

-. 

dL 
growth rate - in cm-day-' from 0.4 to 2.0 cm is 

a t  
plotted again;; global contagion k and in Figure 9 ,  
17" growth curves are plotted against various degrees 
of contagion along with a representative 1 7 O C  
growth curve obtained in the laboratory. The geo- 
metric parameters of the environment that the de- 
grees of contagion represent can be determined only 
by calculating the patch radius and interpatch dis- 
tance appropriate for the size larva being considered 
because of the length dependent preference range for 
the particle concentration used. 

Neglecting the variation with temperature it can 
be seen from Figure 8 that the average growth rate is 
a nonsymmetric, nonlinear function of contagion k. 
For very high degrees of contsgion, i.e. low k,  one 
observes moderate growth rates that increase progres- 
sively as the degree of contagion decreases, Le. high- 
er k. This increase in growth rate is approximately 
20% for the higher temperatures and 50% for the 
lower temperatures with a decrease in prey con- 
tagion of 100. A single peak maximum growth rate is 
obtained for all temperatures at the same degree of 
contagion of  k = 0.10. Further decreases in contagion 
result in a precipitous decline in average growth rate 
and it may be seen from Figure 9 that the majority of 
this decrease is due to very slow growth in the early 
stages of ontogeny. 

Several interesting interpretations related to fisher- 
ies can be inferred from these graphs. First, these 
results are in contrast to  the experimental work of 

D I Y S  

IGg. 9. Complete growth curves computed by tlie model for 
five rcprescntative levels of tl ie prey contagion parameter, k, 
at 17' C along with a rcpresentative growth curve obtained in 
the laboratory at  17" C from Hunter (1977). 
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Ivlev (1961) which showed a monotonically in- 
creasing ration with increasing contagion. It seems 
that this is due to the different and more complete 
nature of  the analysis done here as opposed to the 
two dimensional limited experimental work of Ivlev. 
However, although lvlev understood the possible iin- 
portance of  prey geometry in fish growth studies and 
attempted t o  elucidate these relationships experi- 
mentally, he did not take into account the multifac- 
torial nature of  the problem and in particular the irn- 
portance of behavior and its modification by prey con- 
tagion. 

Second, one can formulate an optimal survival 
strategy for an anchovy larva based on  these curves. It 
must be understood, however, that if the real ocean 
prey environment could be thoroughly analyzed, con- 
tagion would be anisotropic and also dependent on 
larval density. Thus the strategy deduced here applies 
strictly t o  the fixed geometries of the tnodel and is 
simply that for long term survival prey areas yielding 
maximum growth rates are not advantageous because 
of their instability. Given that environmental forces 
are usually stronger in dissipating contagion at  small 
scales than biological forces are in maintaining it, the 
probability is higher that contagion will decrease at 
any point then increase. Thus for areas yielding the 
maximum larval growth rate the high probability of 
decreases in contagion result in drastic reductions i n  
growth rate. If we assume that total mortality of 
anchovy larvae for a gven range of siLes from all 
factors is related to  the time at  risk in that size range, 
then slight reductions in contagion from the maxi- 
mum growth point will greatly increase the total time 
at  ri3k and hence the mortality froni 0.4 to  2.0 cm. 
On the other hand, an optini.il strategy would be to 
spend the majority of time 111 areas of  higher conta- 
gion than those yielding the inaxirnuin growth rate. 
At these points a decrease in contagion slightly in- 
creases the growth rate while increases i n  contagion 
when they occur, slightly decrease the growth rate. 
Thus changes in contagion at these points do not 
drastically increase the total time at risk and hence 
the mortality from 0.4 t o  2.0 cin. 

This subjective explanation can be formulated in a 
more precise mathematical form. If the contagion 
varied in a simple sinusoidal manner the growth rate, 
as determined from Figure 8, would also vary sinus- 
oidally. 

Let the value of  the contagion be that which yields 
the maximum growth rate, Le., k,,, and let the con- 
tagion vary sinusoidally over some fixed range, i.e., 
k;E,, t o  kL&. With these conditions the growth rate 
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would vary sinusoidally between (g) and 
k m  a x  

. The mean growth rate would then be (3 , . + E  

and the total growth over any time period to  
would'be 

L(tJ=f[($) t (3) ] 
':ax 

4n 
m ax 

In a similar manner for the same degree of  sinusoi- 
dal variation about k < k,,, the growth over a time 
period t,, would be, where k t E 5 k,,,, 

From Figure 8 there exists an E such that k t E 5 
kina, ,  k < k m a x ,  and 

Thus, the length achieved after time to for oscilla- 
tions about k,,,, is less than the length achieved for 
oscillations about k 5 k,,,. The time at  risk and 
hence mortality IS thus greater tor oscillations about 
k,,, than k < k,,,. 

The temperature dependence of average growth 
rate in the model at any degree of  contagion reveals a 
curious trend as observed in Figure 8. Except for the 
very high degrees of contagion one finds a reversal of 
the trend expected and normally observed in labora- 
tory reared animals. That is, the lower temperatures 
exhibit strikingly higher average growth rates. This is 
most likely due to insufficient information in the 
model concerning substrate conversion efficiency and 
the fact that  the total amount of food available in the 
model is limited, whereas in the laboratory it is not. 
In the model, substrate conversion efficiency is re- 



garded as a temperature independent factor of 0.60. 
However, it is well known that at higher temperatures 
such efficiencies increase and since this factor deter- 
mines the total energetically accessible ration the fail- 
ure of this factor to increase appropriately with tem- 
perature and the fact that the amount of food re- 
mains futed does not offset the increasing debts of 
metabolism, foraging, and feeding with higher tem- 
perature and hence one observes a lower average 
growth rate. Experimental information about the 
temperature dependence of this factor in larval fish is 
lacking and hence is not included. Since any model is 
a dynamic entity, physiological data on this relation- 
ship when available can be incorporated into the 
simulation. 

It will also be noted in Figure 8 that the curves are 
not plotted beyond k = 0.50. Actually the curves ex- 
tend beyond this point but do not extend past 
k = 0.78. That is, starting with a contagion value of 
k = 0.78, larvae of 0.4 cm after 1 day have a negative 
total energy balance. Thus, despite any time allow- 
ance between starvation and ‘point of no return’ (Las- 
ker et al. 1970) these animals, as far as the simulation 
is concerned, will die. While larger animals will survive 
at these degrees of contagion, 0.4 cm first feeding 
larvae fail to  survive at these lower levels of con- 
tagion. 

What relationship does this value of k = 0.78 have 
to  the recent studies on critical feeding in anchovy 
larvae? Lasker (1975) demonstrated in the laboratory 
that first feeding in anchovy larvae required particles 
2 4 0  pm and between 20 to 40 parti~les-cm-~. Be- 
cause the model has integrated geometric properties 
we can only give the range of prey concentration for 
interpatch and patch concentrations of particles 
>40 pm at k = 0.78, Le., the contagioil value just al- 
lowing for day l survival as determined by the com- 
puter. This particle concentration for first-feeding lar- 
vae is between 14.0 to  31.9 parti~les-cni-~. This range 
of particles means that any one of the numbers could 
represent an environment which is structured. If only 
interpatch areas were sampled the value of 14.0 parti- 
cles-cm-3 would be obtained. If, however, by some 
fortuitous series of events only patch regions were 
sampled, a value of 31.9 would be obtained. Thus, 
although laboratory experiments by Lasker (1975) re- 
veal no first-feeding at average particle concentrations 
of 5 t o  20 part i~les-cm-~ for any temperature, average 
concentrations without some concept of geometric 
structures are without meaning. This is, I believe, one 
of the reasons for the discrepancy between the high 
laboratory food requirements for minimal survival 

and the concentrations observed in the ocean of anal- 
ogous appropriate prey types. Certainly, large concen- 
trations of food as in Gymnodinium blooms are 
greatly advantageous but the importance of micro- 
structure in the remainder of the environment may be 
of equal or greater importance. 

The natural extension of such concepts is to  the 
associated sampling problem. Fisheries scientists have 
never really considered the relevance of environmen- 
tal inicroscale in larval survival but as shown above 
these concepts can explain a number of inconsisten- 
cies. With large scale sampling the resultant concen- 
trations of particles determined will always trend to- 
ward the mean or the interpatch concentration. As 
we have seen, this concentration is almost always be- 
low that determined in the laboratory for successful 
first feeding. Thus, what is needed is a way of as- 
sessing the microstructure of prey aggregations on a 
large scale. 

The actual characteristics of the larval growth 
curves as determined by the simulation are worthy of 
discussion. It can be seen from Figure 9 that they are 
markedly sigmoidal in character compared to the 
curve for laboratory grown larvae. This, I believe, is 
due basically to  two factors. First with this model we 
are actually seeing the manner in which fixed geo- 
metric properties of the microenvironment modulate 
the larval anchovy growth. When contagion was 
sinusoidally varied, depending on the phase and am- 
plitude of the oscillation, the curves, although show- 
ing the effects of the oscillations, became more linear. 
Also, as the environment becomes more uniform, i.e., 
with high k, we see that the growth curves become 
more parallel to the lahoratory curve and essentially 
represent a nonstructured prey environment. Second, 
the foraging costs used in the model slightly under- 
estimate these values in  the early stages of ontogeny 
and overestimate them in the latter stages of life. This 
accounts partially for the rather Fast growth early in 
ontogeny and the slower growth later on. 

The inhomogeneous nature of contagion in the 
ocean most likely gives rise to growth curves which 
are very similar to those observed in the laboratory. 
More precisely if the value of contagion is a function 
of time and place, i.e. k = k(r, t) and f(k, T)  rep- 
resents the relationship between growth rate and tem- 
perature from Figure 8 then the length of the an- 
chovy larva after time t and distance travelled r is 

L(t, r, T) = sy‘ f(k(r’, t’), T) dr‘ dt’ . 
0 0  
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In conclusion it should be said that from this preli- 
minary model numerous concepts emerge which jus- 
tify further investigation and elaboration. The model 
itself as a dynamic entity is subject t o  further refine- 
ment and restructuring consequent t o  new revelations 
in larval anchovy physiology and behavior. However. 
some things seem t o  be clear. These are that studies 
of  physiology and behavior are of critical importance 
in the understanding of any fisheries problem related 
t o  larval fish, whether it is the growth or the relation- 
ship of growth to  larval mortality. Also, environmen- 
tal microstructure of food particles has an intimate 
relationship with the behavior and physiology of lar- 
vae and this whole model can in effect be regarded as 
a theoretical r a t i o n a h t i o n  and justification for in- 
creasing our  understanding of extremely small-scale 
relationships in the ocean. It might be argued that 
this model, suffers t he  same defects as many biologi- 
cal models in that it is too deterministic. However, 
this determinism should properly be regarded as eluci- 
dating a species specific biological relationship which 
is the result of  the intermodulation of  several other 
deterministic biological parameters. As such it can be 
reformulated in the language of stochastic variables 
just as other biological systems can be reformulated 
today. Such a refomiulation constitutes the further 
extension into realism which is necessary for proper 
understanding of  the complex biological systems with 
which we are concerned. This work is only one step 
in furthering that goal of  a realistic understanding of 
the anchovy larvae and hopefully it will serve as a 
starting point for other similar investigations. 
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