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POPULATION MODELS FOR THE NORTHERN ANCIHOVY
(ENGRAULIS MORDAX)?
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INTRODUCTION

The northern anchovy (Engraulis mordax Girard) is
abundant off the coast of California and Baja Cali-
fornia. The central subpopulation, or central stock,
extends from 30°N to 38°N, and has been estimated
at 3 to 4 million short tons’ spawning biomass in recent
years (Vrooman and Smith, 1972; Smith, 1972). The
combined U.S. and Mexican harvests in 1977 were
approximately 290000 short tons and show pro-
spects for increase. The Mexican industry is unilater-
ally undertaking a major fishery cxpansion designed
to provide domestic self-sufficiency in fish meal. This
is cstimated to require a 300000 to 500000 t har-
vest [rom the central stock. Stmultancously, the ULS.
legislation which created the 200-mile fishery con-
servation zone requires all affected fisheries to be
managed for “optimum vicld”. The resource will have
to be allocated between ULS. and Mexican commercial
fishermen, who wish to maximize their portions of the
allowable catch, and the recreational fishermen, who
wish to maintain the largest possible anchovy biomass
to provide forage which will support large populadons
of predatory fish. Determination of optimum vield
requires an analysis of the trade-offs between yicld
and stock size,

A surplus production curve would provide the basis
for such an analysis, but no large fishery has previously
exploited the resource in such a way that wraditional
fishery methods can bhe applied. However, the Cali-
fornia Cooperative QOceanic Fishery Investigations
(CalCO¥1) program has conducted rigorous cgg and
larval surveys since 1950, providing an independent
source of population size estimates. MacCall, Stauffer,
and Troadec (1976) applied the Gulland potential
yield formula (Gulland, 1970) to these biomass esti-
mates, and concluded that the rcsource may have a

t This work was supported by a contract from the Southwest
Fisheries Center, National Occanic and Atmospheric Administra-
tion, National Marine Fisheries Service, La Jolla, California, USA.

potential yield of over 2 miilion t. An alternative to
this crude and imprecise method is afforded by the
time series of CalCOFT survey estimates itself (Iig. 1).
The anchovy spawning biomass was remarkably small
in the early 1950s, and grew over the following twenty
years to an apparent equilibrivm of nearly 4 million t.
Since population growth at given initial sizc is a nearly
dircct measure of surplus production, the CalCOFI
time serics provides the makings of a surplus produc-
tion model based on observed growth rates.

Before such a growth model can be constructed, we
must examine the conditions under which that growth
occurred. In particular, we must consider the reasons
for the low biomass in 1951, A popular hypothesis has
been that the decline of the California sardine (Sar-
dinops sagax caerulea) left a void which the anchovy
later filled. This hypothesis requires that the anchovy
not be abundant before 1951 when the sardine bio-
mass was large, and that sardine and anchovy abun-
dances be negatively correlated. Results of recent work
have been contrary to these assumptions. Soutar and
Tsaacs (1974 cxamined rates of scale deposition in
anacrobic sediments ofl southern California for the
past 130 years, and obtained a rank-correlation coef-
ficient of +0-34 between sardine and anchovy scales.
Assuming that scale deposition rates are proportional
to population size, this strongly urgues against an
inverse relationship between population sizes. Further
evidence is given by Smith (1972}, showing that larval
census estimates made from CalCOFI-likc surveys in
1940 and 1941 indicate an anchovy spawning biomass
of between 2 and 3 million t. At the same time, the
sardine spawning biomass is estimated to have been
1-3 to 2 million t, so large populations of both species
were existing simultaneously.

I offer an alternative hypothesis: the anchovy en-
countered a prolonged series of poor recruitments
during the late 1940s, and the subsequent CalCOFI
records document the recovery to more normal levels
of abundance. While this hypothesis cannot be proved,
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Figure 1. Historical increase in northiern anchovy spawning biomass, with fitted growth curve and approximate confidence limits.

it s supported by two sets of evidence. The upwelling
index of Bakun (1973) for 33°N 119°W {the Southern
California Bight) in the sccond quarter of the year
(April-June) shows a remarkable set of anomalics
extending from 1947 to 1932 (Fig. 2;. Upwelling
during this period appcars to have Licen much weaker
than at any subsequent time. Lasker £1978] discusses
some possible mechanisms for recruitment failure
in the anchovy fishery., He indicates that insuflficient
upwelling in the spring may be a contributing factor,
as the plankton blooms necessary for larval survival
may not form in sufficient concentvations. If this
actually occurred, we might expect 1o have scen poor
receruitments in other pelagic species during the same
period. Such was the case. The 1249 and 1950 year
classes of the Pacific sardine were cxtremely weak,
and contributed significantly to the final collapse of
that fishery. The 1949, 1950, and 1951 year classcs
of Pacific mackerel (Scomber japonicus) v-cre the smallest
on record until the final collapse of that fishery in the
1960s (Parrish and MacCall, 1978). The Pacific bonito
(Sarda chiliensis lineolata) virtually disappeared from
southern California waters in the late 1940s unuil they
returned in 1954 (Collins and MacCall, 1977}, It
appears rcasonable that the northern anchovy, which
sharcs the same environment, may have experienced
similar recruitment difficultics.

In the following population growth model, I assume
that events of the type described above are unusual.
The sedimentary scale record of Soutar and Isaacs
(1974) suggests that anchovy abundance was high and
fairly constant from 1810 to 1923, but it appears to
have been lower, and more variable, in recent years.
The present model is based on conditions prevailing

since 1951, and may therefore be optimistic. However,
until adverse conditions occur, it is appropriate to
base harvest rates on the current preductivity of the
resource. Safeguards can be incorporated inte the
resource management policy which swill minimire the
impact of unanticipated recruitient failures and ve-
habilitate the fishery at an optimal rate. Such a
management policy will be described in a later section,
after the population model is developed.
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Figure 2. Mean upwelling index for April, May, and June, at
33°N 119°W (from Bakun, 1973).




294

Alecc D. MacCall

DETERMINISTIC MODEL

The growth of the northern anchovy central sub-
population since 1951 followed a pattern empirically
similar, if one allows for random variability, to the
Verhulst-Pearl logistic growth curve. Many of the
assumptions underlving the traditional logistic growth
model cannot be met by the northern anchovy. How-
cver, it is quite reasonable as an cmpivical description
of population growth, and has already been used in
a varicty of standard fishery production models.
Whereas in those traditional models the nature of
population growth is inferred from the response to
fishery removals, the present model must infer the
response to fishery removals, given a pattern of popu-
lation growth. The basic components of the model
are standard fishery equations, which were reassem-
bled to describe annual population processes, and the
cffects of a fishery.

Spawning biomass is defined as the total weight of
malc and female fish in the population which have
spawned at least once in their lives. In practice, only
temale fish, which produce detectable spawning pro-
ducts, are counted; males arc assumed to be present
in equal quantities. The spawning biomass is assumed
to be proportional to the abundance of anchovy
larvac (Smith, 1972). Since anchovy spawning usually
rcaches peak intensity in the spring, but can occur
throughout the vear, the annual census will be assumed
to measure the spawning biomass on March 1 of cach
vear. Recruitment is the addition of spawning biomass
to the population by the entry of those individuals
spawning for the first time. Recruiument is assumed
to occur on the first birthday, since anchovies appear
to spawn at age 1 (E. Knaggs, personal communi-
cation). Iish are assumed to become fully available
to the fishery at the tme they are recruited to the
spawning biomass; however, they are pardally avail-
able for the preceding few months,

The actual variation of spawning biomass through-
out the year mav look like the sinusoidal curve in
Figure 3A. At “A”, recruitment and somatic growth
rates cxcced the mortality rate so the population
rapidly increases as new spawners enter the pool. At
“u7, the combined rates cqual zero and the spawning
population rcaches peak biomass for the year., At “c”,
the recruitment rate has bhecome very low so that
mortality is the dominant force, causing the spawning
hiomass to fall until the next scason’s recruitment
begins to enter the population. At “p”, an autumn
spawning is described, which would appcar as a
ripple in the main population cycle.

To be uscful, a population model must simplify the
events described above and relate them to quantitics
which we can measure. The modcl proposed here
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Figure 3. Dingrams of annual anchovy population processes:

A, actualy B, model. Not drawn to seale.

assumes that recruiument can be described as entering
the spawning biomass en masse on March 1 of cach
vear (lig. 3B). The ichthyoplankton survey gives a
spawning biomass estimate which is shown at “e”
Subsequently, the cohort consisting of all spawners
included in “g” declines in biomass owing to natural
and fishing mortality, which is partially offset by
somatic growth. “¥” shows the remaining biomass
at the end of the year which is augmented by the
next recruitment {R) to give a new spawning biomass
cohort at “G”. 1t represents partial availability to
the fishery before first spawning. The mathematical
relationships between the biomasses at points “‘g”
“y”’, and “‘G¢” arc casily described by standard fishery
cquations.

The population at “F" is a function of the popula-
tion at “&” and the combined rates of growth and
fishing and natural mortality. If the rate of growth
is expressed in similar fashion to rates of mortality,
the equations become very straightforward. Letting
G Dbe the instantancous or specific rate of growth:

_aw
T dr
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where IV is fish weight. The combined instantane-
ous ratc of loss of cohort biomass is F+Af—G. In this
analysis the quantity A/—G is used as an instantancous
rate of loss of biomass. Such an approximation must
be used with caution, and should be discarded if
better information is available. The survival of bio-
mass (B) from March 1 (1) to time T+A¢ is given by

Brip, = Bre —F+M=6) (p0 a
and the vield (1) during the period is

Fooo ]
= e 1) —e M) (Al)v. o
T=Br p_yg '7°

The biomass at “¢” is the swn of the biomass az

F and recruitment. In the absence of fishing, “r”
and 6" are points on the logistic growth curve
exactly 1 vear apart. This relationship is described by

13

By = Broy = Ry

: -1
L (s
\Bx “\Br B | -

where B = is the asvmptotic maximum biomass. 7 is
the intrinsic rate of ncrease, and Bt represents a
new cohort formed from the surviving biomass of the
old cohort Br,,, given by LEquation {1}, augmented
by recruitment Ry, 1. Recruitment is therefore given
by {3) minus (1) where ¥ = 0:

R = 1 4 ! l] —r-i_i Bye—(M-0) (g
TS gL T\ By Bw)C ] 7O o

Thus the only independent variable in this spawner—
recruit relationship is the spawning biomass 1 year
prior to recruitment. In rcality, the recruiument at
time 1-+1 is provided by the previous year’s spawning
at time T, but also to some extent those at -1 and
possibly at 1-2. Since the spawning biomasses at
times T-1 and 1-2 are relatively near that at time T,
the crror resulling from simplification to a l-year
cycle should be small.

The harvest of prespawners was included in the
model to reflect more accurately actual fishery be-
havior. Fish were asswmned to become pardally avail-
able to the fishery (with ¢ as the coefficient of relative
availability) for a length of time T Dbefore spawning
on March 1 (time 1). The quantity (A/-G) is assumed
to be the same as that for spawners.-The equivalent
of fish alive at time T-T would have been

RT+1—T = Ry 0 M-AT (5)

where Rr,; is as given in Equation (5) and Rp -~
denotes equivalent recruitment at that time earlier
than March 1 when prespawners first become avail-
able to the fishery (“r” in Fig. 3B). Since fishing
begins at time T+1—7, the recruitment remaining at
time T+1 (Rf4) is

Ry, = Ry e —@F+M-@)T
= Ry, e M=6)T e=(PF+M~6)T
= Rp,q e 9FT (6)
and the biomass at T+1 is

Bi, = Bye~F+M=6) = Ry | e~ @F+M-GT  (7)

i

Bye -(F=M=G) _ Ry , e~ 9FT, (8

The total vield of fish during the year is

F [ .
- Ll —e~F+M=&)| 1+ R (M—-()3
Y = B, FACC [ e J whr.y e
®F 1
et |1~ e-@Fru-ey7] 9)
‘PF*A\I—G[ € , !

where w is a coefficient of prespawner body weight
in units of adult fish body weight,

Stochastic forms of the above model will be con-
sidered after the next section.

PARAMETER ESTIMATION

Two methods of estimating the logistic growth
parameters, B = and 7, werce used. First, approximate
values were estimated by fitting the logistic growth
equation to larval census estimates using a curvilinear
least-squares regression procedure. This method re-
quires us to ignore the effects that actual harvests
may have had on the population growth, and there-
fore tends to bias the parameter estimates. An ad-
vantage of the method is that it gives approximate
standard crrors and covariances for the estimated
paramecters. The second estimation procedure was an
iterative least-squares cstimate using catch-corrected
biomass estimates, in which the growth model was
used to estimatc yearly transitions. While providing
betier parameter estimates, this method does not
provide estimates of standard crrors, and requires the
assumption that actual biomasses are equal to ob-
served biomasses with respect to the impact of the
fishery. Spawning biomasses (P. Smith, personal com-
munication) and catches are given in Table 1, and
parameter estimatcs are given in Tables 2 and 3.
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Table 1. Catch, cquivalent catch, and spawning
biomass. Values in thousand short tons

Total catch FEquivalent catch Spawning
at year-end biomass
1951 84 54 180
1952 42+7 269 156
1953 436 266 510
195¢ 28+5 174 768
1955 280 15-3 846
1956 36-3 21-1 485
1957 199 16 1172
1958 95 60 1479
1959 90 5:5 1514
1960 76 4-5 1 340
1961 9-9 63 1159
1962 8-8 55 2985
1963 72 46 4254
1964 12:7 8-0 2901
1965 237 14-1 -+ 639
1966 664 40-7 3572
1967 47-7 297 -
1968 40-6 275 -
1969 930 613 2999
1970 1079 787 -
1971 60°5 37-5 -
1972 59-1 40-9 278%
1973 162+6 103-3 -
1974 142-9 95:7 -
1975 - - 3 603
Logistic paramcters - first method
The logistic growth curve
Bx»
B~ 2 (10

where 4 is a constant relating to By at time ¢ =0
[B(t = 0)], is a spccial case of the Richards growth
curve (Richards, 1959; Pclla and Tomlinson, 1969)

By - {Bml—m + |B(t = 0)1-m — Bxl-m

\ 1/(1—m)

e-rl-m¢t (1

where the skewness parameter (m) is equal to 2.
Lquations (10) and (11) are continuous equivalents
to the annual transition Equation (3), but the former
arc morc suited to regression because the independent
variable, ¢, is not subject to large random error.
Regression also assumes that the residual variance
is constant with respect to f, an assumption which is
not met by the biomass data (Fig. 1}. There may be
several reasons for the increase in variance for the
later ycars, including a change from monthly to
quarterly cruises, and statistical properties associated
with the increase in biomass itself. Much of the error

Table 2. Estimates of logistic growth paramcters

Curvilincar regression Iterative solution

Parameter (no catches) (corrected for catches)
Bz (GM) 3611= 108t 3-619x 108 ¢
3085 » 10 larvae
Bx (AM) 3:841: 10%¢ 3888 106 ¢
39:19 x 10 larvac
r 0-3369 0-3G38
A 323 3-195
B(t = 0) (GAI) 1373 - 10%t 1436 x10%t
1-401 < 1012 larvae
Bt = 0) (M) 1460 =103t 133-1 =10%t
1-190> 10" larvae
RSS 1:976 2:035
G to AM
correction factor 10637 1-0657

in larval survey cstimates arises [rom the clumped
distribution of the spawning products. Taft (1960)
showed the negative binomial distribution applied to
such survey samples, with the characteristic that the
variance increases rapidly with increases in the mean
(abundance). Zwcifel and Smith?® (MS) give a pre-
liminary estimate of CalCOL'T larval survey samapling
error based on the negative binomial distribution, in
which a 939, confidence interval is described by a
multiplicative factor of 1-2. Logarithmic transforma-
tion equalized the variance at high and low biomasses,
supplying the condition of homoscedasiicity necessary
for proper regression cstimates.

The paramcters of the log transformations of Lqua-
tions {10) and {11) were estimated by the curvilinear
least-squares regression (Marquardt algorithm) given
by Conway, Glass, and Wilcox (1970). Various values
of m were tried, giving a minimum residual sum of
squares (RSS) at approximately m = 1-6 (Fig. 4).
Since the RSS for m = 2 gives only a slightly higher
RSS, the extra paramcter in Equation (11) does not
provide a statistically significant improvement in fit,
and was thercfore unnecessary. This justifics the use
of the logistic growth curve in Equation (3) and sim-
plifies estimation of the parameters.

Since the use of log-transformed variables results
in the regression being fitted to the geometric mean
of the raw data, a correction described by Bcauchamp
and Olson (1973) was applied to cstimate the appro-
priate arithmetic mean. This corrcction consists of
multiplying the antilog estimate of the mcan by e(s%/2)
where s5? is the variance of the estimate (RSS/n-3).
In terms of the logistic growth Equation (10), the

2 James Zweifel and Paul E. Smith, NMFS, La Jolla, California,
USA.
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correction is applicd to =, The paramcter estimates
arc given in Table 2, and their standard crrors and
covariances are given in Table 3.

Approximate confidence limits for the growth curve
(10Y are obtained by the “delt method™, which is
hasically a Tavlor series approximation {Seber, 1973).
In Secber’s notation, the approximaie variance of a
function ¢ which has parameters xy, 7= 1,2, ..., 2}
is given by

letn o] - 3 vl 22

i=1

Since the log transform of Equation (10) was used in
the regression, function g is the logarithm of (10),
and the partial derivatives must be calculated appro-
priately. Also, B« and its covariances do not vet
incorporate the geometric mean correction factor,
which in this case must be applied after taking antilogs
of the estimated confidence limits. The approximate
959, confidence limits were calculated by the regres-
sion estimates = 2 standard errors (Fig. 1).

Confidence limits for the rate of population growth
arc more interesting, as these have a direct bearing
on the precision of the surplus production curve on
which fishing strategy will be based. Annual growth
ratc is obtained by subtracting By from Equation (3),
and approximate confidence limits were again calcu-
lated by the delta method. In this case the parametcers
used in the calculation were already corrected for the
geometric mean. While the instantanecous growth rate
function underlying the logistic growth curve is a
symmetrical parabola, the corresponding annual
growth rate (Fig. 5) as a function of initial biomass
is skewed slightly to the right. The highest annual
growth rate occurs at an initial biomass slightly
smaller than 3B =, such that the peak of the instanta-
neous growth rate curve is encompassed by the
vear’s growth.

Logistic parameters — second method

The above cstimates of logistic growth parameters
were made under the assumption that actual harvest
of anchovies during the period had negligible effect
on population growth. Such an assumption was neces-
sary in order to obtain parameter error estimates by
the curvilinear regression procedure. The following
parameter estimates for harvest-corrected growth in-
corporaie a catch correction but do not have error
cstimates; errors are probably similar to those given
previously (Table 3).

5 S o ) T e . . o
+2°S cov [xi %)) (( g ) 0g } (12 The fcwr}‘d mcth‘od employs the'dntermnusue model
1 CEFRNES (Equation 3) to give expected biomasses cach vear,
Table 3. Variancc-covariance matrix for growth paramecters estimated by curvilinear regression
' Bo B
102 larvace 10% ¢ r 4
[eAVs AM GM AM
(102 larvac) GM (6:513)* - - - - -
B AN - (6+927)2 - - - -
(10* t) GAl - - (638-2)* - - _
AM - - - (678-9)z - -
r - 2216 - 2357 -2171 - 2310 (0-0560)2 ~
4 546-8 5816 536 57-0 0-00677 (0-271)2
n =19 df = 19-3 o = 1950 A.D.
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allowing the time series to be fitted analogously to
the first method. In order to correct for harvests, a
quantity equal to the net year-end effect of the pre-
vious year’s catch (Table 1) was subiracted from the
cxpected population size. This quantity was deter-
mined hy an application of cohort analysis. Equations
(15 and (2) are analogues of the usual catch cquations
which cmploy only Af and £, In this case, G is a
constant instantancous rate and can therefore be com-
hined with 7 and M which arc also constant insian-
tancous rates. Using the value of the specific growth
rate constant developed in a later section, the quantity
(MG = 0-8 was substituted for M in the cohort
analysis cquations (Tomlinson, 1970) allowing cohort
analvsis of a population measured in weight rather
than numbers.

AMonthly catches in weight were compiled for a
AMarch-to-February year. California landings Ly month
were obtained from the California Marine Fish Land-
ings serics of Fish Bulletins from the California Depart-
ment of Fish and Game. Bait landings were also ob-
tained from the above source, but only annual totals
are given. The bait catch was arbitrarily divided
equally among June, July, August, and September,
the months of maximum hait harvest. Mexican catches
were obtained from MacCall, Stauffer, and Troadec
(1976), and from recent unpublished fishery reports.
Since no data are availablc on Mexican catches before
1962, arbitrary values of 100 t in 1936 increasing by

100 t annually to 300 t in 1960 were used. Again, only
annual totals are available, so the Mexican catches
were divided into the same b-month period as the bait
catch. This division is consistent with the Enscnada-
based fishery which operates mainly during the sum-
mer months. )

A “forward solution” form of cohort analysis was
used to find the swviving biomass of the spawners
at the beginning of the next spawning scason. An
initial value of fishing mortality was obtained by
solving Equation {2} for F, given the total March
landings and the larval survey cstimate of spawning
biomass (March 1), Monthly biomasses were then
estimated sequentially to give hiomass on the follow-
ing March 1. This final biomass was then subtracted
from the biomass which would be indicated by
Equation (1} had there been no fishing. This difference
is the catch correction factor applicd 1o biomasses
predicted by Equation (33, It can be viewed as the
catch which would have the same net effect as the
true catches, had it been taken entircly on the last
day of February. Annual carches and year-end equi-
valent catches are given in Table 1.

Paramecter values were cstimated by an iterative
procedure based on searching the response surface
for the minimum residual sum of squares {Stauffer,
1973). Three trial values of cach of the parameciers 7,
B and B{t == 0) were sclected, giving 27 combina-
tions in all. The 19 biomass cstimates corresponding
to the CalCOFT surveys from 1951 to 1975 swere
predicied by each combination of three trial para-
meter valucs, and a residual sum of squares (RSS)
for the logarithm of the biomasses was calculated. A
multiple linear regression program (BMDO2R) was
utilized to estimate cocllicients of the following cqua-
tion used to maodel the residual sum of squares response
surface:

RSS = by--by Bt byrsby B(t = 0) = by Bx®:hg?
by B(t = 0)2=b,r B by B Bt - 0)
+ byrB(t = 0).

i

(13)

The values of r, B, and B{f = 0) that minimize the
RSS are the solution to the three first order partial
derivatives of (13). with respect to r, B, and B(¢ = 0),
set equal to zero, ie.,

‘;’:;: = byt 2b, Brtbyribg B(t = 0) ~ 0

é%egg = by 2bgrtb,Bcvby B(t-- 0) = 0

ORSS
SB( = 0) = by+2bB(t = 0} +bg Bw +bgr = 0.
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These can be rewritten in terms of matrix algebra as

Dx - d

where the matrix D = [ 2b, b, b,
by 2b, by
by by 2bg
the vectors x == B and d = —-b,
r ;bz
B(t - 0) —by

From this, the values of r, B, and B(¢ = 0) that mini-
mize RSS can be expressed as

x=D"1d (14}
Since Equation (13) only approximates the responsc
surface, about four itcrations of the above parameter
estimation procedure with successively closer deline-
ations of the trial paramcter region gave results precise
to threce significant digits in most cases. An independent
test of accuracy is furnished by the previous curvi-
lincar regression estimates. An iterative solution was
run for the case of “no catches”, giving resulis very
similar to the regression estimates. It is interesting to
note that this solution, which includes the effect of
actual harvests, gives a slightly larger minimum RSS
than does the previous regression solution (Table 2).
This suggests that the small fishery which has existed
does not account for a detectable portion of the va-
riance in bhiomass which has been observed.

Other parameters

The parameters M and G always appear in com-
bination as (M-G), which can be interpreted as in-
stantancous rate of natural decrease in biomass, and
which were estimated as such by the following approx-
imation (lable 4). Growth from age 2 to age 3
was considered typical of the population. Mean length
at age (Spratt, 1973) was expanded by the length-
weight rclationship (Collins, 1969) to obtain approx-
tmate mcan weight. Survival was assumed to Dbe
1-0 at age 2, and 0-346 at age 3, based on M -~ ]-06
(MacCall, 1974). The difference of the logarithm of
approximate cohort biomasses was 0:75, and was
rounded to 0-8 as a functional estimate of the quantity
(M-G).

Table 4. Approximation of (M-G)

Agc Mcan Iength Weight Numbers in Weight  In weight
o8 (mm-81.) (g) cohort of cohort  of cohort
2 112 142 1000 14:25 955
3 124 19-3 0-346 6-69 8-81

Difference = 075

Table 5. Mean weight data for estimation of w and ¢

Ratio mean weight Ratio catch

Scason Age 0 to mean weight Age O to catch age 1+
age 1+
1965/1966 0-342 0-0254
1966/1967 0-501 0-0370
1967/1968 No data for southern California
1968/1969 0-763 01740
19691970 0636 02347
1970/1971 0-639 0:0270
197171972 0-639 0-0812
1972/1973 0-815 0-0852
1973/1974 0642 00478
Mean 0-647 0-0890
0-076:¢

Standard deviation 04103

The quantity o is the ratio of the weight of an
avcrage prespawner {age 0) to that of an average
spawner fage 1 and older). By dividing total weight
landed by total number of fish landed for each cate-
gory, average weights for these two groups were ob-
tained from the landings reports. The average ratio
of these average weights gives an cstimate of o = 0-647
{Table 3).

Prespawning anchovies are assumed to be partially
(@) available to the fishery for a short period (7]
before they spawn on their first birthday. Relative
availability is defined as

¢ = Fo/Fy. (16)
for the same reason. Harvest of prespawners is given by
¥y = Fy Byt (17)

where B, is the average biomass of prespawners
during the period of availability preceding spawning.
Harvest of adult anchovies is given by

Y= Fy By, (18)

where time is unity, being one fishing year. Therefore,
(17) and (18) are substituted into (16) to obtain

¢ = (To/11s) (Brs/By). (19)

The quantity 75/17, can be obtained from fishery data
(Table 3), and the theoretical ratio of mean biomasses
can be obtained from the model.
The mean biomass of adult fish is given by
= e
By = \
t=

B' e —(F+M-G)t
)
BI
T F+M-G
where ¢ = 0 denotes time of first spawning, and B’
denotes the biomass at that time. This equation uses

(20)
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the approximation that the biomass of all adult cohorts
in a singlc scason is equivalent to the biomass of a
single cohort over its lifetime. The mecan biomass of
prespawners during the period of partial availablity is
=0

1 .

— \ wB' e ~(OF+M~-G)t dt

T

t=—~T

B,

B’ [c @F+M-6)T] _ |
_ Bl 1-1 @1
TQF+M-G)

LEquations (20) and (21) arc now substituted into (19)
to obtain

T, PR M-G

‘
Yo  w@TM=G)[e @F+M-6T_1] (22)
The quantity ® can now be estimated by itcration,
given valuces of the remaining variables. The historical
average value of 14/Y34 has been 0-089 (Table 5).
The fishing mortality rate F has averaged 0-03, and
(M =G) was estimated above to be 0-8. Age 0 anchovies
first appear in January, about 0-2 years before spawn-
ing on March 1, so for T = 0-2, ? is estimated to be
0-76.

DISCUSSION OF THE DETERMINISTIC MODEL

The deterministic model described above allows
cquilibrium vield to be described as a function of
spawning biomass (I'ig. 6). Equilibrium yicld is de-
fined as that yicld which is expected 10 maintain the
spawning biomass at the same level in the following
year. Note that this is not equivalent to sustainable
vield, because natural fluctuations in recruitment suc-
cess will not allow a given biomass to be maintained.
Sustainability decrcases with increasing variability
and will be discussed in more detail later.

A somewhat surprising result of the model is that
the equilibrium vield is considerably greater than the
expected population growth in the absence of a fishery
(360000 t per year as opposed to 353000 t per year).
‘This is contrary to the assumption of cquality often
made in production modeling, and arises from the
fact that reproduction is periodic rather than con-
tinuous with immediate recruitment. Qualitatively,
the phenomenon arises from the competing risk of
dcath from fishing and natural causes, so that many
fish taken by the fishery would not have reproduced
at the next spawning in any case. A simple correction
factor can easily be derived from guesses of mortality
rates, and could significantly improve the performance
of catch-transition production models (e.g., Schacfer,
1957; Pclla and Tomlinson, 1969), particularly when
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Figure 6. Equilibrium yield and growth rates for the northern
anchovy central stock. Growth is mean population growth in
the absence of fishing. Equilibrium yield is given for no harvest
of prespawners (T = 0}, and for partial availability of pre-
spawners (1 = 0:2).

applied to stocks in which reproduction is scasonal
(MacCall, 1978).

Another rather surprising property of the equili-
brium vield curve is the fact that vield decreascs when
prespawners are harvested (484000t per year as op-
posed to 360000 t per year). Yield per recruit con-
sidcrations indicate that maximum yield per recruit
is obtained by fishing the resource intensively with a
small size at cutry {MacCall, Staufler, and Troadec,
1976). The present model, which includes reproduc-
tion, indicates that harvesting anchovies immediatcly
before spawning results in a twofold loss to the popu-
lation: loss of the fish and of its progeny. The model
predicts that yield will gencrally be ncar a maximum
when fish are taken as soon after spawning as possible.
Whether these are valid conclusions remains to be
secn. For comparison, the Peruvian anchoveta fishery
was highly productive under intensive fishing of pre-
spawners in the 1960s. However, the above two con-
siderations may also help explain the unexpectedly
slow recovery of the anchoveta resource since the
population collapse of the carly 1970s.

STOCHASTIC MODEL

While thce above deterministic model is uscful for
estimating the approximate long-term productivity
of the northern anchovy central stock, it is unable to
provide a realistic and useful description of short-term
productivity and variability. Spawning biomass has
shown large fluctuations about the hypothesized trend
(Fig. 1). A simple stochastic model can be derived
from the second method (iterative least squarcs) of
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logistic parameter estimation described above. Equa-
tion (3) of the population growth model can be re-
written as

In Br = In (Bt + Ry)
1 i N l_ 1 Ne-r
" Bw 7?}_1 Bw

or more simply

-1

+ € (23)

InBf=InBp +¢

where € is a stochastic error term with mean = 0,
Bt is surviving biomass plus recruitment, and Bt is
predicted from Bg_;, by the deterministic growth
modcl. There are three principal sources of this error:
1) variability of population processes, particularly re-
cruitment, 2) error of observation of biomass at time
T, and 3) error of observation at time T—1. A more
complicated model could be constructed with sto-
chastic errors in recruitment and in obscrved popula-
tion size respectively. Such a model would allow
simulations of population and fishery behavior over
long periods. However, there is at present no definitive
way to separate the components of the error term in
(23). Thus there would be a wide spectrum of simu-
lation model results depending on the portion of the
variability assigned to recruitment.

The simple stochastic model (23) does not require
that the error term be separated into components,
but requires the assumption that the effect of the
fishery on a population of the observed biomass would
be a close approximation of the effects of a fishery
on a population of the actual biomass. This assump-
tion also occurs in the second method of logistic
paramecter estimation, so the paramcters inherently
reflect this assumption. On the other hand, therc is
a definite non-linearity in the model, such that re-
sponses to an underestimated biomass are not equal
and opposite to responses to an equally overestimated
biomass. This problem should not be severe except
when large catches are being taken from small bio-
masses. )

A plot of In B} against In Bf from 1952 to 1966,
where the latter variate is corrected for catches ac-
cording to the second logistic paramcter estimation
mcthod, shows the deterministic model to be a good
description of the average ycar-to-ycar behavior of
the obscrved spawning biomasscs (Fig. 7). The residual
error term (€ = In B} — In Bt) is well behaved when
plotted against In Bt (Fig. 7), with a mean of 0-016
and a standard deviation of 0-496. The mean is suf-
ficiently near zero to justify acceptance of the para-
melcr estimates of Bw (arithmetic mean) and r for
predictive purposes. The residuals show no distinct
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masscs, including a plot of residuals.

changes in pattern over the range of obscrved bio-

masses. Therefore, € will be assumed to be normally

distributed (p = 0, o = 0-496) in the stochastic model.
Equation (23) is cquivalent to

Bfiy = Bry + Rryy =
et 7717 N 1 17 — -t
5e B Be)C

so if there is no fishing, Rty can be obtained by the
analogue of (4):
-1
1. —rl

1 1
vy = ef |- J—
R’1+1 € [ + ( B /

(24)

(25)

Note that Ryy, is not actual recruitment, but apparent
recruitment, sincc the observation error of Bt and
Br,, is included in the stochastic error term. For this
reason, apparent rccruitment can become negative for
low values of ¢, Equation (25) can be used to estimate
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Table 6. Conditions for negative apparent recruit-
ment, and probabilitics of occurrence based on an
assumed normal distribution (o¢ = 0-196)

Spawning biomass  Minimum € for pusitive Probubility
B (1000 1) apparent recruitment €~ Emin

t - I16 00006

500 - 111 0-0125

2 000 - 0-96 U-0262

+ 000 -079 40354

6 000 - 065 00931

10 000 - 041 0-2033

values of € which give negative apparent recruitment
for various levels of Br. Some sample values. with
their probabilities, are given in Table 6. While no
instances of negative apparent recruitment have oc-
curred in the time series of CalCOFT spawning-
hiomass cstimates, there appears to be no reason,
other than low probability, lor such a condition not
o be observed in the future.

Catch will be given as a function of spawning bio-
mass, which could cither reflect levels of nominal
fishing effori, or in this case, be conuolled by a
variable quota management system of the form

Ia\BT—b),BT—b>O

1 ¢, otherwise

Q2 {26)
wiiere @ is a reduction fisherv quota, b is minimum
spawning biomass for a quota to be established, and
a is a fracion of the excess spawning biomass over
level . The quantity ¢ is a siall maintenance fishery
for non-recuction uses such as live bait.

When we include exploitavion of prespawncrs in
the stochastic model. the cquations bhecome lengthy,
The quantity Ryyq whichiis given by (23) is substituted
into (9) to give an cxpression relating catch o By,
€ and F:

F
o~ - _e~F+M-G)
P piapogBrtt - ]

v el 1 I
: Aol
“1°UB= "\Br " Bo. "

eWM-GT_ ?If‘
PF-M-G

~ Bpe-1-6) l

[1 _C—(‘PF*M—G)TJ (27)

MARKOV MODEL

While the stochastic model could be investigated
by Monte Carlo simulation methods, the model is
uniquely adaptable to treatment as a Markov pro-
cess, which can directly provide probability distri-

butions of obscrved biomass. Various discrete levels
of biomass can be treated as states. Since the model
contains no tinwe lags, transition probabilitics between
states arc stationary.

For a vector of » discrete observed biomass valucs
B,. ..., By (in ascending order), we wish to calculate
the clements of a matrix containing the probabilities
that a population of obscrved size B; at time T will
become a population of observed size By at time T+1.
The probabilities of cach possible transition urc asso-
ciated with the correspouding error term ¢,.. which
has the properties described in the stochastic popu-
Lution model.

Since we are given that the observed biomass at
time T is B; and the observed biomass at ume T-1
is B, Lquation (8) provides us with

Bj = Bie~\F+M=0) 4 Ry c—9FT (28)

where Ry is given by (23). Therefore,

B - Bie-W+M-0G) 4

ICEU[ : ‘ Lo L_)e—r]—l_ B, c—(.\r—(:)lc—qu-"r
l B . By B=x l

or

€ =
[Bj - Bic=(F=M=G1] cOFT . Bic—M-G)
| A R TR et S X
n !‘B'"‘l“ o )e"’} \ )
{ Bx "By B

In implementing the Markov modcl on a computer,
/29) can be substituted for € in (27}, so that F can
be estimated iteratively given By, B;, and ;. This
value of F then gives € from (29), and a probability
can be computed for the transition. Notc that I is
determined by B; and the quota formula (26). Each
different quota formula will give a different and
unique transition probability matrix.

The Markov model was based on a 30x30 pro-
bability matrix. Discrete biomasses were a geometric
series from B; = 200000 t to By, = 16000000 t, with
an element ratio (s) of [-16312. The probability asso-
ciated with €i; was calculated from a fixed value of
B;, and an interval centered about Bj:

P (ei) = F(ByysBi) — F(Bylys By)

where § is the cumulative density function for the
normal distribution. The probabilities corresponding
to the tails of the distribution were assigned to €,
and &4,3q, respectively. The quantity § was calculated

by a polynomial approximation.

(30)
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Each harvest policy (26) generatcs a unique tran-
sition probability matrix. Any probability vector as-
sociated with the vector of discrete observed popula-
tion sizes B can be multiplied by the transition
probability matrix to obtain a new vector of pro-
babilities reflecting the likelihood of observing the
corresponding population sizes in the following year.
This multiplication can be used to investigatc the
probable near-term effects of management decisions.
In the case of an infinite time horizon, which could
be appropriate to long-term management policy, we
can find the stable probability distribution to which
all beginning probability distributions tend to con-
verge after repeated multiplication by the transition
probability matrix. This stable probability distribution
is that eigenvector of the transition probability matrix
whose cigenvalue is 1. Actually, aficr about 10 muli-
plications by the transition matrix, most initial pro-
bability vectors converge to very nearly the stable
probability distribution given by the cigenvector.

While the modcl is at present used to evaluate alter-
native pre-specificd quota policics, other uses are
possible. If an objective function can be specified,
the Markov modecl could serve as a Dbasis for deter-
mining the optimum harvest policy (Mendelssohn?,
MS). In a management mode, the model can provide
an a priori probability distribution so that biomass
could be estimated by efficient Baves methods.

Example Application

Three fishery management policies will be examined
and compared (Tig. 8, Table 7). A “no fishery” policy
(Casc 1) allows only 10000 short tons’ annual harvest
for live bait and {resh-fish markets. This policy allows
the biomass to remain at virgin levels and forms a
basis for comparison. The “present” fishery (Case IT)
was recently adopted by the United States as an
optimum yicld policy, whercin the greatest overall
benefit arises from maintaining a biomass somewhat
larger than that resulting from a strictly maximum
yicld policy. A maximum yield or “heavy fishing”
policy (Case IIl) passes through the peak of the
equilibrium yield curve. Theoretically the largest yicld
would be obtained by a policy with a very steep slope
and a fishcry cutoff at about 1'5 million short tons.
That policy would produce a highly variable fishery,
whereas our Case 11T sceks to stabilize the fishery by
virtue of a shallower slope and a lower fishery cutoff
poni.

When plotted on a log scale, the stable probability
distributions resemblc normal density functions (Fig.
9). The discontinuity at the tails of the distributions

? Roy Mendelssohn, NMFS, Honolulu, Hawaii, USA.

Table 7. Comparison of resource characteristics under
three harvest policies, and under the special case
of an unequal sex composition in the landings.
Values in million short tons

Optimal (11}

Harvest Minimal - Optimal  Heavy sex ratio
M ay . EE 13)
Slope (a) - 0-33 0-33 0-33
CutofT (4) - 1-00 0-50 1-00
Maintenance (¢) 0-01 0-01 0-01 0-01
Assumed naximum 001 100 100 1-00
Spawning biomass characteristics
Median 335 2-05 166 1-84
Mecan 412 2:75 2:35 2:48
Standard deviation 295 232 2419 2:15
Probability {percentage of vears)
B <05 13 4-4 87 57
B <10 66 18-4 282 223
B <13 149 345 433 39-8
B <20 246 48+4 58:3 541
B <23 344 59-6 67-9 63-0
Yicld characteristics
Median - 0-351 0-387 0-280
NMean - 0-442 0-467 0-393
Standard deviation - 0:379 0362 0-370
Probability {percentage of years)
Y = 0-01 100 18-4 87 22:3
Y <01 100 28-2 159 331
Y <03 100 59-6 58:3 63-0
<10 100 80-0 80-3 837

is slight. Under a minimal fishery (Case I), the highest
probabilities are associated with biomasses near Bx,
as expected. However, the variability of the biomass
is high, with a 259, probability of observing a biomass
of less than 2 million short tons in any given year
(Table 7). As fishing becomes more intensc, the peak
biomass shifts to lower values, and the probability
distributions become flatter. Mean yield from Case I11
is only 69 greater than that from Case 11; however,
the mcan biomass is 149, smaller, showing little
marginal value from the hecavy policy, especially if
bencfits arise from increased biomass. The lower
fishery cutoff point of Case III results in fewer years
of fishery closures, but at the same time would dclay
recoveries from periods of low abundance. Expected
values and variances of more complicated fishery
measures, such as economic yield, are easily calcu-
lated if the measure can be cxpressed in terms of
biomass and catch.
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Figure 8. Threc harvest policies examined by the model: I, minimal fishing; II, optimal fishing; I, heavy fishing.

DISCUSSION OF TIIE STOCHASTIC MODEL

Previous estimates of potential yield from the north-
ern anchovy central stock have been based on the
Gulland (1970) approximation formula. A wide range
of potential yiclds was given, depending on the base
years for determining “virgin biomass” (MacCall,
Stauffer, and Troadec, 1976). Reasonable estimates
ranged from 1 to 2 million short tons per year. The
model developed in this paper suggests a much smaller
potential yield of about 450000 short tons per year.
In view of the historical low biomasses of anchovy,
the Gulland potential yield estimates scem high, and
are clearly not sustainable. The present cstimate of
potential yield seems somewhat low when compared
with fisherics on similar species. However, many of
those fisheries have subsequently expericnced severe
depletion, and the expectations may have been too
high.

This model cmphasizes the role of natural popula-
tion variability in fishery projections. While the cquili-
brium yield curve from the deterministic model indi-
cates a maximum vyield of 484000 short tons, the
stochastic model shows that somewhat less than this
can be expected, and only under a highly fluctuating
fishery. Yiclds of 200000 to 300000 t arc more nearly
sustainable in the strict sense.

In any particular year, abundance is determined
by natural variations in recruitment, and a fishery
will have little cffect. However, over the long term,
a fishery strongly modifies the probability distribution
of biomasses. When a period of low abundance occurs
under a fishery, one must not simply blame it on the
fishery nor explain it away as an unavoidable natural

event. In actuality, low abundance must be inter-
preted as a natural cvent which has become more
likely because of the fishery. Management policies
which do not reduce fishing pressure at low population
sizes greatly incrcase the probabilitics of low popula-
tion sizes, often to the point of virtual certainty. The
California sardine fishery, which had no cffective
constraint on fishing pressure or harvest, is such a
case. An inflexible constant quota, even if sct at a
level below maximum equilibrium vield, contains a
large risk of prolonged or possibly irreversible low
population sizes.

The management policy adopted for the northern
anchovy central stock (Iig. 8, Table 7) attempts to
maintain an average population somewhat larger than
that producing strictly maximum yickd, by means of
a harvest quota formula (26). Biomass was seen as
contributing bencfits by providing forage to other
consumable and non-consumable predators, by pro-
viding more rcadily available supplies of live bait for
recreational fishing, and by reducing harvesting costs
of the reduction fishery. A reserve spawning biomass
of 1 million short tons serves to preserve the repro-
ductive capacity of the resource during adverse periods,
and should help maintain some stability of trophic
relationships in the ecosystem. When the resource is
abundant, thé allowable harvest will incrcase.

This variable quota policy is very resistant to errors
in the model predictions. If the resource is more
productive than anticipated, a larger biomass will
obtain, and allowable harvest will increase. Similarly,
if the resource is less productive, there will be a smaller
average biomass and a smaller harvest. Random
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Figure Y. Spawning biomass probability distribution for three harvest policies.

variability is likely to produce periods of apparent
high productivity and pcriods of apparent low pro-
ductivity. Biomasses ave serially correlaied, protracting
these periods somewhat longer than might be ex-
pected from random runs alone. A very large number
of years will have to pass before the modcl can be
adequately tested against actual resource perfermance.

There is considerable imprecision in the variability
predicted by the model. The sinall number of obscr-
vations resulis in a wide confidence interval. The
substitution of obscrved blomass for actual biomass in
the calculations results in an overestimate of resource
variance, the actual biomass being less variable than
our imprecise estimates. However, positive serial cor-
relation in recruitment strengths is likely, although
nonc was detected in the short tme series which was
available. As an extreme case of serial correlation, we
must consider possible changes in the occanic “re-
gimes”, as may have occurred in the late 1940s and
early 1950s. Such serial correlation will increase the
variability of population size, and the model predicts
a lowering of average population size and yiceld.

A further error in the model predictions arises {from
the assumption that the fishery impact on the spawn-
ing biomass is mcasured by total yicld. The fishery
for the northern anchovy is peculiar in that the scx
ratio of landings has averaged 173 females to each
male by weight, whereas the population itself appears
to be evenly distributed between the sexes (Klingbeil,
1978). Thus it appcars likely that the fishery may
have a disproportionate impact on the biomass of
fernale fish, and thercforc on the spawning potential
of the population. If this hypothesis is true, the ex-
pected yield and biomass will be less than anticipated
(Table 7), and the resource may be overfished with
respect to the stated goal of optimum yield. As a

corollary, management which encourages the harvest-
ing of male fish could potentially increase yield at
little loss w0 population size, and a more optimal
utilization of the resource would result.

SUMMARY

The low anchovy central stock biomass in the early
1930 was probably due to a series of reproductive
failures rather than to competition from the Pacific
sardine. The pattern of anchovy populaticn growth
since 1951 can be empirically described by a logistic
growth curve, which forms the basis of a population
gro-wth model. Estimated maximum equilibrium yield
(451000 short tons/vear) is higher than maximum
growth rate (353000 short tons/vear) due to com-
peting risk of death and discontinuous reproduction.
Asymptotic maxinum spawning biomass is 3-9 million
tons, A stochastic population growth model was
derived from the deterministic logistic model by con-
sidering error in annual population size predictions.
This model was implemented as a Markov process
with various biomasses as states, and stationary tran-
sition probabilities based on a given harvest policy.
The stable probability distribution indicates that the
resource is highly variable in a natural unharvested
state. Management policies can be examined by the
model, providing expected values, variances, and pro-
babilitics of various events or conditions. The present
management policy of allowing a reduction fishery to
harvest one third of the cxcess over 1 million short
tons’ spawning biomass could be expected to have a
mean annual vield of 443000 short tons and a mean
spawning biomass of 2-75 million short tons. Because
the fishery harvests a disproportionate amount of
femalcs, there may be a corresponding disproportio-

20
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nate impact on spawning potential, in which case the
above management policy may result in overfishing
with respect to the desired goal of optimum yield.
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