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ABSTRACT 

Qualitative properties of optimal harvesting policies for stochastic, single-species, 
multiage class models are described. For many problems the k-dimensional problem (k is 
the number of age classes) can be reduced to k one-dimensional problems, which can be 
solved far more readily. When such separability does not occur, bounds can be. put on the 
derivatives of an optimal policy function which can greatly increase computational 
efficiency. 

1. INTRODUCTION 

In a series of recent papers, I have explored optimal policy functions for 
stochastic single-species, pooled-age-class models under a variety of 
assumptions on the one-period return. The basic results are given in [14]; 
these have been extended to include “smoothing costs” due to changes in 
the sizes of the harvest [ 12) and also to include multiple objectives [ 131. The 
purpose of this paper is to extend this analysis to single-species, multiage 
class models. 

The age distribution of the population affects harvesting strategies due to 
age-dependent mortality, reproduction, and size. For a given total popula- 
tion size x ,  the growth over the next years will vary greatly if the population 
is mainly in the younger rather than the older age classes. Mortality will 
vary. Reproduction due both to the first age of reproduction and to 
age-dependent reproductive rates will vary. The average weight of the catch 
will vary, since older animals tend to be larger also. Computer models that 
have been used to study the effects of management policies on sandhill 
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cranes [ 151, elephants [7], and deer [I] show that age structure may have 
effects that are obscured by predictions based only on the total population 
size and the initial management policy. 

A population model which includes the age distribution of the popula- 
tion raises conceptual problems with such traditional goals of resource 
management as maximum sustained yield. For example, a particular model 
of the population dynamics, for a given initial population distribution, may 
not permit any policy that ensures constant yield, constant total number 
harvested, or constant age distribution. Even if there exists a policy that 
realizes any or all of these goals, it may require a long span of time to bring 
the initial population into this equilibrium configuration, and the result may 
well be either under- or overexploitation of the resource during the non- 
equilibrium period. The problems encountered in trying to define a maxi- 
mum sustained yield harvest for a Leslie matrix mode 1 of population 
growth is discussed by Mendelssohn [ 1 I]. This includes differing definitions 
given by Williamson [22], Watt [21], Usher [ 181, Dunkel [6], Doubleday [5 ] ,  
and Rorres and Fair [ 171. The underlying dilemma in each of these articles 
is that of trying to extend to higher dimensions concepts that only have 
meaning in one dimension. 

The models in this paper contain only limited biological detail as an 
initial examination of stochastic harvesting models with age structure. 
Deterministic models presented by Goh [8 ]  and Clark et al. [3], to be 
described later in the paper, include age structure with very restrictive 
assumptions. Less restrictive models are presented in this paper, and they 
suggest possibilities and pitfalls for future research. For example, one might 
think that the results of Mendelssohn and Sobel [14] should extend intok- 
dimensions. Unfortunately, they do not. Some of the results of that paper 
rest on the fact that the real line is completely ordered by the inequality < . 
In other words, if X I  is not less than or equal to x, then x’  must be greater 
than x. However, coordinate-by-coordinate comparisons of k-vectors in- 
duce only partial orderings. For two k-vectors, X I  and x2, the falsity of 
XI < x2 does not imply x’ x2. Therefore, in higher dimensions, most of the 
proofs in [14] are invalid. As a result, the analyses in this paper are more 
complex, the assumptions are stronger, and the results weaker than those in 
that paper. Nevertheless, interesting results are obtained by using the same 
basic approach and methods as in that paper on two interesting classes of 
models. The first model assumes random recruitment and random age-de- 
pendent survivorship rates, both independent of population density. This 
model is a generalization of the classic Beverton-Holt model [2]. The second 
model differs from the first by assuming that recruitment is a random 
concave function of the total population size, analogous to the Ricker 
equation [ 161. The first model has the mathematical property of “separabil- 
ity” or “additivity.” As a result, it will be possible to find an optimal policy 
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for each cohort independently of the rest of the population. A variety of 
weaker results are presented for the second model. The strongest result 
assumes that there is a linear return p i  from each age class, and that the 
sequence { p i } ,  i=  1,. . . , k ,  is concave. With these assumptions, it is proven 
that an optimal policy has a "new better than used" (NBU) property, that 
is, the oldest are always harvested first. 

Both models assume complete selectivity in harvesting the age classes. In 
practice, harvesting techniques lie between the two extremes of complete 
selectivity and random sampling. The assumption of complete selectivity 
allows a determination of the target if such control is possible, and lends 
insight into the crucial factors of the population dynamics if the best of all 
harvests is possible. One extension to include gear selectivity leads to 
"pulse" harvesting of the resource. 

The notation here is the k-dimensional extension of that in [14]. Let the 
ith component x/ of the k-vector x, =(xf) denote the number alive in the ith 
age class at the beginning of period t .  Similarly y, (z,) is the vector of the 
number of individuals left (harvested) in the k age classes at the end of 
(during) period t .  d,  is now a random vector whose components may be 
jointly distributed. The sequence d,, d2, ..., d, is assumed to consist of 
independent and identically distributed random vectors distributed as the 
generic random vector d.  A,(x)  denotes a k-vector-valued function, a policy 
function, with component functions u,'(x), and S[y,d] is a k-vector valued 
(transition) function with components s'[y,d]. The one period return func- 
tion C(x,y) maps a subset of R2k into R1. And finally, instead of (left) 
derivatives, the (left) gradient is evaluated. The gradient of a function f is 
written Of, and its ith component Vlf. Iff is a function mapping a subset of 
R2"-+R1, then fI1l is the gradient with respect to the first vector argument, 
and f[*] is the gradient with respect to the second vector argument. Thus, 
with obvious changes in interpretation, Eq. (4.1) in [ 141 remains the generic 
problem, that is: 

where 

Jn (x, Y) G(x, Y) + a E  { f n  - I (  S [~td])}. 

2. MODELS AND RESULTS 

A model basic to fisheries research assumes constant recruitment each 
year, and survivorship functions which depend only on the size of each age 
class. Mathematically, this becomes 

xrl+ I = R ,  

x,':,' = s'[ y,' I ,  i = 1,. . . , k - 1. 
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A special case of this model is the Beverton-Holt model (21, which has 
been discussed in the context of dynamic optimization by Goh [8] and 
Clark et al. [3]. 

Examples of fish populations that behave in a manner consistent with 
the Beverton-Holt model can be found in the references cited above or in 
[9] or [16]. However, it is rare that recruitment is truly constant, or that 
survivorship functions fit the data exactly; rather there is usually "noise" 
around this expected value. In the case of recruitment, this can be modeled 
by assuming that the constant (mean) level is modified by a random 
variable, that is, 

or 

xj+ I = R - d ' ,  0 < d '  Q R .  

In what follows, the multiplicative form d l R  will be assumed. There are 
two reasons for this. First, as has been discussed elsewhere [ 16, 201, if there 
are a large number of environmental effects acting on the number of 
recruits, then the random variable will tend to act multiplicatively and have 
a log normal distribution. Second, all the proofs presented for the multi- 
plicative case are true for the additive case, with the obvious necessary 
modifications. Thus, it is without loss of generality that only the multiplica- 
tive case is examined here. The complete stochastic model can be described 
as 

x ) + , = s l [ y , d ] = d l R ,  d ' R  > O  foralldl, 

For the return from harvest, assume that the benefit is proportional to 
the weight of each class age, Le., it is given by 2 t - , p i ( x i  -y ' ) ,p '  > 0 for all 
i .  If the cohorts are separated in space, as is often the case for Ocean fish 
that spawn upriver, costs for harvesting each cohort should also be indepen- 
dent except for a per diem operating cost which is independent of whether 
harvesting is done. Let g ' (x ' , y ' )  be the cost of harvesting the ith age class 
from x i  toy'  individuals, and let ~ 2 f - ~ ( x ' - y ' )  be the total operating cost 
(that is, the cost is proportional to the time spent harvesting, which in turn 
is proportional to the total number harvested). Then the return function IS 



MODELS AND RESULTS 163 

The next theorem states that with the assumption of Eqs. (2) and (3), an 
optimal policy can be determined for each cohort independently. This is a 
useful result, because a k-dimensional problem has been reduced to k 
one-dimensional problems, where the stronger results of [ 141 apply. 

THEOREM 1 

In the dynamic program (l), i f  S[y,d] is assumed to be given by Eq. (2) and 
G(x,y) is assumed to be given by Eq. (3), then: 

(i) the problem is divisible into k subprograms that consider each cohort 
independently; 

(ii) for each n , t > n > k ,  u ~ ( x ) = a ~ ( x i ) = a i ( x i )  for all i and x E X ,  where 
aL(xi) denotes that a; depenh on x only through x i .  

Part (i) is essentially proven in [19]. Part (ii) follows because for 
n 2 k, each cohort is independent of all other cohorts and S[y,d], G(x,y) are 
stationary functions. H 

Theorem 1 does not describe an optimal policy but rather proves that the 
problem of finding an optimal policy can be greatly simplified. To see the 
usefulness of Theorem 1, consider the Beverton-Holt model as a special 
case of Eq. (2): 

Proof. 

xi+ I = dlR,  dlR 2 0, 

x,'Z,'=d'+'s>,', 0 < d' + Is ' < 1, i = 1, . . . , k - 1. (4) 

The model assumes that given d'+ls' a fixed proportion of the cohort 
survives to the next period, but that this proportion is "noisy", i.e., it varies 
at random from year to year. Note that the model does not meet the 
assumptions of two similar stochastic processes: first, where s' is assumed to 
be a Bernoulli random variable, or second, where each individual, when 
born, has a known lifetime distribution. Assume that the return function is 
given by 

THEOREM 2 

For a dynamic programming problem given by Eq. ( I ) ,  if S[y, d ]  is given by 
Eq. (4) and G(x,y) by Eq. (5),  then: 

( i )  for each cohort born with n years remaining in the planning horizon, 
which can obtain a maximum age k(n)  within the planning horizon, there 
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exists an age j*(n), 1 < j * ( n )  < k(n), such that an optimal policy for the cohort 
is as follows: 

~~-~~ 

1 Q i Q j * ( n )  
i*(n) Harvest entire remaining cohort. 

Do not harvest. 

(ii) For n > k, j * ( n ) s j .  

Proof. From Theorem I ,  the dynamic programming problem is separ- 
able by cohort. For each cohort, there is a dynamic program of k ( n )  periods 
given by 

fo = 0, 
A( x )  = max { p ' e  (x ' - y ' ) + ah'' + (d' + I) } , (6) 

Q C Y C X  

i =  1, ..., k(n) .  

The dynamic program (6) is separable by individual. The problem for 
each individual becomes 

f o  = 0, 
J (  x )  = max { p ;, (YE' + I (d' + Is I)}, i = 1,. . . , k(  n ) ,  (7) 

and the decision is either to harvest this period or not. 
Given an individual just born Eq. (7) becomes 

f l  = m u {  p I ,  E( d,2)ap2s', E( d,zd,3- I )  aZp3s Is2, . . . , 
E(d;d:-I ... d!$')k(,,- l)ak(''-Ipk(")s1s2 ... Sk(+  ' 1. (8) 

Letj*(n) be the age where f l  achieves its maximum; that is , j * (n)  is the age 
where an individual of the cohort reaches a maximum value. From Eq. (S), 

E(dA+i . . . d ~ ~ l - J . ( ~ ~ ) ~ J * ( n ) - ' - '  p I* ( n ) s l . .  . s J * ( ~ ) -  I 

E(dj?t ... dJ)aJ-'- '  p s  ' ... s1-l (9) 

for all i, 1 < i < j * ( n ) ,  and all j ,  i < j < k(n ) .  From Eq. (7) for i < j * ( n ) ,  

f, = max { p ', E( d; L t ) ay, ' + Is I ,  . . . , 
E(d;?ld;+f- I . .  .dk,c"i,,,- '(")s's'+l ... S k ( n ) -  I } .  P 

However, Eq. (9) implies that f; achieves its maximum at agej*(n), and the 
proof of part (i) is complete. 
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Part (ii) follows immediately from Theorem 1, part (ii) and the result 
from part (i) of this theorem. 

The policy described by Theorem 2 harvests a single age class each year. 
Since weight, length, and other measurements of size are usually well 
correlated with age, it is the type of target policy that might well be 
achieved in practice. 

Goh [8] examines the Beverton-Holt model as a continuous-time, de- 
terministic problem, and assumes that s i =  s for all age classes and that { p ' }  
is nondecreasing in i .  Clark et al. [3] also assume that s i  = s for all i ,  that 
{ ( p  ' - p  i ) / p  i} is a nondecreasing sequence, and that harvesting removes 
each age class in proportion to its relative number in the population. Clark 
et al. use harvesting effort as their decision variable, and prove that 
"pulse''-type fishing is optimal, that is, in each period fishing effort should 
be either at a zero level or at a maximum level. The next corollary proves 
that if there is a function of effort which can be treated as a decision 
variable, and if the catch in each age class is proportional to this variable, 
then for 0 < e  < emax (a constrained decision), an optimal policy chooses an 
effort of zero or emax. 

COROLLARY 

In the dynamic program (1) let S[y, d] and G(x, y) be given by Eqs. (4) and 
(9, respectively. Assume that in each period the only decision possible is total 
fishing effort e such that O d e  <emax, and that for a given e and an initial 
population vector x, the catch from each age class in period t is eq,". Then an 
optimal policy in each period chooses either zero eflort or else emax. 

Proof. The corollary will be proven by showing that the resulting 
dynamic programming problem is convex (linear) in the decision e.  It then 
follows from [IO] that the maximum must occur at a boundary point, that is, 
either emax or zero. At period n = 1, the return is 

On the set { e  : 0 < e  < emax) the return is linear and nondecreasing in e for 
all x E X ,  so that emax is optimal in period I,  for all values of x. At n = 2, for 
a given x and e, the return is: 

Again, the return is convex (linear) in e,  so either emax or zero is optimal. 
Assume the theorem is true in periods 2,3,. . . , n - 1.  At period n, for given x 
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and e, the return is 
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e p 'q'x + aEf, - I ( S  [ x ,  e, a ] ) .  
I 

However, by the induction hypothesis an$ Eq. (4), aEf,- , (S [x , e ,d ]  is 
convex in e, and the proof is complete. 

In the fisheries literature the 4:"s are called the catchabdity coefficients. 
The corollary relaxes the proof of Clark et al. [3] by allowing for age-depen- 
dent and time-dependent catchability. The crux of the proof is that the 
decision variable in each period is constrained neither by the state in that 
period nor by the decision in the period before. 

Several authors (see the references in Sec. 1) have suggested that a Leslie 
matrix can model an exploited population that is at a level where resource 
limitations have no significant effect. Mendelssohn [ I O ]  demonstrates that 
an optimal policy for this model, assuming returns are linear, is either to 
harvest the entire population immediately or else to let the population grow 
without bound. The Beverton-Holt model assumes constant recruitment; 
the Leslie matrix assumes additive, proportional recruitment of the form 
C FL i .  A reasonable model might lie somewhere between these two models. 
As one possibility, consider recruitment given by a random, concave func- 
tion, similar perhaps to the Ricker equation, and survivorship rates given by 
a random vector ds as in Eq. (3) .  Formally, the transition function becomes: 

x L = s i [  &J.d: ] ,  

x/+',' = d,'+ Is?:, 0 <d '+  Is ' < 1, i = 1,. . . , k - 1, ( 10) 
where SI[ . ,dl1 is concave for each value of d .  

The next theorem examines harvesting strategies for the population 
model described in Eq. (IO), with a linear return function as in Eq. (5).  Part 
(a) of the theorem assumes s ' [ . , d ' ]  is nondecreasing for each fixed d.  
Consider an  individual age i in some period. Then 
a j - I -  IpjE(di+ldi+2 ... dJ)s'.s'+' ... SI-' is the expected discounted return 
from that individual at age j, without considering reproduction. If the 
expected discounted return at age j is greater than p i ,  there is an optimal 
policy such that no individuals are harvested from that age class in that 
period. 

Part (b) of the theorem assumes d'+'s'=CiS for all age classes i ,  but 
s l [ . , d l ]  need not be nondecreasing. Then it is shown that for each period n 
and for all initial populations x E  X, the total number remaining in the 
population satisfies 

k k k 
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Part (c) is simdar to part (b), but it is assumed also that thepl's form a 
concave sequence. This would be true if the growth curve were a concave 
function of time, as in the von Bertalanffy growth equation. With these 
assumptions, an optimal harvesting strategy has an NBU property, that is, 
an older individual is always harvested before a younger one. 

THEOREM 3 

In the dynamic program (1) assume S[y, d ]  is given by Eq. (10) and G(x, y) 
is given by Eq. (5). 

(a) Suppose sl[-,d] is nondecreasing, continuous, and concaw for each d ,  
and let k'(n) be the largest age obtainable by an individual of age i in period 
n. Suppose that for some j width 

i Q' Q k'( n),  

aJ-'- 'E( d,' + Id,' _+ t. . . di-, - ,)pJs's + ' . . . SJ - ' >p I .  (11) 

Then no indiuiduals are harwsted from age class i in period n. 

i =  I , . . . , & -  1, then for each n and all X E X ,  
(b) If s'[.,d'] is concave and continuous, and if d'+'s'=dr for all i, 

(c) Zf, under the assumption of part (b), it is assumed that the sequence 
( p ' }  is concave in i, then an NBU policy is optimal. 

Proof. Essential to the proof of this theorem is that the theorem in [14] 
readily extends to k dimensions. This implies that J,(x,y) is concave and 
continuous, and that fn(x) is concave, continuous, and nondecreasing. Also, 
consider 

T k  

Maximize E 2 2 (yp'(x;-y,') (12) 
, = I  i = l  

subject to 0 < y, < x ,  and Eq. (10). Substituting Sly,- ,,d] for xI ,  t = 2 , .  . ., T, 
Eq. (12) becomes 

T k  k 

2 a'-'p'(s'-'[y,,d,]-y~)+ 2 p t x ; - a T - '  5 P P f ) .  
f = I  1 - 1  r = l  1 - 1  

(13) 
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The term Cf,,x; is independent of the decision process, and Eq. (13) 
clearly obtains a maximum at yT-O. Let C(y) be given by 

k 

i =  1 
G(y)= p'(aE(s'-'[y,d]-y')). 

Part (a). At period n = 1 ,  

Assume, as in the theorem, that aE(d'+')p'+'s'  - p i  is nonnegative. By 
assumption, s['li [Z:y ' ,d ' ]  is nonnegative, so that V'J,(y) is nonnegative for 
all y. From the necessary and sufficient conditions for an optimum [IO], this 
implies that a;( .)EX'. 

Assume the theorem is true in periods 1,2,3.. . . , n - 1. At period n, 

V'J,,(y) =aE(d '+ ' )p '+ ' s ' -p '+  terms nonnegative for all y. (14) 

If aE(d'+ i ) p l + l s ' - p '  is nonnegative, the theorem is immediate. If not, 
and there exists an age j  such that Eq. ( I  1) is true, then it follows that 

From the inductive hypothesis, this equation implies that no individuals are 
harvested from age class i+ 1 in period n - 1. Therefore, Eq. (14) becomes 

V 'Jn ( y) = a2E( d' + Id' + 2)p I '2~1s + 1 - p ' 

+terms nonnegative for all y. 

Again, either aZE(d'+  'd'+2)p'+2s's'+ I -p '  is nonnegative, or else the 
same argument can be repeated up to age J ,  where the expression is 
nonnegative by assumption. Thus V'Jn IS nonnegative for ally, and this 
implies that u;(. ) 3 x '  for all x E X. 
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Part @). Consider the transformation of variables 

I w: = x;, 
w:=x:+x: ,  u:=y:+y:, 

u: =y, 9 
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k k 

w:= i =  2 I x;, u:= i =  I y;. 

Then the dynamic programming problem becomes 

1 = 1 ,  .... k- I 

where 

and 

k 
Jn(v) = 2 c 'u + aEfn - I (  S [ V, d]) 

i - I  

c = ( a p p  I + * - p  + I )  - ( * p p  ' + - p  I ) ,  p =E(  d )  

S[v,d] is given by 

s'[v,d] = s ' [ u k , d ' ]  

sJ[v,d]=s'[uk,dl]+dF 2 ( u r + ' - - u ' ) ,  j = 2  ,..., k - I .  
i =  1 

Suppose u k , u k -  I , . . . ,  u2 are fixed. Then there is an optimal u 1  given by 
u'* (w,uk,uk- l  ,..., x2) .  Now suppose c k  ,..., u3 are fixed. Then there is an 
optimal u2 depending only on w and V ~ , G ~ - ' , . . . , V ~ .  This can be repeated 
until the problem is reduced to choosing an optimal u k  given w, and then 
unraveling the optimal U ~ - ~ , U ~ - ~ , . . . , U ~ .  Noting that w affects the return 
only through the constraint set, it is tedious but straightforward to prove for 
w1 > w, with ( w " + I -  w l ' )  > ( w l + '  - w ' )  for all i, that u,"(w') uJ(w). This 
implies 

A similar transformation of variables (summing over the age classes) can 
be done when z = x - y  is the decision variable, and a parallel argument 
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Together, the two inequalities (16a) and (16b) yield: 

k k k k 

I =  I i =  I I =  I 1 -  I 
O < X  a;(xl)-x u ; ( x ) < x  x " - Z  x L  if x 'bx .  

Purr (c). By assumption { p ' }  is concave in i ,  which implies that the 
sequence {pi+' -pi} is a nonincreasing sequence. For some constant s, 
I > s > O ,  

( p ' + ' - p I ) > ( p I + 2 - p J + 1 )  j ( p ' + l - p ' ) >  s ( p 1 + 2 - p l + l )  

( s p ' + ' - p ' )  > ( sp '+2-pJ+l ) .  (17) 

Part (c) will be proven by showing that for each n and all y, VY,,(y) 
2 VJJ,,(y) if i < j .  If the inequality is true for all y, then it follows that an 
individual will be harvested from age class] before any are harvested from 
age class i, which is the desired NBU policy. 

At period 1, 

V'JI ( y) = (X E (d ) p  I +  IS - p ' + ap IEsI~I' [ y I ,  d ] 
and 

V'J1(y) - V'J1(y) = a E ( d ) s ( p ' + ' - p J + ' )  - ( p i - p J ) .  (18) 

Equation (18) is of the form ( sp '+ l -p l ) - ( spJ+I -  p J ), 1 >s>O. For i < j ,  
Eq. (17) implies that this must be nonnegative, so that (18) is nonnegative 
for all i < j .  

Assume the theorem is true at periods 1,2,3,. . . ,n - 1. At period n,  

V,J,(y)-VJJ,(y)= { [ a E ( d ) s p ' + ' - p ' ] -  ["E(d) sp '+ l -p ' ] }  

+ W E  { d[  V I +  Irn - I (  S [Y, d]) - V'+ %- I ( S  [Y, d]) ] }e 

Equation (17) implies that the first term on the RHS of Eq. (19) is 
nonnegative. An argument similar to that in [ 141 implies 

v ~ + t f n - l ( X ) = [ V ~ + ~ J n - I ( A , ~ I ( X ) ] + .  (20) 

By the inductive hypothesis, V'+'J,- I > VJ+IJ,,- I for all y if i < j .  T h ~ s  
implies that V 1 + ~ , , - , ( x ) > V J + t f n - , ( x )  for all X E X  and that Eq. (19) is 
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nonnegative if i < j .  As noted at the start of the proof, the ordering of the 
gradient by age is sufficient to prove that an NBU policy is optimal. 

The next theorem proves that if SI[ . ,d']  is nondecreasing, then the 
assumptions of Theorem 3, part (c) imply A,+ l(x) 2 A,(x). 
THEOREM 4 

The assumptions of Theorem 3,  part (c) and the additional assumption that 
s ' [ . , d ' ]  is nondecreasing imp& that there is an optimal policy such that for 
each n and all x E X ,  

(i) An+ I(X) An(x) 
(ii) as n+m, A,(x)+A(x) 

Proof. 
that V[f,(x)-f,-,(x)] 2 0. Then 

V[f,(x) -fo(x)] = Vfl(x) > 0. Assume as an inductive hypothesis 

V Jn + I (Y) - V Jn (Y) E= aE { [ Vfn ( S  [ Y 9 a]) - Vfn - ( S [ Y 9 d1)IL (Y)} > 0. 

(21) 

where $(y) is the Jacobian matrix of S[y,d] for fixed d. Equation (21) 
implies that VJ,, '(A,,(x)) 2 VJ,(A,(x)). Since an NBU policy is an optimal 
policy, if A,(x) is to be altered in order to obtain an optimum in period 
n+ 1, it must be altered by increasing the oldest nonzero age class. This 
implies that A,+ ,(x) 2 A,(x). 

To complete the induction, it is necessary to prove that Vf,+ '(x) - Vf,(x) 
>, 0. From the definition of fn(x), 

If ai(x)# x', then V%(x)=O, and it is trivially true that Vtf,+ '(x) > VLf,(x). If 
aA(x)= x i ,  then ai(x) = ai+ '(x) = x'. It is possible that in this instance, 
V%+ ,(x) ,< V'j,(x). However, for the induction, what is important is that 
a;+ l(x)= x i  if ai(x)= x' ,  that is, that Vtf,, '(x) be positive. This is implied by 
the induction, and therefore it is without loss of generality that Vtf,+I(x) 
> VY,(x). This completes the proof of (i). The proof of (ii) is an immediate 
consequence of (i). Since {A,(x) )  is a monotone nondecreasing sequence in 
n which has x as uniform upper bound, as n+oo there exists an A(x) such 
that A,(x)-tA(x). 

As in [14], the results of Theorems 3 and 4 can be used to increase 
computational efficiency as well as to lend insight into optimal harvesting 
strategies. The assumptions given in Theorem 3, part (c) yield the most 
complete results, so that model will be used to illustrate how the results 
improve computational efficiency. 
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There are two sets of results that apply. First, for each n and for all 
X € X .  

Also, for each n, A , ( . )  has an NBU structure. For each n, A,(O)-O starts 
the algorithm. Given A,(x), consider A,(x+&), where & is a k-vector with 
zero in every component but thejth, which has a value of one. Let j* be the 
last nonzero age class of A,(x). Then if j >  j * ,  A , ( x + & ) r A , ( x ) .  If j< j* ,  
then u;(x+&)=u;(x)  for iijj*; ui(x+&)=u,'(x)+ 1, and ui'(x+&) is 
either u;"(x) or u;/'(x) - 1. Thus, given A,(x), either A,(x + 8)  is completely 
determined, or else only two states, An(x)+& and An(x)+& -&*, need to 
be evaluated. 

In the infinite horizon problem, the convergence of A,(x) to A ( x )  may 
allow A ( x )  to be calculated by linear programming (see [4] for details). 
However, it should be noted that the convergence of A,(x) to A(x)  does not 
necessarily imply that f,(x) converges to an f ( x )  for which A ( x )  is an optimal 
stationary policy. 

3. DISCUSSION AND COMMENTS 

The results presented here generalize to specific multiage class models 
the results of [ 141. The interpretations of the results presented here are close 
enough'to the discussion in that paper that it will not be repeated here. 

There are several results that would seem to be true, but so far have 
escaped proof. They are of interest both as areas of future research and also 
as a means of examining more closely the models discussed in this paper. 

Consider the most general form of the model described in Theorem 3, 
that is, 

It would seem reasonable that for n > k ,  the elements of the gradients of 
J,(y) should remain in a constant ordering. For n < k ,  the ordering changes 
because the oldest obtainable age class varies, and therefore the future value 
of the age class varies. For n > k ,  consider V'Jn(y): 

V'J,,(y)=aE(d'+ I ) ~ f p ' &  I -p '  
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Only the last term will vary as y or n changes for any two age classes. The 
last term is the expected future change in value due to future reproduction 
and future growth. That the ordering of the change in future growth should 
remain invariant after k years has an intuitive appeal in terms of the 
population dynamics. 

For the same problem, it would seem to be true that 

for all 

Equation (22)  has been proven for the special case of d'+'s'=ds for all 
i =  1, ..., k -  1. For the more general model, it is possible to prove that 
0 Q au;(x)/ax'  Q 1, and also that 0 > aa;(x) /axJ for i+j .  However, the lower 
bound has not been proven. The motivation for the lower bound is that 
individuals in each age class are substitutes for one another. The future 
discounted growth in weight of an individual is density-independent. Repro- 
duction only depends on the total number in the population. An optimal 
policy should substitute a less valuable individual (in the future) in the 
harvest for a more valuable one, if the additional individual is available. 
The reason why the substitution should be at most 1 : 1 is that reproductive 
return is being balanced by the substitution, and this only depends on the 
'total number remaining. While this argument may seem intuitively correct, 
no proof or counterexample has been found yet. 

If s ' [ . , d ' ]  is nondecreasing, it would seem that for all n > k ,  A , + , ( x )  Q 
A,(x)  for all x E X .  Again, the argument hinges on the idea that after k 
periods the "end effects" due to a finite planning horizon disappear. The 
proof would be similar in spirit to Theorem 3, but it would have to be able 
to evaluate Vfk(x) by some method, or least to obtain bounds for each 
component Vlfk(x) that would allow the proof to go through. 

The large increase in analytic complexity caused by the addition of even 
the simplest interaction term is cause for both consternation and challenge. 
The results presented here are meant to stimulate some of the challenge. 

I would like to thank Professor Matthew J.  Sobel for much guidance and 
support in developing this paper, and for introducing me to the use of mathemat- 
ics to explore real-life problems. 
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