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ABSTRACT 

Estimates of historical abundance of animal populations are  important in many management deci- 
sions. Historical estimates based on a simple model of population growth have been made for several 
populations of dolphin involved with the yellowfin tuna purse seine fishery. We used the data for the 
bridled dolphin, Stenella attenuata, to investigate the behavior of the model by which these historical 
estimates were calculated. For populations with low net reproductive rates, the effect of bias in the 
estimates of the input parameters on the estimated historical abundances was approximately linear 
and additive. When all the input parameters were independently estimated, the variances of the 
historical abundance estimates were dominated by the variance of the initial abundance estimate and 
the coefficient of variation of the historical estimate was less than the largest coefficient ofvariation of 
any parameter. 

Many decisions about the management of animal 
populations are  based on the estimates of abun- 
dance of the population relative to its historical or 
preexploitation size. These estimates are  basic to 
any application of the theory of maximum sus- 
tained yield as incorporated in several interna- 
tional marine mammal management agreements 
such as  the North Pacific Fur  Seal Treaty and the 
International Whaling Convention. Similarly, the 
concept of “optimum sustainable populations” as 
specified in the recent Marine Mammal Protection 
Act of 1972 (MMPA) has been defined in terms of 
comparing the present size of a population with its 
or iginal  size (Southwest  Fisher ies  Center3) .  
Schools of dolphin of several species (primarily 
Stenella attenuata and S.  longirostris) have been 
used by purse seine fishermen in the eastern tropi- 
cal Pacific to locate yellowfin tuna, Thunnus alba- 
cares, since 1959, as  described by Perrin (1969). 
Significant numbers of dolphin have been killed 
by becoming entangled in the purse seines. In 
order to make management decisions under the 
MMPA about these dolphin populations, the Na- 
tional Marine Fisheries Service (NMFS) needed 

estimates of the preexploitation abundance of the 
various populations. The NMFS convened a work- 
shop of scientists to obtain the estimates based on 
a simple model of population change (see footnote 
3).  This paper evaluates the behavior of estimates 
of abundance obtained from their approach. This 
is important in order to be able to evaluate the 
degree of confidence to be placed in such estimates, 
and hence in management plans based on them. 

M E T H O D S  A N D  MATERIALS 

The model used to estimate preexploitation 
abundance is based on a common discrete model of 
population growth: 

where N ,  = the  abundance at time T 
b = the birth rate 
d = the natural  death rate  

K ~ = the number of animals killed, as- 
sumed to occur at the beginning 
of time interval T 

N,+l  = the  abundance 1 time unit later. 
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Reversing the procedure (i.e., solving the above 
equation for N,) results in  the expression 

where N ,  now is the estimate of abundance 1 yr 
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1974 and the annual incidental kills and repro- 
ductive rates  from 1959 to 1974. Several se- 
quences of estimated annual kills and reproduc- 
tive rates  were considered, incorporating the  
uncertainty in the data. 

In the present paper the sequences of annual 
kills and net reproductive rates given in Table 1 
are  used to illustrate several general aspects of the 
behavior of Equation (4) .  These correspond to the 
“high kill” and “central reproductive rate” se- 
quences for the  bridled dolphin,  Stenella at- 
tenuata, in  the Workshop report. The estimate of 
1974 abundance used by us and the Workshop was 
3.5 million. 

earlier and R, is the net reproductive rate ( b  4). 
The above model was modified in the procedure 
used by NMFS to account for situations when the 
kills occur throughout the time interval instead of 
instantaneously at the end of the interval, as: 

This equation can be repeatedly applied to give 
estimates any number of years ( t )  into the past. 
When rearranged to explicitly display the popula- 
tion size t years earlier, and relabeling so that  the 
initial abundance is No,  one obtains 

Kj(l+Rj/2) 
. (4) NO N .  = 

Note in this form tha t  the time-index t runs back- 
wards from zero. As is apparent in this form, the 
estimation of abundance t years earlier involves 
2 t +  1 parameters. The sequences o f  annual kills 
and net reproductive rates can be termed the kill 
and the net reproductive rate vectors, each com- 
posed o f t  elements. 

The data  used here to explore this estimation 
procedure is from the  report of NMFS Workshop 
discussed above (see footnote 3L4 From existing 
unpublished data  and reports the Workshop par- 
ticipants used estimates of the  population size in 

~~ 

41t should be noted that the estimates used here are based on a 
number of assumptions currently under investigation and that 
these estimates are subject to significant change in the near 
future (I. Baret, Director, Southwest Fisheries Center, La Jolla, 
CA 92038, pers. commun. April 1978). 

TABLE 1.-Estimates used for kill and reproductive rate vectors 
o f  Stenella attenuata in the eastern Pacific. 

Kill 
t Year lthousandsl Net reDroducllve rate 

1 1973 
2 1972 
3 1971 
4 1970 
5 1969 
6 1968 
7 1967 
8 1966 
9 1965 

10 1964 
11 1963 
12 1962 
13 1961 
14 1960 
15 1959 

772 

120 
273 
185 
308 
331 
164 
194 
281 
297 
255 
133 
106 
446 
534 
129 

0 040 
040 
040 
036 
032 
028 
024 
020 
016 
012 
008 
004 
000 
000 
000 

Estimation of Bias 

A sensitivity analysis was done to examine the 
effects of biased parameter  estimates on the  
backcalculated abundance. A new population size 
1 yr  earlier, from Equation ( 3 ) ,  when each parame- 
ter is changed by a specified amount is 

No(l+n)+0.5K1 (l+k) 
1+R ( l + r )  N;(n, k, r )  = 

+0.5Kl(l+k) ( 5 )  

and in general for t years earlier, 

No ( l+n)  

t K& l+k) ( 

N,’(n, k, r) = Il t (l+Rj(l+r)) 
j =  1 

1 +r) 12)) 
+j?l t (6) 

I = )  z. (1+qU+r)) 
where No, R,, and K, are  defined as above, and 

n = the  proportion tha t  No deviates from its 
estimate 

r = the  proportion tha t  all elements o f  the  net 
reproductive vector deviate from their es- 
timates 

k = the  proportion tha t  all elements of the kill 
vector deviate from their estimates. 

N ’, (n,k,r) was then compared with N ,  from Equa- 
tion (4) or equivalently N’, (O,O,O). As a measure of 
the sensitivity of the basic model, S, (n,k,r)  is 
defined to equal the percent that  N ’ ,  (n ,k , r )  de- 
viates from Nt 
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Estimation of Variance 

The variance of the backcalculated estimate of 
N,  from Equation (4) was approximated using the 
delta method (Seber 1973). This method is based 
upon a Taylor series expansion for a function in 
which quadratic and other higher order terms are 
ignored. I f f i s  a function of the random variables 
x , ,  x 2 ,  x, , . . , x ,  then the expression for the vari- 
ance off by the delta method is 

+ 2x2 cov ( X i , X j )  ( -  . g-) . ( 8 )  
i < j  

In applying this expression to Equation (41, i t  is 
necessary to  be able  to  define which of t h e  
parameters should be considered as random vari- 
ables, and to give reasonable estimates for value of 
the variances and covariances of these variables. 
For the purpose of exploring the behavior of Equa- 
tion (4), we assumed tha t  the estimates of all the  
parameters in Equation (4) are  independent ran- 
dom variables. The covariance terms in Equation 
(8)  are  then zero. This approach provides a picture 
of the variance of the back estimate of abundance 
if in fact independent estimates of the kills and the 
net reproductive rates were available for each 
year. A generalized expression for the variance 
using this approach is 

(9) 

where all parameters are  defined as for the basic 
model [Equation (411. For detailed expressions for 
each of the  right hand terms see Appendix I .  

As noted the method used for approximating the 
variance of a function depends on the higher order 
terms in  the Taylor's series expansion being small. 
The higher order terms in the delta method ex- 
pression for the variance of N ,  are  composed of the  

second and higher order derivatives of N, with 
respect to No, K , ,  and R,, and the higher order 
central moments of the probability distributions of 
the estimates of No, K, ,  and R, (i.e., skewness, 
kurtosis, etc.). The second and higher derivatives 
with respect to N, and K ,  are zero. Thus the terms 
involving R ,  are  the only higher order terms not 
equal to zero. The higher order derivatives of N,  
with respect to R, involve R,+l to increasing nega- 
tive powers. The three higher order moments ofR, 
are  always decreasing since R, is much less than 
one. Thus each of the  higher order terms in  the 
delta method expression for the variance ofN, are  
each less than the  first order term in R, (iii of 
Appendix I). The contribution of this first order 
term inRt  to the variance ofN, is small, as shown 
below. Thus the error induced by ignoring the 
higher order terms in the Taylor's series appears 
small. 

The objective in doing the variance calculations 
was to understand the behavior of the variance of 
the population size when estimated by the basic 
back projection model [Equation (4)l. Thus a range 
of variances was calculated for a range of reason- 
able values of the  variances of the estimated 
parameters. However, in our example of bridled 
dolphin estimates of the variance of many of the 
parameters were not available. Many of the kill 
estimates were not independently estimated and 
hence have large unknown covariances (Smith 
and Polacheck5). Estimates of net reproductive 
rate were obtained by extrapolation from other 
populations and from assumptions about density 
dependence. I t  is not clear that  the uncertainty in 
these estimates can adequately be described by 
the notion of variance. Thus, the variances tha t  we 
used and that  we calculated for N, should not be 
interpreted as actual estimates of variance for this 
population. 

RESULTS 

Bias 

The results of the sensitivity analysis of the 
basic model will be presented by examining the 
effects of varying each of the variables n, h ,  and r of 
Equation ( 7 ) ,  separately, and then in combina- 
tions. 

The sensitivity of the back projected estimates 

%mith,T. D., andT. Polacheck. 1977. Uncertainty in estimat- 
ing historical abundance of porpoise populations. Contract Rep. 
MM 7A C006, 39 p. Marine Mammal Commission, 1625 Eye 
Street, Washington, DC 20006. 
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6,) for a fixed number of years t into the  past is 
linear with respect ton  ork (Figure 1). This linear- 
ity can be seen in Equation (6) since n and k enter 
only as linear terms in the numerator. Positive 

Si%l 25 

20. 

I' IS- 

/' 

10- 

--lo 

:Is 

--20 

- - 2 5  

=30 

FIGURE 1,Sensitivityofthe modelst (n,k,r)  in 1959forarange 
ofdeviationsin the initialnumber(n),for arangeofdeviationsin 
the kills (k), or for a range of deviations in the net reproductive 
rate f r ) ,  for Stenella attenuata in the eastern tropical Pacific. 

30h 25 
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values of either n or k yield positive deviations in 
the back estimates. However, the farther back the 
population is projected in  time, the smaller the 
contribution of No to the back estimate becomes 
relative to the contribution of the kills. Thus the 
effect of bias in  the estimate of the initial numbers 
( n )  becomes progressively smaller the  farther 
back in time the population is projected, while the 
consequence of a consistent bias in the  kill esti- 
mates ( k )  becomes larger (Figure 2 ) .  Since the 
annual kills have no simple relationship to time, 
the effect of a particular value of n or k over time 
(Figure 2) cannot be described by any simple func- 
tion. This trade off in  the sensitivity of the back 
projected estimates between n and h is exact in  the 
sense that  for any decrease over time in the slope 
of S with respect to n there is a n  equivalent in- 
crease in  the slope o f S  with respect to k .  This can 
be seen by evaluating the partial derivates of S 
with respect to n and with respect to k and noting 
that  they sum to 1. 

The effects of bias in the estimates of the  net 
reproductive rate vector are  more complicated 
than for the other two factors. Positive deviations 
in the net reproductive rates ( r )  yield negative 
deviations in the back projected estimate (Figure 
2). The effect ofr tends to increase over time (Fig- 
ure 2). S approaches being linear with respect tor 
for any particular year, but unlike the relation- 
ship fork and n, this result is not exact (Figure 1). 
The approximate linearity of the sensitivity ofNt 

FIGURE 2.Sensitivity of the model S,  
(n,k,r)  over time to a 30% deviation in 
the initial number (n = 0.3), in the kill 
vector (k = 0.3). and in the net reproduc- 
tive rate vector ( r  = 0.3) when all factors 
are held constant for Stenella attenuata 
in the eastern tmpical Pacific. 

0 1  2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 I 5  
Time I t )  

Yeor 
1973 1971 1969 1967 1965 1963 1961 I959 
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to r appears to be a general feature of this proce- 
dure when r is small. This can be seen by examin- 
ing S, expressed as a function of r ,  which can be 
obtained explicitly by substituting the definitions 
of Nt [Equation (411 and ",[Equation (6)l into 
Equation (7) and simplifying. 

The consequences of having two factors varying 
simultaneously are shown in the series of contours 
of equal values of S from Equation (7) (Figures 
3-5). These contour plots present a visual picture 
of the sensitivity of the back projection to the dif- 
ferent factors. From this set of contour maps, i t  
can be seen tha t  the surface generated by S [Equa- 
tion (7 ) ]  tends to be nearly linear. Since S has no 
nonlinear terms with respect to n and k ,  the sur- 
face described by S in these two dimensions is 
simply a plane (Figure 4). There are nonlinear 
effects between the net reproductive rate and both 
initial abundance and the sequence of kills. For 
the example examined here, the nonlinearity be- 
tween K and r is insignificant. For instance, if r and 
k both equal 0.50, S deviates from a linear model 
by <19. In general the nonlinearity between k 
and r will be insignificant as  long as  the kills in 
any one year do not represent a large proportion of 
the population and as  long as  r is relatively small. 
Also, for the data  considered here, the nonlinear- 
ity between the net reproductive rates and initial 
abundance is small but nc?t insignificant. For 
example, if both n and r equal 0.50, S deviates 

r 

FIGURE 3 . 4 o n t o u r s  of equal sensitivity of the back estimated 
abundance in 1959 for a range ofdeviations in the initial number 
(n) and in the net reproductive rate (r)  when the kill vector is held 
constant for Stenella attenuata in the eastern tropical Pacific. 

from a linear model by as much as 5%. This in- 
teraction effect is negative, resulting in a surface's 
bending downward from a strictly linear model 
when n and r have the same sign. 

If all three factors vary together, the surface 

" 
FIGURE 4 . - c O n t ~ U r ~  of equal sensitivity of the back estimated 
abundance in 1959 for a range of deviations in the initial number 
(n )  and in the kill vector (k) when the net reproductive rate vector 
is held constant for Stenella attenuata in the eastern tropical 
Pacific. 

\ 

FIGURE 5.-Contours  of equal sensitivity of the back estimated 
abundance in 1959 for a range ofdeviations in the kill vector (k) 
and the net reproductive rate vector (r) when the initial number 
is held constant for Stenella attenuata in the eastern tropical 
Pacific. 
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bridled dolphin are  summarized in Tables 3 
through 6. Calculated values of the variance of N ,  
from Equation (9), when all of the random variables 
are assigned a coefficient of variation of 30%, are 
given in Table 3, over all years from 1974 to 1959. It  
can be seen tha t  both the  variances and the 
coefficients of variation (CV) generally decrease. 
The reduction of the CV over time is due to the fact 
that  the major contributions to the back estimates 
of the population size are the addition of the kills of 
the previous years, since the reproductive rate is 
small. The variance of a sum of independent ran- 
dom variables is the sum of their variances. This 
always results in a CV for the sum which is smaller 
than the greatest CV of any of the random variables 
when the expected values of the random variables 
are positive (Appendix 11). As a generalization, it 
can be stated that when the net reproductive rate is 
small the CV of the back estimate will not be larger 
than the largest CV of any of the random variables, 
and will usually be smaller. 

Table 4 shows the breakdown of the variances 
calculated in Table 3 into their major components. 
The variance of No is the major factor in the vari- 
ance of these back estimates. The contribution of 

Variance CV 
Year (XlO’l) (%) 

generated byS is still relatively linear as  there are 
no terms in S containing n, k, and r and the pair- 
wise nonlinear effects a re  small a s  discussed 
above. Table 2 provides examples of points on this 
three dimensional surface when n, k, and r are 
equal in absolute values. It can be seen there, for 
the example examined, that  if the absolute values 
of n, k, and r are 0.10, the sensitivity ofN,, ranges 
from -12 to +12. 

An empirical equation can be fitted to the sen- 
sitivity surface ( S )  by fitting a linear function for 
each factor considered independently and by de- 
termining a nonlinear term for n and r.  The gen- 
eral form of this fitted equation is 

Variance CV 
Year ( ~ 1 0 ~ ’ )  (“10) 

where the b’s are  constant. The exact value of the 
b‘s depends on the number of years the population 
is projected back in time. For the example consid- 
ered here, projecting back from 1974 to 1959, the 
values of the b’s are shown in Equation (11): 

S1, (n,k,r) = (0.573h+0.427n-0.164r-O.l25nr) 
x 100. (11) 

This empirical approximation [Equation (1111 de- 
viates by <2 from the true values ofS,, for values 
of n, k, and r <0.5. This emperical equation is 
useful as  the magnitude of the b’s provides a mea- 
sure of the relative sensitivity of the different fac- 
tors. Thus in Equation (11)  i t  can be seen that  for 
the example considered here the 1959 abundance 
estimate (N15) is most sensitive to bias in the esti- 
mates of the kills. This empirical equation also 
provides an easy way to generate approximate 
values of S for any combination of values for n, k, 
and r.  

Variance 

The results of the variance calculations for the 

TABLE 2.-ValuesofS,, f n , k , r )  when theabsolute values ofn, k ,  
and r are equal. 

Sign of n 
+ - 

Absolute value Sign of r Sign of r 

0 10 + 9 12 0 3  
- -3 0 -12 -9 

0 20 + 16 23 0 5  
- 16 1 -22 -17 

0 30 + 24 36 1 8  
- -10 2 -33 -26 

Ikl= I d  = lrl Sign of k t -  + -  

TABLE 3.4alculated variance and coefficient of variation for 
the back estimate of dolphin abundance when all random vari- 
ables have a CV of 30%. 

1974 
1973 
1972 
1971 
1970 
1969 
1968 
1967 

11.03 30.0 1966 7.04 19.1 
10.22 29.0 1965 6.9 18.0 
9.53 27.0 1964 6.8 17.1 
8.88 25.7 1963 6.71 16.7 
8.35 23.8 1962 6.67 16.3 
7.99 22.1 1961 6.71 15.7 
7.56 21.2 1960 6.75 15.2 
7.25 20.2 1959 6.75 15.1 

TABLE 4.-Breakdown of the variance of Nt into the major com- 
ponents that contribute to the calculated variance. 

Contribution to the variance of 
N, I 

The initial The net 
lola) due to the variance in 

Year number The kills reproductive rate 

1974 1103 0 00 0 000 
1973 101 9 12 156 
1972 
1971 
1970 
1969 
1968 
1967 
1966 
1965 
1964 
1963 
1962 
1961 
1960 
1959 

94 2 
87 1 
81 2 
76 2 
72 1 
68 8 
66 1 
64 1 
62 5 
61 5 
61 1 
61 1 
61 1 
61 1 

76 
10 

1755 
2 604 
2 70 
2 91 
3 49 
4 16 
4 64 
4 73 
4 99 
5 24 
5 55 
5 56 

305 
452 
568 
664 
735 
784 
816 
835 
a43 
843 
840 
840 
840 
Mn 
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TABLE 5.4oefficients of variation (CV) for the back estimates 
of bridled dolphin in 1959 UV,,) for a range of CV for the 
parameters of the model. The ranges of CV's of the kills, net 
repruductive rate, and initial abundances were selected to i l lus 
trate particular aspects of the behavior of the variances of the 
back estimates. 

the kills reoroductive rate 0 10 20 40 
CV of No CV Of CV 01 the ne1 

0 0 
40 

10 0 
40 

20 0 
40 

40 0 
40 

60 60 
100 100 

0 4 7  9 5  192 
2 2  5 3  9 8  193 
1 4  5 0  9 6  192 
2 7  5 5  100  194  
2 9  5 6  100 193 
3 7  6 0  103  195 
5 6  7 5  112 2 0 0  
6 2  7 8  114 2 0 2  
9 3  105 134 2 1 3  

155  162 182 2 4 7  

the variance of No tends to completely dominate 
the variance of N1 because of the assumed inde- 
pendence of the kill estimates. Table 5 gives the 
CV for the back estimated population size of dol- 
phin in 1959 for a range of CV for the different 
parameters involved in the estimate ofN,,. As can 
be seen in this table, unless the variance of No is 
near zero or unless the CVofthe kill and reproduc- 
tive vectors are extremely large (>60%0), the CV 
of the back estimate does not exceed the CV ofNo. 

and the basic model [Equation (3)l for the dolphin 
population examined here is given in Table 6. The 
simpler model always gives a slightly higher es- 
timate for the size ofthe back projected population 
but the increase in the estimate is always <I%. 
The sensitivities of the two models are nearly 
equivalent. When the values for the parameters in 
these models deviate as  much as  50% the differ- 
ence between sensitivities of the two models is 
<18. The approximate variances of the back es- 
timates of the two models are also similar. 

That the difference between the original and the 
simpler model is small can be shown by analyti- 
cally comparing the two models. If the projections 
are made only 1 yr into the past, the ratio of the 
estimate from Equation (2) to the estimate from 
Equation (3) is 

0.5R1K1 

+ No+Kl+0.5RlK1' 

Only ifthe value ofR,K, is large relative toNo +K,  
can this ratio deviate significantly from 1. This is 
only possible i fR,  is relatively large. The general 
formula for the ratio of the two models is 

t i 
2 0.5K.R.( n ( l + R h - l ) )  

j= l  J J h = l  

t t t 
1 +  

No + .Z 0.5K. ( n ( l + R h  - )) + jgl 0.5K. ( d (l+R,)) 
~ = 1  I h = l  I h = l  

Compar ison  of Equat ions  (2) a n d  (3). 

A comparison of the estimated back abundance 
as  calculated by the simpler model [Equation (2)l 

TABLE 6.4omparison of the back estimate of the abundance of 
bridled dolphin as calculated by the basic model [Equation (3)l 
and the simpler model [Equation (2)l. 

Simple model Basic model 
Year 1x1061 (X1061 Simpleibasic 

1974 
1973 
1972 
1971 
1970 
1969 
1968 
1967 
1966 
1965 
1964 
1963 
1962 
1961 
1960 
1959 

3 500 
3 485 
3 624 
3 670 
3 850 
4 062 
4 115 
4 214 
4 412 
4 640 
4 840 
4 934 
5 021 
5 467 
6 001 
6 130 

3 500 
3 483 
3 617 
3 659 
3 835 
4 0416 
4 093 
4 190 
4 386 
4 612 
4811 
4 905 
4 991 
5 437 
5 971 
6 100 

1 000 
1001 
1 002 
1 003 
1 004 
1 005 
1 005 
1 006 
1 006 
1 006 
1 006 
1 OW 
1 006 
I 005 
1 005 
1 005 

As in the case for projecting back only 1 yr, i t  can 
be seen that  unless the RJKJ terms are large rela- 
tive to No and unless the net reproductive rate is 
also large, the ratio of the two models will be close 
to 1. 

DISCUSSION AND CONCLUSIONS 

The results of this analysis indicate that  errors 
in the input parameters do not compound in this 
procedure for estimating historical abundance. In 
fact, a systematic bias in the procedure for the 
estimation of a single set of parameters (eitherN, 
or R,'s or K,'s) always induces a bias in the back 
projected estimate which is less than the bias of 
the estimated parameters. This conclusion follows 
directly from the linear or near linear relation 
between St and n, k ,  or r with small rates of 
change. Moreover, the effects of bias in two or 
more sets of parameters are nearly additive. The 
interaction effects of bias in estimates of kills, net 
reproductive rates, and the initial number tend to 
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ance of N ,  is not completely dominated by the 
variance of No.  The variances of N ,  calculated 
using this interdependent probability structure 
are  larger than the variances presented here in 
which all the parameters a re  assumed indepen- 
dent. However, the CV of N ,  for the dolphin data 
within this interdependent probability structure 
is still less than the CV of the parameters if all 
parameters have equal CV. I t  appears that  even in 
the situation in which a high degree of inter- 
dependence exists within the kill estimate or the 
net reproductive estimates, the variability in the 
parameter estimates does not induce compound- 
ing uncertainty in the back projected estimate. 

The comparison of the results from the basic 
model [Equation (3)J  with the  simpler model 
[Equation (2)] indicate tha t  there  a re  no sig- 
nificant differences between the two models a s  
long as the net reproductive rate  is small. Thus it 
appears that  there is no reason to favor the more 
complex model over the simpler. 

In conclusion, it appears that  this back projec- 
tion procedure (ei ther  model) h a s  reasonable 
statistical properties, at least when the net repro- 
ductive rates are  small. However, Equation (1) is a 
simplified description of how the  abundance of a 
population changes through time, especially in  
not accounting for changes in age structure. The 
authors feel t ha t  caution should be used in apply- 
ing estimates from this procedure to the manage- 
ment of long-lived species since changes in the age 
structure for long-lived species are  likely to be 
important. 

be small or nonexistent. This will be globally true 
for the relationship between k and n ,  but will be 
true for the relationship between k ,  r ,  and n only 
when the net reproductive rate is small. The rela- 
tive importance of bias in K,'s ,  R,'s, or A',) on N ,  
depends upon the actual values of the  parameter. 
In the bridled dolphin example, after 15 yr, the 
back estimates were most sensitive to bias in the 
kill estimate, slightly less sensitive to bias in No,  
and considerably less sensitive to bias in the net 
reproductive rate. However, the importance of 
bias in No will diminish with the number ofyears 
in the back estimate with a proportionate increase 
in the importance of bias in the  kills. 

The sensitivity analysis developed in this paper 
will include the extremes of a complete sensitivity 
analysis of the model. The values for S,  (O,h,O) are  
limiting values to a complete sensitivity analysis 
of the individual elements of the kill vector on N,. 
Similarly S, (O,O,r) is a limit to complete sensitiv- 
ity analysis of the individual elements of the net 
reproductive rate. Given the additivity of S, with 
respect ton,  r, and k ,  the  surface SI (n ,k , r )  contains 
the extremes of a sensitivity analysis in all 2t+ 1 
dimensions. If in fact the elements within the kill 
vector and within the  reproductive vector are  
highly interdependent (as  is the case for the data  
used here), then the  sensitvity analysis used to 
look at the effects of bias in this paper approaches 
a total sensitivity analysis of the back projected 
estimate given these constraints. 

The variance approximations also indicate tha t  
variability in the parameter estimates does not 
result in compounding uncertainty in the back 
projected es t imates .  When es t imates  of t h e  
parameters a re  independent and the net reproduc- 
tive rate is low, the CV ofthe back estimate will be 
smaller than the CV of the input parameters. In 
our example if all the CV's were equal, the vari- 
ance ofNo would make the largest contribution to 
the estimated variance of N,. In general this will 
be true as  long as the kills in any one year do not 
approach the initial abundance. This is a direct 
consequence of the basic additivity of the model 
when the net reproductive rate is small. 

In Smith and Polacheck (see footnote 4), a n  al- 
ternative probability structure was considered in 
which the elements within the kill vector and 
within the  net  reproductive ra te  vector were 
highly interdependent. In this situation, the vari- 
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APPENDIX 1.-Expressions for the variance components of Nt.  

Expression for the right hand terms of Equation (9) are: 

j =  1 

t 

j =  1 
h = j  n ( 1  + R h )  

(ii) 

(iii) 

APPENDIX 11.-Coefficient of variation of a sum of random variables. 

The following is a proof that  the coefficient of variation of a sum of two independent random variables is 
smaller than the greatest CV for either of the random variables if the  expected value of the random 
variables is greater than zero. 
If A and B are  independent random variables such that  

E(A) = a>O E(B) = b>Oand 

> -- 
b 

CV(A)  = - 
a 

then 

V ( A ) ( b 2  + 2ab) > V(B)a2 , 

V ( A ) ( b 2  + 2ab) + V(A)a2 2 V(B)02 + V(A)a2 




