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I. Introduction 
AN important consideration in managing ecosystems or 
wildlife populations is the avoidance of undesirable 
occurrences, either to the populations themselves, or 
to the economic agents acting on  them. This might 
mean minimizing the chance that a population becomes 
too small, or minimizing environmental damage, or 
perhaps minimizing the chance that the economic re- 
turn is too small. Such ideas of minimum risk are in- 
herent in such legal concepts as optimal sustainable 
population (OSP) , required for the management of 
marine mammals in the U.S., or in management under 
extended jurisdiction, where both the health of the 
stocks and the health of the industry are vital concerns. 

Underlying these concerns is some notion of risk 01 
uncertainty in our management measures. This can 
arise from two causes. The first cause of risk is risk 
in the system itself. For example, if oceanographic sys- 
tems affect fish stocks, we cannot with certainty predict 
the stock size next year, but only predict with given 
probability. The second cause of risk is uncertainty 
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about these probabilities. This second cause presumably 
would diminish as more and more observations are 
made, and our knowledge about the system increases. 

In this paper we are concerned with the first cause 
of risk-inherent uncertainty in the system. The re- 
sults and techniques can be extended to include the 
second case also (for extensions in related areas see 
Rieder (1975) or van Hee (1978)). Risk enters our 
decisionmaking process in three ways. Firstly, in con- 
structing the probabilities of the occurrence of given 
events. Secondly, in the decisionmaker’s attitude to- 
wards risk, e.g. how much of a gamble will be tolerated 
to obtain a possibly higher total return. And finally, 
the policy selected can be analyzed for the degree of 
risk that it entails. 

In this paper, an effort is made to make precise the 
rather vague decisionmaking goal of “minimizing risk” 
in a dynamic context. We will see initially that in- 
tuitively appealing definitions lead to policies that are 
not reflective of the true complexity of the problem 
(section 111). As an alternative, acceptable trade-offs 
between low risk in the long run and high expected 
economic return must be found. To this end, the con- 
cept of a “Pareto optimal solution” is introduced, and 
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its uses in evaluating trade-off curves are explored (sec- 
tion IV) . Several numerical examples of the techniques 
of section IV are presented in section V. 

11. The Model 
We restrict attention to single species Markov models 

without age structure. A Markov model has transition 
probabilities (e.g. the probability of a given popula- 
tion size next period) that depend only on the present 
population size and the present harvesting decision. 
However, it is possible, by increasing the size of the 
“state” to include sufficient statistics of the past his- 
tory, to have Markov models that include time lags 
and other more complex features. Many of the results 
extend to models with these complexities, as well as 
models with age structure or multispecies models; how- 
ever, the more complex models neither help to further 
illustrate the limitations of a notion like “minimize 
risk,” nor do they make any clearer the alternative 
methods proposed. Hence only simple models will be 
explored. At the beginning of each period t ,  the popula- 
tion size is “observed” to be xt .  During period t ,  z t  of 
the population is removed, leaving a population size of 
y t  = xt  - z t  at the end of period t. The population size 
at the beginning of period t + 1 is assumed to be a 
random function of y t ,  that is 

(2.1) xt+l = Dtsbt]; D, 2 0 with probability 

where D , ,  D2, . . . are independent, identically dis- 
tributed random variables distributed as the generic 
variable D .  

A one-period decision rule in period t is any rule that 
tells us that if xt  is the observed state at the start of 
period t ,  then take action y t  (e.g. harvest z t ) ,  and does 
so for all possible values of n,. A policy x is a sequence 
of decision rules; that is, an n-period policy x ? ~  would 
be defined as 

T n  = (61, 8 2 , .  . ., 6,l. 

Consider the following two problems: 

(2.2a) (i) for fixed W ,  “minimize” P r { x l  5 W )  

(2.2b) (ii) lor fixed 7, “minimize” P r ( z ,  5 7 )  
This implies finding some infinite horizon policy X *  

such that this probability is always smallest. 
To make this more precise, we need to define the 

notion of stochastic domiriance (Lehmann 1966; Keil- 
son 1974; Barlow and Proschan 1975; O’Brien 1975). 
For two random variables x and y defined on a common 
probability space n, let F be the distribution function 
of x and G the distribution function of y .  Then x is 
said to be stochastically dominant over y ,  written 

x 2 y if and only if 

for all I 

for all 1. 

ST. 

F(x(w)) I GO&)) for all w c n 
that is the random variable y has a distribution function 

that always has more total accumulated probability a t  

lower values. It is easy to see that if x 2 y ,  then 
ST. 

P r ( x  I w )  I P r ( y  5 W )  

for all O. 

In comparing two Markov chains { x,, n 6 N o  ) and 
fy,, n N,,]defined on a common probability space, 
{ x,, ] is said to be stochastically dominant over { yn } if 

ST. 
x, 2 yn for all !I c No.  

This implies (2.2a) or (2.2b); as we shall see, 
stochastic dominance is a useful concept. 

Ill. Policies That are Stochastic Dominant 
Our first theorem can be motivated by considering 

the one-period problem: for a given xl, choose a y, 
such that 

where s[. I is assumed to be unimodal. 
Now 

Consider the policy 8, * defined by 

&I*  = minimum {ymax, xl) 

where Y , , , ~ ,  is the argument where s[.] achieves its 
mode. Then, for any other feasible decision rule 8 ,  

S ( & ~ * ( X ~ ) ]  2 s[6,(xl)] implies 

which is the desired result. 

in the appendix, as are all the proofs in this paper. 
Theorem 3.1 formalizes this result; the proof is given 

Theorem 3.1 - In (2.1 ), assume s[.] is unimodal 
and obtains its mode at yrrla,. Define the policy 
p- = (6, -, SZ7,.  . .) where 

&* = minimum [xlr y,,, 1. 
Let { x r , r *  } be the Markov chain that arises from 

fo l lowingd,  and ( x n “ )  be the Markov chain that arises 
from following any other feasible policy T. Then 

ST. 
O 

The assumption that s [ . ]  is unimodal is weak, as 
most standard production models satisfy this assump- 
tion. The specific form x ~ + ~  = D,s[y,]  is also common; 
see for example the models of salmon runs in Bristol 
Bay developed by Mathews ( 1967). 

x,”’ 2 x,“ for all n. 
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It  is worth comparing the policy that arises from 
theorem 3.1, with the policy that 

S.I .  Xt+l = D,s[y,l; 0 I Yf I XI 

and s [ . ]  restricted as before. It has been shown by 
Mendelssohn and Sobel (unpublished data) that the 
solution of (3.1 ) is of the form 

- sf = minimum { x t ,  y* ) 

where 0 I Y *  5 yrnax. 
As an  example of the difference between these two 

policies, consider the following model for salmon in the 
Wood River postulated by Mathews ( 1967) : 

XC+* = (ed)4.077y, exp { -0.800yi 1 
where d is distributed as N ( 0 ,  0.2098). Solved on a 
51-point grid, y*  = 0.700 (Mendelssohn 1978b) when 
a = 0.97. On this same grid, ymax = 1.26 which is close 
to the true ylnax of 1.25 (the grid points are in units of 
106 fish). 

Two measures of interest will be examined. The first 
is the mean per period harvest under the two policies. 
The second is the long-run probability of being in any 
state. (This is the vector 4, where 

Following (a,*] yields a mean per period harvest of 
0.916727 X 10" fish, following { f t }  yields a mean per 
period harvest of 1.188993 x lo6 fish. 

Figure 1 shows the distribution function of the 
stationary probabilities arising from the two policies. 
The policy 6 which maximizes the long-run expected 
harvest has a greater average harvest compared with 
6*  of 272 263 fish, and with a lower variance between 
harvest amounts. 6 also has a zero harvest only 3.28% 
of the years, while the minimum risk policy S* does 
not harvest 19.67% of the time. 

Conversely, the minimum risk policy almost halves 
the probability of being in the low population sizes of 
420 000-840 000 fish, from 7.4% of the time to 4.1 % 
of the time. 

Clearly these two policies are the two extremes. A 
natural question is how to find policies, if any exist, that 
greatly increase the expected total discounted harvest, 
at only a small increase in risk. 

Theorem 3.1 can be generalized slightly by assuming 
that x ~ + ~  = s [ u t ,  D t ] .  In this model the random variable 
need not act multiplicatively as before. 

Theorem 3.2 -If, except for the zero state, every 
x e X can be reached with positive probability from 
every other x X, and ( i )  if there exists a 6* such that 

ST. 
s[6*(Xl), 011 L 4a(xl), 011 

I 1 0  I 

STATE 

FIG. 1 .  Cumulative stationary probability -distribution 
(Pr [ x.< E ] )  when following policies 6* and 6. The mini- 
mum risk policy 6* has a mean harvest of 0.917 x IO', 
and a variance of 0.894 x LO". The maximal expected total 
(discounted) harvest policy 6 has a mean harvest of 1.189 x 
lo", and a variance of 0.787 x IO'. 

for all feasible decision rules 8 and all x1 c X ;  then 

is a stochastically dominant policy. (ii) if no such 6* 
exists, then there does not exist a policy that is stochas- 

The advantage of theorem 3.2 is that only a one- 
period problem need be solved. Either that solution is 
the long-term solution also, or if no solution exists for 
this "static" problem, then no solution exists for the 
larger problem. 

I have not been able to find any policies that are 
stochastically dominant when the criteria is (2.2b); nor 
have I been able to prove that such a policy doesn't 
exist. However, I conjecture the following: 

Conjecture 3.1 - There is no policy T*, such that 
the Markov chain of the amount harvested following 
?r*, { znA*, n N o ) ,  compared with the Markov chain 
(z?=,  n E N o }  that arises from following policy n, 
satisfies 

A* = (S*, 6*, . . . ) 

tically dominant. 0 

ST. 
znz* 2 znX for all n 

for every possible feasible n. 0 
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It  is worth reviewing where we are. We have found 
a stochastically dominant policy under certain assump- 
tions. This was found to produce a solution that greatly 
reduces the economic return from the harvest (in fact, 
if s[.] is nondecreasing, then theorem 3.1 states that 
the risk is minimized by  not harvesting at a l l ) .  Also, 
for certain other models, it has been either proven or 
conjectured that there does not exist a policy that 
minimizes the risk of an undesirable event. Finally, a 
numerical example has led us to speculate that a large 
gain in economic return can be obtained by incurring 
only a small increase in the risk. 

1V. Pareto Optimal Policies 
In most decisionmaking situations, the decision- 

maker usually is faced with not one, but rather a 
myriad of conflicting objectives. However, intuitively 
we often feel that even in this situation, there is a “best” 
policy in the sense that this “best” policy most fairly 
balances the different objectives. To examine all the 
trade-offs possible could be even more confusing than 
enlightening for the decisionmaker. I t  would be desir- 
able to reduce the set of policies that need to be 
evaluated in examining these trade-offs. 

One such set of policies are policies that are “Pareto 
optimal,” or more precisely, whose expected returns 
are Pareto optimal. If there are two objectives, Pareto 
optimal policies have an intuitive explanation: A policy 
is Pareto optimal if there is no other feasible policy 
that does at least as well in any one of the objectives, 
and strictly better in the other objective. 

To describe this more formally, let TI be the set of 
all possible policies; let V‘ = ( v , “ ,  v?’, . . ., vkT) be the 
vector value of the k objectives v l ,  v2, . . ., vk. Let V be 
the set of all possible v’ for ?i E n. Then a policy 
?i* E H  is said to be Pareto optimal if there does not 
exist some other policy 71 E TI such that 

v “  2 v’*. 

(When comparing two k-vectors x = (xl, . . ., x k )  
and ( y  = (yl ,  . . ., y r ) ,  x = y implies x, = y L ,  i = 1 , .  . ., 
k; x 2 y implies x ,  2 yt, i = 1, . . ., k ;  x 2 y implies 
x 2 y but x # y ;  and x > y implies x ,  > y l ,  i = 1,  . . ., 
k. 1 

For the problems of this section, we will restrict n 
to the class of stationary policies, that is, policies that 
follow the same one-period decision rule in each period. 
There is a body of literature that shows that for our 
models, when maximizing economic return over a very 
long planning horizon, this is without loss of generality. 

In section 111, we were concerned with a class of 
problem that can be viewed as a multiobjective 
problem: Any policy is evaluated in terms of the ex- 
pected (discounted) value of the harvest from that 
policy; it is also evaluated in terms of the degree of 
long-run risk of an undesirable event that occurs from 

following this policy. Our goal now is to find the class 
of Pareto optimal policies between these two objectives, 
and to find the trade-off curve on this set of policies, 
rather than trying to strictly optimize. 

To accomplish this, assume problem (3 .1)  has been 
discretized on a set of states X ,  = ( x , .  x , ,  . . ., x k )  and 
a set of feasible decisions from each x E X ,  is given by 
Y ( x )  = { y;O 5 y 5 x ;  y X I ) .  If it is desired to max- 
imize the long-run average harvest, or more formally 

subject to the transition and harvest constraints, then 
this is equivalent to solving the following linear pro- 
graming problem (DeGhellinck 1960; Manne 1960) : 

maximize u , ~ C l ~  
w r X ,  .v.Y(x) 

(4.1) subject to 

x u z y  = I 
XtXl 4 L Y(x)  

uzv 2 0 for all x e XI, y z Y(x)  

where G,“ is the one-period return of observing x and 
harvesting to y ,  is the probability of going from 
state j to state x when action y is taken, and { XI/ 11 
implies the set of states X ,  less some arbitrary base state. 
That is, if there are k states, there will be k-1 of these 
constraints. 

At an optimal solution, il,l/ > 0 if and only if 
choosing action y from state x is an optimal decision. 
Also, the optimal variables 1, if have the interpretation 
of the probability of being in state x and taking decision 
y. Suppose it is desired to limit the long-run probability 
that the process is in states contained in some subset 
X ,  of X , .  This can be included into (4.1) by amending 
the following constraint: 

(4.2) E U X ~  I w 
xrX? y.Y(x) 

Similarly, if it is desired to limit the probability that 
the harvest is less than a given amount, let Z ,  be the set 
of (x. y )  pairs that harvest the fixed amount or less. 
Then amend the constraint 

(4.3) c uxv 5 7. 
(X,Y)fZI 

The advantage of this approach is that linear pro- 
graming allows for parametric analysis of the right- 
hand sides of the constraints. Thus, it is simple to start 
off with W(resp.q) equal to one, that is, the uncon- 
strained or maximum average return problem, and 
parameterize it to zero, or the minimum long-run risk 
problem. 

If instead it is desired to maximize the expected 
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total discounted return, then again, after discretizing 
the problem, a solution can be found by solving 
the following linear programing problem (d’Epenoux 
1963) 

maximize UZVG~V 
xeX1 y r  Y(x)  

(4.4) subject to 
uzu - c c U , ~ C I P j . V  = vz x c x1 

Y 6 Y(x)  jeXI y t Y ( j )  

uzy 2 0 for all x c XI 

y e Y W  
where 01 is the discount factor, and the v, are chosen 
so that v z / C i v i  is the initial probability of being in 
state x.  

Recently Sobel (unpublished data) has shown at an 
optimal solution to (4.4) that 

(1 - a)i izV 

f: Yt  

= the normalized discounted fraction of 
years that state x is entered and 
action y is taken. 

Note that this is different from the interpretation of 
the optimal variables in the average return problem, 
in that here the normalized sum of presence or absence 
of being in state x and taking action y is discounted, 
so that near-future behavior is more important than 
long-run behavior. 

Constraints on these probabilities can be amended 
to (4.4) in a similar manner as probabilistic constraints 
we amended to (4.3). 

Three caveats should be noted carefully. It is always 
advisable to initially have w or 7 identically one and 
parameterize to zero. This is because at zero the 
problem may be infeasible, that is, no policy can achieve 
this constraint. To parameterize an LP solution, it is 
necessary to have an initial feasible solution. 

Secondly, a randomized policy may become optimal. 
A randomized policy is a policy that instead of choosing 
only one action from each state, chooses one out of 
several actions from each state by a “lottery” with a 
given distribution. While this is of some theoretic im- 
portance, most policymakers today would not recom- 
mend that we manage our resources by tossing dice, 
However, if only one constraint is amended to (4.2), 
then Kushner (1971) shows that at most one state 
will have a randomized decision, and this will involve 
a “lottery” between at most two actions feasible from 
that state. 

Thirdly, Mendelssohn (1978a) has shown that the 
size of the grid chosen and the procedure used to dis- 
cretize the original problem can greatly affect the final 
values of i i , ~  for a given problem, as well as the 
estimates of the stationary distribution 4 ( x ) .  Numerical 
experiments in that paper show that the choice of grid 
can increase our estimated risk by 3-5 times. Thus it is 
possible to artificially create a critical trade-off that 

does not exist in the original, continuous state space 
problem. 

V. Numerical Ex’amples 
To see how these techniques work in practice, con- 

sider again the model developed by Mathews (1967) 
for salmon runs in the Wood River: 

x $ + ~  = (ed)4.077y, exp ( -0.800yt 1 
where d is distributed as N ( 0 ,  0.6768). 

This is discretized on the following 16-point grid 
XI = (0, 0.467, 0.933, 1.400, 1.867, 2.333, 2.800, 

3.267, 4.200, 4.667, 5.133, 5.600, 6.067, 6.533, 
7.000) 

in units of IO6  fish. Numerical experiments suggest that 
for real stability in terms of caveat three a 51-point 
grid should be used. However, this 16-point grid pro- 
duces an LP with 136 variables and 17 constraints; 
the 51-point grid produces an LP with 1326 variables 
and 52 constraints, a very large problem for illustrative 
purposes. For management purposes, the larger grid 
size should be used. The return function of interest is 
(3.1), and (4.4) rather than (4.1) is analyzed. The 
reason is that while on a 51-point grid, the optimal 
policy never goes to state zero, it is easy to demonstrate 
that on the 16-point grid every policy ultimately is 
absorbed in the zero state. The discounted problem 
therefore takes into consideration shorter-run behavior, 
or conversely, the time to absorption. 

The optimal policy for (3.1) for this problem is a 
base stock policy given by 

y t  = minimum { x t ,  0.933). 

The following constraints were added to (4.4), one at 
a time : 

for all x e X (i) X2 = { x  e XI : x 5 0.467); vz = 1 

(ii) X2 = ( x  cX1 : x  5 0.467); v o  = 0; vz = 

otherwise 

xeX2 y.Y(x) 
1 (0 .03 )~zV  5 w 

(iii) X) = (x  E XI : x < 0.933 I ; vz = 1 for all x e X 

(iv) ZI = ( (x, y )  : x - y 5 0.467) ; v o  = 0, vz = & 
otherwise 

(x.y)rZ1 
(0.03) u ~ Y  5 7. 

The results are summarized in Table 1. For popula- 
tion based probabilistic constraints, an optimal policy 
moves from a base stock policy of 0.933 to a base 
stock policy of 1.400, which on the 16-point grid is 
the optimal minimum risk policy. While any of the 
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TABLE 1. Bounds on discounted fraction of years xt  5 0.467, xt  5 0.933, and zt 5 0.467. 

Change in policy 
Total fraction of 

years, w State Action Value z 

Boutids on discoutited,fraclioti of years xt 5 0.467 
0.08836 Base stock at 0.933 656.721 1.2314 
0.08836 1.867 t .400 656.721 1.2314 
0.08735 6.533 1.400 61 1.634 1.1468 

1.1451 0.08733 3.267 1.400 
0.08702 4.667 1.400 596.745 1.1189 
0.08696 1.400 1.400 593.696 1.1132 
0.08608 4.200 1.400 554.016 1.0401 

610.725 

0.08596 2.333 
0.08518 2.800 
0.08466 7 .OOO 
0.08464 3.733 
0.08444 5.133 
0.08439 6.533 
0.08437 5.600 
0.08434 N o  change 

<0.08434 Infeasible 
Initial distribution v(i) = 1 for all states i 

.400 548.917 1.0292 
,400 513.729 0.9632 
.400 490.039 0.9188 
.400 489.073 0.9170 
.400 480.126 0.9002 
.400 478.026 0.8963 
.400 477.267 0.8949 

475.864 

0.02758 
0.02758 
0.02651 
0.02349 
0.02616 
0.02609 
0.02515 
0.02503 
0.02415 
0.02417 
0.02361 
0.02340 
0.02335 
0.02333 
0.02330 

<0.02330 

Initial distribution: 

Bounds on discounted fraction of years xt 5 0.933 
Base stock at 0.933 43.7814 

1.867 1.400 43.7814 
6.067 1.400 40.7756 
3.267 1.400 40.71 50 
4.667 1.400 39.7830 
1.400 1.400 39.5797 
4.200 1.400 36.9344 
2.333 1.400 36,5945 
7.000 1.400 34.2486 
2.800 1.400 34.1856 
3.733 1.400 32.6049 
5.133 1.400 32.0084 
6.533 1.400 31.8684 
5.600 1.400 31.8178 

No change 31.7243 
Infeasible 

v(0) = 0, v( i )  = 0.066667, i + 0 

Bounds on discounted fraction of years xt 5 0.933 
0.15580 Base stock at 
0.15580 1.867 
0.15299 3.267 
0.15212 6.067 
0.1 5206 4.667 
0.15187 1.400 
0.15041 4.200 
0.14909 2.333 
0.14690 2.800 
0.14543 3.733 
0.14487 5.133 
0.14474 7.000 
0.14468 5.600 
0.14466 6.533 
0.14455 No change 

<O. 14455 Infeasible 
Initial distribution v(i)  = 1 for all states i 

0.933 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 
1.400 

656.721 
656.721 
611.634 
597.667 
596.745 
593.696 
554.016 
548.917 
513.729 
490.039 
481.101 
479.004 
478.026 
476.623 
475.864 

1.2314 
1.2314 
1.1468 
1.1206 
1.1189 
1.1132 
1.0388 
1.0292 
0.9632 
0.9188 
0.9021 
0.8981 
0.8963 
0.8937 
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TABLE 1 (Concluded) 

Change in policy e) (value) 
Total fraction of 2 W  

years, w State Action Value 

Boitrrds on discounted fraction of years z ,  5 0.467 
0.30498 Base stock at 0.933 

0.25ooO 

0.16647 

0.16549 

0.16542 

0.16521 

0. I6251 

0.16216 

0.16043 

0.16036 

0.15974 

0.15960 

0.15954 

0.15944 
<0.15944 

1.400 

1.400 
3.267 

3.267 
6.067 

6.067 
4.667 

4.667 
2.333 

4.667 
4.200 

4.200 
2.800 

2.800 
7.000 

7 .Ooo 
3.733 

3.733 
5.133 

5.133 
6.533 

6.533 
5.600 

5.600 
Infeasible 

Randomized between 
0.467,0.933 

0.467 
Randomized : 

1.400,0.933 
1.400 

Randomized : 
1.400,0.933 

1.400 
Randomized: 

1.400,0.933 
1.400 

Randomized: 
1.400,0.933 

1 .#O 
Randomized: 

1.400,0.933 
1.400 

Randomized : 
1.400,0.933 

1.400 
Randomized : 

1 .400, 0.933 
1.400 

Randomized: 
1.400,0.933 

1.400 
Randomized : 

1.400,0.933 
1.400 

Randomized: 
1.400,0.933 

1.400 
Randomized: 

1.400,0.933 
1.400 

Initial distribution: v(0) = 0, v(i) = 0.066667 

intermediate policies could be implemented, the shift 
between the two base stock sizes does not occur in any 
monotone fashion, that is, first all the larger (or 
smaller) stock sizes switch their policy, and then the 
other subset of states are switched over. This feature 
would make an intermediate policy easier to imple- 
ment, but does not occur. 

The fourth column in Table 1 (1 - a) / x i v i a  (value) 
is in a sense the “discounted mean” value of the harvest. 

43.78143 

42.98377 

41.7717 

41.0265 

40.9748 

40.8160 

38.7655 

38.4950 

37.1798 

37.1263 

36.6561 

36.5452 

36.5010 

36.42505 

1.  

1 .  

1.3134 

I .29W 

1.2532 

41 .2308 

1 .2292 

I .2245 

1.1630 

1.1549 

154 

138 

1.0997 

1.0964 

1.0950 

1.0928 

If iisv is the discounted fraction of years that state x 
is observed and action y is taken, and if G,u is the one- 
period return, then the fourth column is equivalent to 

C C iiz”G2 
x e x  yeY(x)  

which is the one-period returns averaged over the dis- 
counted fraction of years it occurs. Hence, it is a “dis- 
counted mean” harvest (or value). Columns 1 and 4 
of Table 1 provide the information needed by the 
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decisionmaker to  determine the best trade-off between 
risk and return. 

For the harvest-based probability constraints, an 
optimal policy is randomized for all alternative policies 
except for the original base stock policy of 0.933 and 
the final policy. The final policy is of some interest. 
Summarized it is 

States Harvest to Harvest amount 
0 0 0 

0.467 0.467 0 
0.933 0.933 0 
I .400 0.467 0.933 
1.867 0.933 0.933 

> 1.867 1.400 x -  1.400 

This policy is very similar to an optimal policy that 
arises when “smoothing costs” (costs on the amount of 
year to year fluctuations in the allowed harvest) are 
added to the problem, with a positive cost only for 
decreasing the harvest (Mendelssohn 1978b). This 
suggests that smoothing costs act like a probabilistic 
constraint, most likely constraining the variance (or 
discounted variance) of the fraction of periods a state- 
action combination occurs. 

Also, since randomized policies d o  not seem to occur 
in population-based constraints but d o  occur in harvest- 
based constraints, this leads to the following conjec- 
ture: If for every state that has at least one action 
included in a probabilistic constraint, all actions are 
also included in the probabilistic constraint, then a 
nonrandomized policy will be optimal. Otherwise, a 
randomized policy will be optimal whenever the 
probabilistic constraint is binding, except perhaps at 
the two extreme points. 

A proof of the conjecture has not been found. But 
trying to find such rules are important. They lend the 
analyst insight into how to set up a problem both to 
obtain the desired trade-offs and t o  obtain policies that 
can be implemented. And ultimately, the purpose of all 
model building is the added insight they give to people  
who make the final decisions. 
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Appendix 
A lemma is needed before the theorems can be proven. 

Lemma 1 is a specialized version of theorem 3 in O’Brien 
(1975). The proof can be found in O’Brien (1975). 

Lernnia 1. Let {x, ,  n t N O ]  and {y,, c N o )  be two real-val- 
ued, discrete time Markov processes. If 

ST. 
(i) xo I YO 

(ii) Pr(xn+l 2 I ~ X ,  = XI 5 Prlyn+l 2 rly, = y l  

for all I, t i ,  and x 5 y 

then there exists two new processes (2, ] and (j$, I such that on 
a common probability space 8 

(a) 2, is distributed as x, for all ti 
(b) J,, is distributed as yn for all n 
(c) %(w) _< y,(w), for all ti, and all w t n. 

Proof of theorem 3.1: For any XI, the policy 
yl = min Iyrnax, XI I 

0 

can be shown to be stochastically dominant as follows. Let 6* 
be this decision rule, and d any other one-period decision rule. 
Then 

Since on the set { y  : 0 5 y 5 XI I, s[d*(xl)l 2 s[6(xl)J, then 

or that 6* is stochastically dominant over 6. This implies 
part (i) of lemma 1. 

Conditioned on xt, the policy 

yr = min(y,,,, xgl = 6* 

compared with any other one-period decision rule 6 can be 
shown to satisfy 

Pr{xt+l  2 w~xt ,  6’1 2 Pr{xt+l 2 olxt, 6). 

by the same argument as above. This is part (ii) of lemma 1, 
0 and hence the theorem is proven. 
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Prooj' of' theorem 3.2. Purl (i): By assumption, T* is sto- 
chastically dominant for x'? given any s,. This is condition (i) 
of lemma I .  

Suppose for some .yII 5 x t 2 .  X Y ] ,  X Y ~  t X ,  there exists a 
decision rule 6 part of policy T .  such that 

However, this contradicts the assumption of the theorem that 
6* is a stochastically dominant decision rule for s:! given xI. 
This contradiction implies condition (ii) of lemma I .  

Purr (ii): The proof is by contradiction. Suppose a stochasti- 
cally dominant policy exists, say K* = (hi*, a?*, . . . } ,  but no 

P l . { S [ 6 ( X t ' ) ,  D,] 2 W J  > PI 
w c $2, 

Since the Dt's are i.i.d. random 

Pr{s[,3(.r,l),D,] 2 W J  > PI 
w c 12 

one-period decision rule S* exists that is stochastically domi- 
nant. By assumption, any state except perhaps the absorbing 
state is reached with positive probability. Then, conditioned 
on xl, there is no policy that is stochastically dominant for 
. Y Y + ~ ,  since by assumption 6* does not exist. and the transition 
probabilities are stationary. This contradicts condition (ii) of 
lemma 1 ; from the proof of theorem 3 in O'Brien (1975) it is 
evident that this is sufticient to disprove that the chain result- 
ing from K* is stochastically dominant. 

s[6*(.wl'), Dd 2 for Some 

this would imply  

s[6*(x1'), D l ]  2 w }  for some 




