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Abstract: T h e  frequency distribution of the dis tance from a randomly selected point to  the 7th nearest  
organism contained in a variable area transect is descr ibed.  Estimators of densi ty  and  variance a re  der ived 
for both randomly distributed and  aggregated populations. For randomly distributed populations exact 
confidence intervals are available. On an  effort-precision criterion the  method is more useful than other  
spatial distribution based densi ty  estimators. Under  the condition where  effort is a l inear function of 
dis tance covered and  numbers  of organisms counted,  the  effort expended  in achieving a desired level of 
precision is the  same as that for quadrats; the  variance of effort depends  on the  difficulty in count ing and  
in covering the  distance. An example using pismo clams (Tiuela stultorurn) is given: the  densi ty  of clams 
was found to b e  1 pe r  2.87 m2. T h e  method was found to b e  superior  to  that of other  distance-measures 
and  quadrats. 
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Two methods are commonly employed 
when measuring the density of plant 
communities and closed animal popula- 
tions where the animals are relatively sta- 
tionary: quadrats and distance-measures. 
Quadrats are simple to apply. The fact 
that means of plot samples provide an 
unbiased estimate of true mean density 
enhances the usefulness of quadrats. Un- 
fortunately, problems arise in quadrat 
sampling. Quadrats of different size yield 
different estimates of density (Greig- 
Smith 1964). Also, the degree of nonran- 
domness detected depends on plot size 
(Pielou 1957). Distance-measure meth- 
ods, where the density is based on the 
spatial distribution of organisms, avoid 
these difficulties. The density estimate is 
based on the distance between some ran- 
domly chosen point and some rth closest 
organism and not on a fixed plot. 

Unfortunately, there are also problems 
in using distance-measures. The preci- 
sion of the estimate is inverse to the prod- 
uct of the number of samples taken, n, 
and the number in each sample, r (Pol- 
lard 1971). In the field, an r beyond 3 or 
4 is often impractical. This difficulty aris- 
es not from the measurement to the rth 
organism but in determining which is the 
rth. Increased precision is afforded only 

at the expense of increasing the number 
of sample points. This has discouraged 
many investigators from using distance- 
measures. 

One way to avoid the difficulties of 
quadrats and distance-measures is to 
sample in such a way that the search for 
the rth organism is a consequence of tra- 
versing a transect. In this way searching 
and measuring the distance are accom- 
plished at the same time. A large sample 
size is easily obtained and the estimate 
is still free of the restrictions imposed by 
a fixed plot size. 

The author would like to thank L. L. 
Eberhardt for his suggestions in the orig- 
inal formulation of the problem and D. 
G. Chapman for his suggestions, espe- 
cially those on the comparison of meth- 
ods. Personnel from the California De- 
partment of Fish and Game participated 
in data collection. 

ESTIMATION 

Maximum Likelihood Estimation of 
Density 

Consider the following: A resource 
management biologist proceeds along a 
transect of constant and fixed width, w ,  
until he reaches the rth organism. If the 
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organisms are Poisson randomly distrib- 
uted with constant density, the probabil- 
ity of r or more organisms being con- 
tained in a plot of area, wx, where x is 

ism, is 

By definition, the characteristic func- 
tion of x the distance to the rth organism, 
is the expected value of expits, i.e., 

the measure of distance to the rth organ- 4&) = E[exp(itx)l 

which from equation (2) is 
m 

Fr(x) = 2: (Awx)'exp( - Awx)/i ! . ( 1) 
i=r 

The density function, upon differentiat- 
ing with respect to x ,  is 

Fr(x) = (Aw)'x'-'exp(-Awx)/(r - l)!. (2) 

If we have x,, x2, . . . , x n  sample dis- 
tances from n sample point then the mod- 
ified (unbiased) maximum likelihood es- 
timator of the density is (see Appendix, 
Part A) 

e n r - 1  
(3)  A = -  

n >  
w C xi 

i = 1  

where the variance is 
A A2 

var A = - n r - 2 '  (4) 

.exp[-x(Aw - it)] dx 

= (1 - it/Aw)-'. (5 )  

The characteristic function for the chi- 
square distribution with m degrees of 
freedom (df) is 

4(t) = (1 - i2t)-m'2. 

Thus from equation ( 5 ) ,  2Aux is chi- 
square distributed with 2r df and since 
the sum of a chi-square is a chi-square 
with df added 2Au;ni is chi-square with 
2nr df. This statistic can be used to con- 
struct a confidence interval about A. 

For a 1 - CY percent confidence interval 

Pr(C, C 2Awnf S C,) = 1 - CY 

For the variance to be finite the product or 
nr  must be greater than 2. Pr(C1/2wnf C A C C2/2hwnf) = 1 - C Y ,  (6) 

Confidence Intervals 
Often an investigator is interested in 

knowing not only an estimate of the den- 

where C, and C, are the lower and upper 
d 2  percentage points from a chi-square 
distribution with 2nr df. 

sity but also an interval of confidence in 
which it is expected to occur. Equation 
(2) is used to derive the characteristic 
function of x which is used to construct 
an exact confidence interval for the den- 
sity. The characteristic function is unique 
for any distribution. Thus, for a given 
density function the characteristic func- 
tion can be used to index the underlying 
distribution. Once the underlying distri- 
bution is known the confidence interval 
can be readily identified as will be pres- 
ently shown. 

COMPARISON OF METHODS 

Variable Area Transect and 
Closest-Individual 

The variance of the modified maximum 
likelihood estimator is the same for the 
variable area transect (equation 2) and 
the closest-individual method (Pollard 
1971): 

Var(A) = A2(nr - 2). ( 7) 

Under the same sampling conditions an  
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equal amount of effort is expended in lo- 
cating n random sample points for both 
methods. So, in deciding which method 
requires the least effort to attain a given 
sample size, and hence, variance, the rel- 
ative difficulty in measuring r should be 
examined. 

For the closest-individual method, an 
r beyond 3 or 4 is often impractical; the 
difficulty arises from determining which 
organism is the rth. If the investigator 
searches either in increasing circles or 
works back and forth across the sample 
area, a great deal of time and effort is ex- 
pended. Only when the rth organism can 
be determined from the sample point 
does the closest-individual method re- 
quire little searching effort. 

For the variable area transect the de- 
termination of the rth organism is a con- 
sequence of traversing the transect. Less 
effort is likely to be expended in deter- 
mining the order of organisms. Conse- 
quent ly ,  in  most field applications 
searching effort should be less. 

Difficulties might arise in determining 
transect boundaries. In some situations 
these boundaries could be laid out as 
with quadrats, 3 of the sides being fixed 
with the 4th being variable. Practical al- 
ternatives would depend on the terrain. 
In  some situations the investigator could 
carry a rod and allow the ends of the rod 
to determine the side boundaries. In any 
event, the transect should be narrow 
enough so that it is easy to determine 
whether or not an organism lies inside 
the transect boundaries. 

Variable Area Transect and 
Quadrats 

In  terms of the amount of effort ex- 
pended in achieving ’a desired level of 
precision, the variable area transect and 
quadrats can be compared under 2 con- 
ditions: (1) the major portion of effort is 

expended in the examination of the area 
for specimens and not in either determin- 
ing boundaries or locating sample points, 
and ( 2 )  the effort invested is assumed to 
be a linear function of the distance cov- 
ered and the number of organisms count- 
ed. 

Under the  first condition, Holgate 
(1964) shows a natural way to compare 
quadrats and the closest-individual meth- 
od. This reasoning can be extended to 
variable area transects as well. 

The variance of the density estimator, 
say L, for quadrats is 

Var(K) = VU 

where a is the total area sampled. 
For the variable area transect the total 

expected area for n samples can be de- 
rived from equation (2 ) :  

E ( a )  = nwE(x) 

= nlL;~(AIL;) ’Xrexp(-hwr) / ( r  - l)! 

= nrth. 

Substituting E ( a )  for a in equation (8), 

Var(i) = A2/nr, (9) 
and since from equation (4) 

Var(fi) = A2/(nr - 2)  

the variance of a quadrat estimator is 
smaller. However, for large sample sizes 
the variances can be assumed to be near- 
ly equal. 8 

Under the second set of conditions we 
weigh whether less effort is required 
either to count a random number of or- 
ganisms over a fixed area or to determine 
the area for a fixed number of organisms. 

Let the following linear relationship 
describe effort: 

effort = d *(distance covered) 
+ b.(number counted), 
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where d and b are arbitrary constants re- 
flecting the difficulty in covering the dis- 
tance and in counting the organisms, re- 
spectively. 

If E ( T J  is the expected effort for the 
variable area transect then: 

E(TJ  = dnE(x) + b(nr )  
= drn/ (hw)  + b(nr) .  (10) 

If E(T2) is the expected effort for quad- 
rats then 

E(T2) = d a h  + b E ( k )  
= dalw + bha, (11) 

where k is the number counted. 
For convenience, letting the width, w ,  

equal unity and the area, a ,  equal nrlh, 
the expected efforts are equal: 

E(TJ  = E(T2) = nr(d/h + b ) .  (12) 

Since effort as defined here is subject 
to statistical error, we should also inves- 
tigate its variance. 

The variance of T ,  is 

Var(T,) = d%ar(x) + 0. (13) 
The variance of x is 

Var(x) = [E(x ) lZ  - [E(x')]  
= nr/(Aw)2, (14) 

Var T I  = d%r/(hw)2. (15) 

and therefore 

The variance of T ,  is 

Var(Tz) = 0 + b2var(k) = b ' h  (16) 

since k is a Poisson random variable. 

nrlh, 
Again, letting w equal unity and a = 

Var(T,) = d2nr/h2, (17) 

Var(T2) = b2nr. (18) 

h = dlb.  (19) 

The variances are equal when 

Without prior knowledge of the area to 
be sampled it is difficult to assign relative 
values to b and d .  However, we can con- 
sider 2 cases where a comparison is eas- 
ily made. 

If counting is difficult, relative to that 
in covering the distance (b > d )  and if the 
population is dense, then the variable 
area transect should have the least vari- 
ance of effort. So, in this situation, the 
variance of effort would be more consis- 
tent using the variable area transect. 

In the opposite situation, where the 
distance is difficult to cover relative to 
the difficulty in counting the organisms, 
d > b ,  and the density is low, quadrats 
offer the effort of least variance. 

AN EXAMPLE 
Pismo clams (Tivela stultorum Mawe) 

inhabit open sandy beaches from the in- 
tertidal zone to beyond the surf line. The 
density of clams on the portion of the 
beach utilized by recreational clam dig- 
gers is valuable management informa- 
tion. 

The following example is from data 
collected at Seal Beach, California, dur- 
ing the midday low tide of 16 February 
1977. Transect lines were laid from ran- 
domly selected points on the exposed 
beach. Along the lines, the beach was 
probed with a 6-prong clamming fork un- 
til the 3rd clam was reached. Because of 
heavy surf an r greater than 3 was not 
practical. 

The width of the fork, 0.23 m, is the 
transect width. The measured distances 
to the 3rd clam are listed in Table 1. 
Fourteen samples were taken. 

The sum of distances to the 3rd clam 
is 

14 

i = l  
1 x i  = 510.8. 

Since nr = 42, the density estimate from 
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Table 1. The distance from a randomly chosen point to the third organism, X , ,  in meters. The Z statistic and the 
empirical distribution function, S., used for testing the hypothesis of randomness. 

X, 5.4 15.3 33.2 7.8 43.0 60.5 49.8 63.4 42.3 35.8 65.8 15.3 13.9 59.3 

Zi 0.07 0.14 0.21 0.28 0.36 0.42 0.50 0.57 0.64 0.71 0.78 0.85 0.92 1.00 
S. 0.01 0.04 0.11 0.12 0.21 0.32 0.42 0.55 0.63 0.72 0.83 0.86 0.88 1.00 

equation (3) is A = 0.35/m2 or 1 clam per 
2.87 m2. 

The lower and upper 0.025 percentage 
points from a chi-square distribution with 
2nr = 84 df are C, = 60.5, C2 = 111.2. 
Hence, from equation (7) the 95% confi- 
dence limits are [0.26, 0.471 clams per 
square meter. The confidence interval is 
skewed because it is based on the chi- 
square distribution. 

The statistic Zj, where 

is an ordered statistic from the uniform 
distribution on the interval (0, 1) (Ses- 
hadri, Csorgo, and Stevens 1969) and can 
be used to test the hypothesis of random- 
ness. The Zj and the empirical distribu- 
tion S, (=jln) are listed in Table 1. The 
supremum of 0.15 is well below the crit- 
ical value of 0.349 (from Owen 1962) for 
the 1 sample Kolmogorov-Smirnov test 
and the hypothesis of randomness cannot 
be rejected at the 0.05 level. 

In this example it probably would not 
have been as practical to use the closest- 
individual method. Because waves con- 
stantly washed over the sampling area it 
would have been difficult to determine 
exactly what areas had been sampled. 
Resampling, and consequently wasted 
effort, would have been difficult to avoid. 

There was some difficulty in counting 
because the clams had to be dug to be 
identified. The distance was relatively 
easy to cover since there were no obsta- 
cles on the exposed beach. Therefore, the 
variable area transect offered advantages 

over using quadrats. However, had the 
surf been heavier and more troublesome 
to covering the distance, quadrats would 
probably have been more advantageous. 

This example helps to illustrate several 
points about the theoretical framework of 
the model and its applications. The pre- 
cision of the method is not enhanced by 
inclusion of the distance measures to the 
1st and 2nd organisms. Because the organ- 
isms are modeled as being randomly dis- 
tributed the information content of the 
measurements to the 3rd organism con- 
tains all the information expressed by 
those distances to the 2nd and 1st. Note 
that while the number of measurements 
is n, the variance, equation (4) is inverse 
to the total number encountered, the 
product nr. 

If the density is zero the variable area 
transect method will be of no value be- 
cause the density estimate, equation (3) ,  
is dependent on at least 1 measure of dis- 
tance. For the density to be zero, the dis- 
tance, the denominator of equation (3), 
must be infinity. In this case quadrats 
would be superior to the variable area 
transect because for quadrats the variable 
being measured, the number of organ- 
isms, is in the numerator of the assembly 
equation and can be zero. Investigating 
the area beforehand for organisms can 
eliminate this problem. 

The clams were assumed to be of uni- 
form density over the entire area sam- 
pled. Because a significant deviation 
from randomness could be used as evi- 
dence to the contrary and because no 
such deviation was found, the assump- 
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tion is probably true. This is most likely 
because the exposed area of the beach is 
relatively flat, making the environment 
homogeneous to life-supporting and life- 
damaging influences. However, it is not 
difficult to imagine that beyond the surf 
line, where inundation and protection 
from clam harvesting is greater, the den- 
sity is higher than that of the exposed 
beach. The density could also change 
along the beach. Substrate, angle of wave 
action, and utilization by clam diggers 
cannot be thought of as being invariant 
over the entire stretch of the beach. For 
the situation where distinct areas of dif- 
ferent densities can be defined, an esti- 
mator is described in the following sec- 
tion. When distinct areas are not easily 
defined difficulties can arise. It would 
probably be best for the investigator to 
define the areas as well as possible and 
then proceed. If the investigator does not 
have some prior knowledge about the in- 
teraction of organisms and terrain then 
some presampling may be appropriate. 

DENSITY ESTIMATOR FOR 
RANDOM AND CLUSTERED 
DISTRIBUTIONS 

An alternative to randomness often en- 
countered in biological problems is that 
of aggregation, or heterogeneity. A spe- 
cial case of aggregation occurs when a 
population is divided into distinct re- 
gions of different densities, where the 
organisms are randomly distributed with- 
in each region. For the closest individual 
method Morisita (1957) proposes an un- 
biased estimator of density for this situ- 
ation. For the variable area transect the 
analog to Morisita's estimator is (see Ap- 
pendix, Part B) 

(r - 1) 3 x t - l  

nw (20) f = 1  A =  

or 

where is the density defined for each 
sample point. It can be shown that & is 
unbiased for the random distribution de- 
scribed in equations (1) and (2) with the 
following variance (see Appendix, Part B) 

which has an unbiased replicated sample 
estimate 

Thus when the population is uniformly 
random over the area sampled there are 
2 density estimators: I, equation (3) and k, 
equation (20). Since the variance is al- 
ways less for A, (nr - 2) always being 
greater than n(r - 2) ,  it would be prefer- 
able to use 

For the situation where the densities 
are variant for different regions the sam- 
pling must be done from random points 
within each region. Also, a separate test 
of randomness should be carried out for 
each region. 

The negative binomial distribution is 
often used to model aggregated popula- 
tions. Parker (1976) shows that a is un- 
biased for the negative-binomial distribu- 
tion with the following variance: 

over R in this situation. 

[ I  + n'rk "1. (23) 
A* 

Var(k) = n(r - 2) 
Two parameters must be estimated: A, 
the density and k, the heterogeneity pa- 
rameter. In discussing Morisita's esti- 
mator, Eberhardt (1967) noted that k will 
tend to vary with r .  This is also the case 
for equation (23); for a given variance k 
must change with r .  Consequently, the 
negative binomial model may not be en- 
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tirely realistic for distance-measure 
methods. If an investigator suspects ag- 
gregation, in the sense that it cannot be 
divided into distinct regions of random- 
ness, he is advised to use the quadrat 
methods as outlined by Bliss and Fisher 
(1953). 

DISCUSSION 
For density estimation an investigator 

is usually interested in a method which 
is accurate, precise, and requires mini- 
mum field effort. When organisms are 
distributed at random (Poisson) the vari- 
able area transect offers a useful alterna- 
tive to other distance-measures methods, 
and quadrats. For small sample sizes the 
variable area transect should be espe- 
cially useful because the confidence in- 
tervals are exact. 

Both the variable area transect and 
closest-individual methods provide un- 
biased estimates of density with equal 
variances. The relative effort expended 
in achieving a desired sample size should 
be less for most sampling situations with 
the variable area transect because deter- 
mining the order of organisms could like- 
ly require less searching effort than with 
the closest-individual method. 

Both quadrats and variable area tran- 
sects can be used for unbiased density 
estimation under the condition of ran- 
domness. For an equal sampling area the 
variance for quadrats is slightly less. 
When effort is a linear function of dis- 
tance covered and number counted, both 
methods require an equal sampling ef- 
fort. When counting is difficult and the 
population is dense, the effort is more 
consistent for the variable area transect. 
When the density is low and the distance 
is difficult to cover, the effort is more con- 
sistent for quadrats. 

A density estimator can be derived that 

is useful for both uniformly random pop- 
ulations and aggregated populations, 
where the variant density for different 
regions is randomly distributed. The es- 
timator is unbiased for the negative bi- 
nomial distribution as well, the implica- 
tion being that the estimator is robust 
for a wide set of conditions as yet un- 
defined. 

In conclusion, the variable area tran- 
sect provides a useful sampling alterna- 
tive. Because of ease of operation and 
because the resulting estimate is free of 
quadrat size, the variable area transect 
should be useful in a wide range of bio- 
logical sampling problems. 
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APPENDIX A. MAXIMUM 
LIKELIHOOD ESTIMATION OF 
DEN SI TY 

The maximum likelihood estimator is 
that which maximizes the likelihood that 
a set of distance measures xl, x2, . . . , x n  
assume a particular value given the den- 
sity function of the population density. 
Maximum likelihood estimators are ap- 
pealing to use because they are asymp- 
totically efficient, normal, and unbiased. 

From the density function, equation 
(2), the likelihood function is 

Taking the partial derivative with re- 
spect to A, equating to 0 and solving for 
A the maximum likelihood estimator is 

I = nr / (u ;  i = I  x i ) .  

As a check for bias, the expected value of 
A is 

E(h) = 

By making the following transforma- 
tion integration of equation (Al)  is sim- 
plified: 

j 

i = l  
Uj = c x i .  

U ,  is integrated from 0 to x ,  and each U j  
is integrated from Uj to U,,,. The first n - 
1 integrals are beta, the last is a gamma: 

nr  
nr - 1 E(I) = - A. 

Although asymptotically unbiased, is 
biased for small sample sizes. From the 
invariance principle of maximum likeli- 

hood estimators, the modified (unbiased) 
maximum likelihood estimator is 

- ( n r -  1 )  nr 
A =  nr n 

u; c x i  
i = l  

nr - 1 - - 
W C X i  . 

i = 1  

To estimate the variance of ^x the sec- 
ond moment of ^x is computed with the 
same transformations as above, where 

and then the variance of f i  is, from defi- 
nition, 

Var( i) = E (2’) - [E ( &)I2 
A2 

(nr - 2)  * 

- - 

APPENDIX B. EXPECTATION 
AND VARIANCE OF GENERAL 
EST1 MATOR 

Eberhardt (1967) showed that the ex- 
pected value of the reciprocal of the mea- 
sure of distance to the rth organism is 
equivalent to Morisita’s (1957) estimator. 
The situation is the same with the vari- 
able area transect. From equation (2) 

Au; =- 
r - 1 ’  

and then an estimate of the density is 

a (1. - l )E(x - ’ )  A =  
u; 

As a test for bias 

E&) = 
n 

i=1 

nw 
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n (Au;)&-'exp(- AWXi) A2 + A2n(r - 2) *rI i = l  (r  - I)! d x i  > E&') = n(r - 2)  
which can be solved directly without 
transformations: 

E(k) = A .  

and the variance is 

Var( k) = E (A') - [E (A)]' 
A 2  

The 2nd moment is derived similarly 
where 

- - 
n(r - 2)  * 
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