Rapp. P.-v. Réun. Cons. int. Explor. Mer, 177: 292-306. 1980.

POPULATION MODELS FOR THE NORTHERN ANCHOVY (ENGRAULISMORDAX)1
 Aleg D. MacCall
 California Department of Fish and Game, c/o Southwest Fisheries Center, P.O. Box 271, La Jolla, Califormia 92038, USA

INTRODUCTION

The northern anchovy (Engraulis mordax Girard) is abundant off the coast of California and Baja Califomia. The central subpopulation, or central stock, extends from $30^{\circ} N$ to $38^{\circ} \mathrm{N}$, and has been estimated at 3 to 4 million short tons' spawning biomass in recent years (Vrooman and Smith, 1972; Smith, 1972). The combined U.S. and Mexican harvests in 1977 were approximately 290000 short tons and show prospects for increase. The Mexican industry is unilaterally undertaking a major fishery expansion designed to provide domestic self-sufficiency in fish meal. This is estimated to require a 300000 to 500000 t harvest from the central stock. Simultaneously, the U.S. legistation which created the 200 -mile fishery conservation zone requires all affected fishories to be managed for "optimum yicld". The resource will have to be allocated between U.S. and Mcxican commercial fishermen, who wish to maximize their portions of the allowable catch, and the recreational fishermen, who wish to maintain the largest possible anchovy biomass to provide forage which will support large popudations of predatory fish. Determination of optimum yield requires an analysis of the trade-offs between yield and stock size.

A surplus production curve would provide the basis for such an analysis, but no large fishery has previously exploited the resource in such a way that traditional fishery methods can be applied. However, the California Cooperative Oceanic lishery Investigations (CalC:OHI) program has conducted rigorous cgg and larval surveys since 1950 , providing an independent source of population size estimates. MacC:all, Stauffer, and Troadec (1976) applied the Gulland potential yield formula (Gulland, 1970) to these biomass estimates, and concluded that the resource may have a
${ }^{1}$ This work was supported by a contract from the Southwest Fisheries Center, National Occanic and Atmospheric Administration, National Marine Fisheries Service, La Jolla, California, USA.
potential yield of over 2 milion t. An alternative to this crude and imprecise method is afforded by the time series of CalCiOFI survey estimates itself (Fig. 1). The anchovy spawning liomass was remarkably snall in the early 1950 s , and grew over the following twenty years to an apparent equilibrium of nearly 4 million t. Since population growth at given initial size is a nearly direct measure of surplus production, the CalCOFI the series provides the makings of a surplus production model based on observed growth rates.

Before such a growth model can be constructed, we must examine the conditions under which that growth occurred. In particular, we must consider the reasons for the low hiomass in 1951. A popular hypothesis has been that the decline of the California sardine (Sardinops sagar iaerulea) left a void which the anchovy later filled. This hyothesis requires that the anchovy not be abundant bofore 1951 when the sardine biomass was large, and that sardine and anchovy abundances be negatively correlated. Results of recent work have been contrary to these assumptions. Soutar and Isaacs (1974) examined rates of sale deposition in anaerobic sediments off southern California for the past 150 years, and obtained a rank-correlation coefficient of $+0.3+$ between sardine and anchovy scales. Assuming that scale deposition rates are proportional to population size, this strongly argues against an inverse relationship beween population sizes. Further evidence is given by Smith (1972), showing that larval census estimates made from CalCOFI-like surveys in 1940 and 1941 indicate an anchovy spawning biomass of between 2 and 3 million t. At the same time, the sardine spawning biomass is estimated to have been 1.3 to 2 million t, so large populations of both species were existing simultaneously.

I offer an alternative hypothesis: the anchovy encountered a prolonged series of poor recruitments during the late 1940s, and the subsequent CalCOFI records document the recovery to more normal levels of abundance. While this hypothesis cannot be proved,

Figure 1. Historical increase in northern anchovy spawning biomass, with fitted growth curve and approximate confidence limits.
it is suppored by two sets of evidence. The upwelling index of Bakun (1973) for $33^{\circ} \mathrm{N} 119$ W (the Southern California Bight) in the second quarter of the year (April-June) shows a remarkable set of anomalies extending from 1947 to 1952 (Fig. 2;. Upwelling during this period appears to have been much weaker than at any sulsequent time. Lasker (1978) discusses some possible mechanisms for recruitment failur in the anchowy fishory. He indicates that insufficient upuedling in the spring may be a contributing factor, as the plankton blooms necessary for larval survival may not form in sufficient concentrations. If this actually occurred, we might expect :o have seen poor recruitments in other pelagic species during the same period. Such was the case. The 1049 and 1950 year classes of the Pacifie sardine were extremely weak, and contributed significantly to the fimal collapse of that fishery. The 1949, 1950, and 1951 year classes of Pacific mackerel (Scomber japunicus) were the smallest on record until the final collapse of that fishery in the 1960s (Parrish and MacCall, 1978). The Pacific bonito (Sarda chiliensis lineolata) virtually disappeared from southern California waters in the late 1940s until they returned in 1954 (Collins and MacCall, 1977). It appears reasonable that the northern anchovy, which shares the same environment, may have experienced similar recruitment difficultics.
In the following population growth model, I assume that events of the type described above are unusual. The sedimentary scale record of Soutar and Isaacs (1974) suggests that anchovy abundance was high and fairly constant from 1810 to 1925, but it appears to have been lower, and more variable, in recent years. The present model is based on conditions prevailing
since 1951, and may therefore be optimistic. However, until adverse conditions occur, it is appropriate to base harvest rates on the current productivity of the resource. Safeguards can be incorporated into the resuurce management policy which will minimize th. impact of manticipated rccruitment failures and tehabilitate the fishery at an optimal rate. Such a management policy will be described in a later section, after the population model is developed.

Figure 2. Mean upwelling index for April, May, and June, at $33^{\circ} \mathrm{N}$ I19 9° (from Bakun, 1973).

DETERMINISTIC MODEL

The growth of the northern anchovy central subpopulation since 1951 followed a pattern empirically similar, if one allows for random variability, to the Verhulst-Pearl logistic growth curve. Many of the assumptions underlsing the traditional logistic growth model cannot be met by the northem anchove. I lowever, it is quite reasonable as an cmpitical clescription of population growth, and has already been used in a variety of standard fishery production models. Whereas in those raditional models the nature of population growth is inferred from the response to fishery removals, the present model must infer the response to fishery removals, given a pattern of population growth. The basic components of the model are standard fishery equations, which were reassembled to describe annual population processes, and the effects of a fishery.

Sparning biomass is defined as the total weight of make and female fish in the population which have spawned at least once in their lives. In practice, omly female fish, which produce detectable spawning products, are counted; males are assumed to be present in equal quantities. The spawning biomass is assumed to be proportional to the abundance of anchovy larvac (Smith, 1972). Since anchory spawning usually reaches peak intensity in the spring, but can occur throughout the year, the annual census will be assumed to measure the spawning biomass on March 1 of each year. Reconitment is the addition of spawning biomass to the population by the entry of those individuals spawning for the first time. Recruitment is assumed to occur on the first birthday, since anchovies appear to spawn at age 1 (E. Knaggs, personal commumication). Fish are assumed to become fully available to the fishery at the time they are recruited to the spawning biomass; however, they are partially available for the preceding few months.

The actual variation of spawning biomass throughout the year may look like the sinusoidal curve in Figure 3A. At " A ", recruitment and somatic grouth rates exceed the mortality rate so the population rapidly increases as new spawners enter the pool. At "B", the combined rates cqual zero and the spawning population reaches peak biomass for the year. At " c ", the recruitment rate has become very low so that mortality is the dominant force, causing the spationing bjomass to fall until the next scason's recruitment begins to conter the population. At " D ", an autumn spawning is described, which would appear as a ripple in the main population cicle.

To be useful, a population model must simplify the events described above and relate them to quantities which we can measure. The model proposed here

Figute 3. Diegrams of amual anchovy population processes: . . actual; B, mockel. Not drawn to seale.
assumes that recruitment can be described as entering the spawning biomass en masse on March 1 of each year (Fig. 3B). The ichthyoplankton survey gives a spawning biomass cstimate which is shown at " E ". Subsequently, the cohort consisting of all spawners included in "E" declines in biomass owing to natural and fisling mortality, which is parially offset by somatic growth. " F " shows the remaining biomass at the end of the year which is augmented by the next recruitment (R) to give a new spawning biomass cohort at " G ". " H " represents parial availability to the fishery before first spawning. 'The mathematical relationships between the biomasses at points " E ", " F ", and " G " are casily described by standard fishery equations.

The population at " F " is a function of the population at "E" and the combined rates of growth and fishing and natural mortality. If the rate of growth is cxpressed in similar fashion to rates of mortality, the equations become very straightforward. Letting G be the instantaneous or specific rate of growth:

$$
G=\frac{\mathrm{d} W}{W \mathrm{~d} t}
$$

where W is fish weight. The combined instantaneous rate of loss of cohort biomass is $F+M-G$. In this analysis the quantity $M-G$ is used as an instantancous rate of luss of biomass. Such an approximation must be used with caution, and should be discarded if better information is available. The survival of biomass (B) from March $1(\mathrm{~T}$) to time $\mathrm{T}+\Delta t$ is given by

$$
\begin{equation*}
B_{\mathrm{T}+\Delta t}=B_{\mathrm{T}} \mathrm{e}^{-(F+M-G)(\Delta t)} \tag{1}
\end{equation*}
$$

and the yicld (1) during the period is

$$
\left.r=B_{\mathrm{T}} \begin{array}{cl}
F & : \tag{12}\\
(F-M-G & 1
\end{array}\right]-\mathrm{e}^{-(w+M-(i)}(\Delta t)
$$

The biomass at " c " is the sum of the biomass at " F " and recruitmen. In the absence of fishing, " ${ }^{2}$ " and "G" are points on the lugistic growth curve cxacty-1 yoar apart. 'This redationship is described ing

$$
\begin{gather*}
B_{\mathrm{T}-1}^{*}=B_{\mathrm{T}-1}-R_{\mathrm{T}-1} \tag{3}\\
=\left[\begin{array}{c}
1 \\
B_{x}+\left(\frac{1}{B_{\mathrm{T}}}-\frac{1}{B_{x}} \mathrm{e}^{-\tau}\right)^{-1}
\end{array}\right.
\end{gather*}
$$

where $B x$ is the asymptotic maximum biomass. r is the intrinsic rate of increase, and B_{T+1}^{t} represents a new cohort formed from the surviving biomass of the old cohort $B_{\mathrm{T}+1}$, given by Lquation (1), augmemed by recruitment R_{T+1}. Recruitment is therefore given by (3) minus (1) where $F=0$:
$R_{\mathrm{T}+1}=\left[\frac{1}{B \cdots}+\left(\begin{array}{c}1 \\ B_{\mathrm{r}}\end{array}-\frac{1}{B \infty}\right) \mathrm{e}^{-r}\right]^{-\mathrm{i}}-B_{\mathrm{T}} \mathrm{c}^{-(1)-\sigma)} . \quad(+$
Thus the only independent variable in this spatmerecruit relationship is the spawning biomass 1 yeat prior to recruitment. In reality; the recruitment at time $\mathrm{r}+1$ is provided by the previous year's spatming at time r , but also to some extent those at $\mathrm{T}-1$ and possibly at r-2. Since the spawning biomasses at times $T-1$ and $\mathbf{T}-2$ are relatively near that at time T, the error resulting from simplification to a 1 -ycar cycle should be small.
The harvest of prespawners was included in the model to reflect more accurately actual fishery behavior. Fish were assumed to become partially available to the fishery (with ϕ as the coefficient of relative availability) for a length of time τ before spawning on March 1 (time 7). The quantity ($M-G$) is assumed to be the same as that for spawners. The equivalent of fish alive at time $\mathbf{T}-\mathrm{T}$ would have been

$$
\begin{equation*}
R_{\mathrm{T}+1-\mathrm{T}}=R_{\mathrm{T}+\mathrm{I}^{\mathrm{E}}}(\mathrm{M}-\mathrm{G})_{\mathrm{T}} \tag{5}
\end{equation*}
$$

where $R_{\mathrm{T}+1}$ is as given in Equation (5) and $R_{\mathrm{T}+1-\mathrm{T}}$ denotes equivalent recruitment at that time earlier than March 1 when prespawners first become available to the fishery (" H " in Fig. 3B). Since fishing begins at time $\mathrm{T}+1-\mathrm{T}$, the recruitment remaining at time $\mathrm{T} \div 1\left(R_{\mathrm{T}_{+1}}^{*}\right)$ is

$$
\begin{align*}
R_{\mathrm{T}+1} & =R_{\mathrm{T}+1-\tau} \mathrm{e}^{-(\varphi F+M-G)^{\mathrm{T}}} \\
& =R_{\mathrm{T}+1} \mathrm{e}^{(M-G)^{\mathrm{T}}} \mathrm{e}^{-(\varphi F+M-G) \mathrm{T}} \\
& =R_{\mathrm{T}+1} \mathrm{c}^{-\varphi F \mathrm{~T}} \tag{6}
\end{align*}
$$

and the biomass at $\mathrm{T} \div 1$ is

$$
\begin{align*}
\mathrm{B}_{\mathrm{T}+1}^{*} & =B_{\mathrm{T}} \mathrm{e}^{-(F+M-G)}-R_{\mathrm{T}-1-\tau} \mathrm{e}^{-(\varphi F+M-G) \mathrm{T}} \tag{7}\\
& =B_{\mathrm{T}} \mathrm{e}^{-(F-M-G)}-R_{\mathrm{T}-1} \mathrm{e}^{-\varphi F \mathrm{~T}} . \tag{}
\end{align*}
$$

The total yield of fish during the year is

$$
\left.\begin{array}{c}
Y_{=B} \frac{F}{F-G}\left[1-\mathrm{e}^{-(F+M-G)}\right]+\omega R_{\mathrm{T}+1} \mathrm{e}^{(M-G):} \\
\varphi F \tag{9}\\
\varphi F-\bar{M}-G
\end{array}\right] 1-\mathrm{e}^{-(\Phi F+M-G) \mathrm{T}]},
$$

where ω is a coefficient of prespawner body weight in units of adult fish body weight.

Stochastic forms of the above model will be considered after the next section.

parameter estimation

Two methods of estimating the logistic growth parameters, $B \approx$ and r, were used. First, approximate values were estimated by fitting the logistic growth equation to larval census estimates using a curvilinear least-squares regression procedure. This method requires us to ignore the effects that actual harvests may have had on the population growth, and therefore tends to bias the parameter estimates. An advantage of the method is that it gives approximate standard crrors and covariances for the estimated parameters. The second estimation procedure was an iterative least-squares estimate using catch-corrected biomass estimates, in which the growth model was used to estimate yearly transitions. While providing better parameter estimates, this method does not provide estimates of standard crrors, and requires the assumption that actual biomasses are equal to observed biomasses with respect to the impact of the fishery. Spawning biomasses (P. Smith, personal communication) and catches are given in Table 1, and parameter estimates are given in Tables 2 and 3.

Table 1. Catch, equivalent catch, and spawning biomass. Values in thousand short tons

	Total catch	Equivalent catch at year-end	Spawning biomass
1951	8.4	$5 \cdot 4$	180
1952	$42 \cdot 7$	26.9	156
1953	$45 \cdot 6$	$26 \cdot 6$	510
1954	28.5	$17 \cdot 4$	768
1955	28.0	15.3	846
1956	36.3	21.1	485
1957	19.9	11.6	1172
1958	9.5	6.0	1479
1959	$9 \cdot 0$	$5 \cdot 5$	1514
1960	$7 \cdot 6$	$4 \cdot 5$	1540
1961	$9 \cdot 9$	$6 \cdot 3$	1159
1962	8.8	$5 \cdot 5$	2985
1963	$7 \cdot 2$	$4 \cdot 6$	4254
1964	12.7	8.0	2901
1965	$23 \cdot 7$	$14 \cdot 1$	+ 659
1966	$66 \cdot 4$	$40 \cdot 7$	3572
1967	47.7	$29 \cdot 7$	-
1968	$40 \cdot 6$	27.5	9
1969	93-0	$64 \cdot 3$	2999
1970	107.9	78.7	
1971	$60 \cdot 5$	37.5	-
1972	59.1	40.9	2784
1973	$162 \cdot 6$	103.3	-
1974	142.9	95.7	-
1975	-	-	3603

Logistic paramcters - first method
The logistic growth curve

$$
\begin{equation*}
B_{t}=\frac{B \infty}{1+\mathrm{e}^{-r t+A}} \tag{10}
\end{equation*}
$$

where A is a constant relating to B_{t} at time $t=0$ [$B(t=0)$], is a spccial case of the Richards growth curve (Richards, 1959; Pella and Tomlinson, 1969)

$$
\begin{gather*}
B_{\ell}=\left\{B \infty^{1-m}+\left[B(t=0)^{1-m}-B \infty_{1-m}^{1-m}\right]\right. \\
\left.\mathrm{c}^{-r(1-m) t}\right\}^{1 /(1-m)} \tag{11}
\end{gather*}
$$

where the skewness parameter (m) is equal to 2. Equations (10) and (11) are continuous equivalents to the anmual transition Equation (3), but the former are more suited to regression because the independent variable, t, is not subject to large random error.

Regression also assumes that the residual variance is constant with respect to t, an assumption which is not met by the biomass data (Fig. 1). There may be several reasons for the increase in variance for the later ycars, including a change from monthly to quarterly cruises, and statistical properties associated with the increase in biomass itself. Much of the error

Table 2. Estimates of logistic growth parameters

Parameter C	Curvilincar regression (no catchrs)	Iterative solution (corrected for catches)
$B_{\sim \sim}(G . M)$	$\begin{aligned} & 3.611 \times 10^{6} \mathrm{t} \\ & 36.85 \times 10^{12} \text { larvae } \end{aligned}$	$3.6 .19 \times 10^{6} \mathrm{t}$
$B_{00}(A M)$	$\begin{aligned} & 3 \cdot 941: 10^{6} \mathrm{t} \\ & 39 \cdot 19 \times 10^{10} \text { larvae } \end{aligned}$	$3 \cdot 888 \times 10^{6} \mathrm{t}$
r	0.3369	0.3638
A	3.231	$3 \cdot 195$
$B(t=0)(G M)$	$\begin{aligned} & 137 \cdot 3 \times 10^{3} t \\ & 1 \cdot 40 t \times 10^{12} \text { larvae } \end{aligned}$	$143.6 \times 10^{3} \mathrm{t}$
$B(t=0)(\mathrm{A} M)$	$\begin{aligned} & 146 \cdot 0 \times 10^{3} t \\ & 1 \cdot 490 \times 10^{19} \text { larvae } \end{aligned}$	$153.1 \times 10^{3} \mathrm{t}$
RSS	1.976	2.035
CM to $A M$ correction factor	1 Or 1.0637	$1 \cdot 0657$

in larval survey estimates arises from the clumped distribution of the spawning products. Taft (1960) showed the negative hinomial distribution applied to sucl survey samples, whith the characteristic that the variance increases rapidly with increases in the mean (abundance). Zweifel and Smith ${ }^{2}$ (AS) give a preliminary estimate of CalCOFI larval survey sampling error based on the negative binomial disuribution, in which a 95% confidence interval is clescribed by a multiplicative factor of 1-2. Logarithmic transformation equalized the variance at high and low hiomasses, supplying the condition of homoscedasicity necessary for proper regression estimates.

The parameters of the log transformations of Equations (10) and (11) were estimated by the curvilincar least-squares regression (Marquardt algorithm) given by Convay, Glass, and Wilcox (1970). Various values of m were tried, giving a minimum residhal sum of squares (RSSS) at approximately $m=1.6$ (Iig. 4). Since the $R S S$ for $m=2$ gives only a slightly higher RSS, the extra parameter in Equation (11) does not provide a statistically significant improvement in fit, and was therefore unnecessary. This justifics the use of the logistic growth curve in Equation (3) and simplifics estimation of the parameters.
Since the use of log-transformed variables results in the regression bcing fitted to the gcometric mean of the raw data, a correction described by Beauchamp and Olson (1973) was applied to cstimate the appropriate arithmetic mean. This corrction consists of multiplying the antilog estimate of the mean by $c\left(s^{2} / 2\right)$ where s^{2} is the variance of the estimate ($R S S S / n-3$). In terms of the logistic growth Equation (10), the

[^0] USA.

Figure 1. Minimum residual sums of squares as a function of the skewness parameter m.
correction is applied to $B x$. The parameter estimates are given in Table 2, and their standerd errors and covarianers are given in Table 3.
Approximate confidence limits for the growth curve (10) are obtainced be the "delat method", which is basically a Taylor series approximation (Seber, 1973). In Seber's notation, the approximate variance of a function g which has parameters $x_{i},(i=1,2, \ldots, n)$ is given by

$$
\begin{align*}
& V\left[g\left(x_{1}, x_{2}, \ldots\right)\right]=\sum_{i=1}^{n} V\left[x_{i}\right]\binom{\delta g}{\delta x_{i}}^{2} \\
& +2 \sum_{i j} \operatorname{cov}\left[x_{i}, x_{j}\right]\binom{\delta g}{\delta x_{i}}\binom{\delta g}{\delta x_{j}} \tag{12}
\end{align*}
$$

Since the log transform of Equation (10) was used in the regression, function g is the logarithm of (10), and the partial derivatives must be calculated appropriately. Also, $B<\infty$ and its covariances do not yet incorporate the geometric mean correction factor, which in this case must be applied after taking antilogs of the estimated confidence limits. The approximate 95% confidence limits were calculated by the regression estimates ± 2 standard errors (Fig. 1).
Confidence limists for the rate of population growth are more interesting, as these have a direct bearing on the precision of the surplus production curve on which fishing strategy will be based. Annual growth rate is obtained by subtracting B_{T} from Equation (3), and approximate confidence limits were again calculated by the delta method. In this case the parameters used in the calculation were already corrected for the geometric mean. While the instantancous growth rate function maderlying the logistic growth curve is a symmenical parabola, the corresponding annual growit yate (Fig. 5) as a function of initial biomass is skewed slightly to the right. The highest annual growith rate occurs at an initial biomass slightly smatler than $\frac{1}{2} B x$, such that the peak of the instantaneous growth rate curve is encompassed by the year's growth.

Logistic parameters - second method

The alone cstimates of logistic growth parameters were made under the assumption that actual harvest of anchovies during the period had negligible effect on population growth. Such an assumption was neccssar: in order to obtain parameter error estimates by: the curvilincar regression procedure. The following parameter cstimates for harvest-corrected growth incorporate a catch correction but do not have error estimates; errors are probably similar to those given previously (Table 3).
The second method emplors the deterministic model (Equation 3) to give expected biomasses cach year,

Table 3. Variance-covariance matrix for growth parameters estimated by curvilincar regreceion

			10^{12} larvac		$10^{3} \mathrm{t}$		r	. 1
			G.M	AM	GM	AM		
B_{0}	(10 ${ }^{12}$ larvac)	G.M	$(6.513)^{2}$	- ${ }^{-}$	-	-	-	-
	$\left(10^{3} \mathrm{t}\right)$.	AM	-	$(6.927)^{2}$	-	-	-	-
		GM	-	-	(638-2) ${ }^{\text {2 }}$	-	-	-
		A.M	-	-	-	(678.9) ${ }^{2}$	-	-
r			- 221.6	-235.7	- 21.71	-23.10	$(0.0560)^{2}$	-
A			546.3	581.6	$53 \cdot 6$	57.0	$0 \cdot 00677$	$(0.271)^{2}$
			$n=19$	$\mathrm{d} f=19-3$		$t_{0}=1950$ A.D.		

Figure 5. Togistic growthrate curve and approximate confe dence limits, with binmass measured altematively in short tons or in CalCOFI larval census values.
allowing the time series to be fitted analogously to the first method. In order to correct for harsests, a quantity equal to the net year-end effect of the previous year's catch (Table 1) was subracted from the expected population size. This quanity was deterunined by an application of colort analysis. Equations (1) and (2) are analngues of the usual catch equations which employ only M and F. In this case, G is a constant instantancous rate and can threfore be combined with F and M which are also constant instantancous rates. Using the value of the specific growth rate constant developed in a later section, the quantity $(1 I-G)=0.8$ was substituted for M in the cohort analysis cquations ('Tomlinson, 1970) allowing cohort analysis of a population measured in weight rather than numbers.

Monthly catches in weight were compiled for a Narch-to-February year. California landings by month were obtained from the California Manine Fish Landings series of Fish Bulletins from the California Department of Fish and Game. Bait landings were also obtained from the above source, but only annual totals are given. The bait eatch was arbitratily divided equally among June, July, August, and Scptember, the months of maximum bait harvest. Mexican catches werc obtained from MacCall, Stauffer, and Troadec (1976), and from recent unpublished fishery reports. Since no data are available on Mexican catches before 1962, arbitrary values of 100 t in 1956 increasing by

100 t annually to 500 t in 1960 were used. Again, only ammal totals are availialle, so the Mexican catches were divided into the same t-month period as the bait catch. This division is consistent with the Ensenadabased fishery which operates maninly during the summer months.
A "forward solution" form of cohort analysis was used to find the surviving biomass of the spawners at the begiming of the next spawning season. An initial value of fishing mortality was obtained by solving Equation (2) for F, given the total March landings and the larval surecy estimate of spawning biomass (March 1). Montlly biomasses were then estimated sequentially to give biomass on the folloning March !. This final biomass was then subtracted from the biomass which would be indicated by Equation (1) had there been no fishing. This difference is the catch correction factor applied to biomasses predicted by Equation (3). It can be viewed as the catch which would have the same net effect as the the catches, had it been taken entirely on the last day of Fobnary. Ammal catches and yar-cod equivalent eatches are given in Table 1.
Parameter values wore estimated by an iterative procedure based on searching the response surface for the mininum residual sum of squares (Stauffer, 1973). Three trial values of each of the parameters r, $B=$ and $B\langle t=0\rangle$ were sclected, giving 27 combinations in all. The 19 biomass estimates corresponding to the CalCOFI survers from 1951 to 1975 were predicted by each combination of three trial parameter valucs, and a residual sum of squares (RSS) for the logarithm of the biomasses was calculated. A multiple linear regression program (BMDO2R) was utilized to estimate coeflicients of the following equation used to model the residual sum of squares response surface:

$$
\begin{align*}
R S S & =b_{0} \circ b_{1} B=0+b_{2} r+\dot{b}_{3} B(t=0) \times b_{4} B x^{2} b_{5} r^{2} \\
& +b_{\mathrm{b}} B(t=0)^{2}-b_{7} r B \times b_{8} B \times B(t \cdots 0) \\
& +b_{9} r B(t=0) . \tag{13}
\end{align*}
$$

The values of $r, B \infty$, and $B(t=0)$ that minimize the $R S S$ are the solution to the three first order partial derivatives of (13), with respect to $r, B x$, and $B(t=0)$, set equal to zero, i.e.,

$$
\begin{aligned}
& \frac{\delta R S S}{\delta B \infty}=b_{1}+2 b_{4} B \infty+b_{7} r+b_{8} B(t=0)=0 \\
& \frac{\delta R S S}{\delta r}=b_{2}+2 b_{5} r+b_{7} B x+b_{9} B(t \because 0)=0 \\
& \frac{\delta R S S}{\delta B(t=0)}=b_{3} \div 2 b_{6} B(t=0)+b_{8} B \infty \div b_{9} r=0 .
\end{aligned}
$$

These can be rewritten in terms of matrix algebra as

$$
D x=d
$$

where the matrix $D=\left[\begin{array}{ccc}2 b_{4} & b_{7} & b_{8} \\ b_{7} & 2 b_{3} & b_{9} \\ b_{8} & b_{9} & 2 b_{6}\end{array}\right]$
the vectors $x=$

$$
\left[\begin{array}{ll}
B \\
r & \\
B(t-0)
\end{array}\right] \text { and } d=\left[\begin{array}{l}
-b_{1} \\
-b_{2} \\
-b_{3}
\end{array}\right]
$$

From this, the values of $r, B=$, and $B(t=0)$ that minimize $R S S$ can be expressed as

$$
\begin{equation*}
x=D^{-1} d \tag{14}
\end{equation*}
$$

Since Equation (13) only approximates the response surface, about four itcrations of the above parameter estimation proccdure with successively closer delineations of the trial parameter region gave restults precise to three significant digits in most cases. An independent test of accuracy is furnished by the previous curvilincar regression estimates. An itcrative solution was run for the case of "no catches", giving results very similar to the regression estimates. It is interesting to note that this solution, which includes the effect of actual harvests, gives a slightly larger minimum RSS than does the previous regression solution (Table 2). This suggests that the small fishery which has existed does not account for a detectable portion of the vatriance in biomats which has bern observed.

Other parameters

The parameters M and G always appear in combination as (MG), which call be interpreted as instantancous rate of natural decrease in biomass, and which were estimated as such by the following approsimation ('lable 4). Growth from age 2 to age 3 was considered typical of the population. Mean length at age (Spratt, 1975) was expanded by the lengthweight relationship (Collins, 1969) to obtain approximate mean weight. Survival was assumed to be 1.0 at age 2 , and 0.346 at age 3 , based on $M=1.06$ (MacCall, 1974). The difference of the logarithm of approximate cohort biomasses was 0.75 , and was rounded to 0.8 as a functional estimate of the quantity (M-G).

Table 4. Approximation of (M-G)

Agc	Mean Iength $(\mathrm{mm}-\mathrm{SI})$	Weight (g)	Numbers in cohort	Weight of cohort	In weight of colort
2	112	14.2	1.000	14.25	9.55
3	124	19.3	$0.3+6$	6.69	8.81
				Difference $=0.75$	

Table 5. Mean weight data for estimation of ω and φ

	Ratio mean weight Age 0 to mean weight age $1+$	Ratio catch Age 0 to catch age 1+
Scason		
$1965 / 1966$	0.542	0.0254
$1966 / 1967$	0.501	0.0370
$1967 / 968$	No data for southern California	
$1968 / 1969$	0.765	$0.17+0$
$1969 / 1970$	0.636	0.2347
$1970 / 1971$	0.639	0.0270
$1971 / 1972$	0.639	0.0812
$1972 / 1973$	0.815	0.0852
$1973 / 1974$	$0.6+2$	0.0478
Mean	0.647	0.0890
Standard diviation	0.103	$0.076+$

The quantity ω is the ratio of the weight of an average prespawner (age 0) to that of an average spawner (age 1 and older). By dividing total weight landed by total number of fish landed for each category, average weights for these two groups were obtained from the landings reports. The average ratio of these average weights gives an estimate of $\omega=0.647$ (Table 5).

Presparming anchovies are assumed to be partially (Φ) available to the fishery for a short period (τ) before they spawn on their first birthday: Relative a a ailability is defined as

$$
\begin{equation*}
\phi=F_{0} F_{1+} \tag{16}
\end{equation*}
$$

for the sarne reason. Harvest of prespawners is given by

$$
\begin{equation*}
\gamma_{0}=F_{0} \bar{B}_{0} \tau \tag{17}
\end{equation*}
$$

where \vec{B}_{0} is the average biomass of prespawners during the period of a a ailability preceding spawning. Harvest of adult anchovies is given by

$$
\begin{equation*}
r_{1+}=F_{1+} \bar{B}_{1+} \tag{18}
\end{equation*}
$$

where time is unity, being one fishing year. Therefore, (17) and (18) are substituted into (16) to obtain

$$
\begin{equation*}
\varphi=\left(r_{0} / r_{1+}\right)\left(\vec{B}_{1+} \mid \bar{B}_{0} \tau\right) \tag{19}
\end{equation*}
$$

The quantity $Y_{0} / 1_{1+}$ can be obtained from fishery data (Table 3), and the theoretical ratio of mean biomasses can be obtained from the model.

The mean biomass of adult fish is given by

$$
\begin{align*}
\bar{B}_{1+} & =\int_{t=0}^{\infty} B^{\prime} \mathrm{e}^{-(F+M-G) t} \mathrm{~d} t \\
& =\frac{B^{\prime}}{F+M-G} \tag{20}
\end{align*}
$$

where $t=0$ denotes time of first spawning, and B^{\prime} denotes the biomass at that time. This equation uses
the approximation that the biomass of all adult cohorts in a single season is equivalent to the biomass of a single cohort over its lifetime. The mean biomass of prespawners during the period of partial availablity is

$$
\begin{align*}
B_{0} & =\frac{1}{T} \int_{t=-\tau}^{t=0} \omega B^{\prime} \mathrm{e}^{-(\varphi F+M-G) t} \mathrm{~d} t \\
& =\frac{\omega B^{\prime}[\mathrm{c}(\varphi F+M-G) \tau]-1}{\tau(\varphi F+M-G)} . \tag{21}
\end{align*}
$$

Equations (20) and (21) are now substituted into (19) to obtain

$$
\varphi=\begin{gather*}
r_{0} \tag{22}\\
r_{1+}
\end{gather*} \omega \omega(F+M-G)\left[\mathrm{e}^{(\varphi F+M-G)^{\top}}-1\right]
$$

The quantity Φ can now be estimated by itcration, given values of the remaining variables. The historical average value of r_{0} / Y_{1+} has been 0.089 (Table 5). The fishing mortality rate F has averaged 0.03 , and ($M-G$) was estimated above to be 0.8 . Age 0 anchovies first appear in January, about 0.2 ycars before spawning on March 1, so for $T=0.2, \phi$ is estimated to be 0.76 .

discussion of the dererministic model

The deterministic model described above allows equilibrium vield to be described as a function of spawning biomass (Fig. 6). Equilibrium yield is defined as that yield which is expected to maintain the sparning biomass at the same level in the following ycar. Note that this is not equivalent to sustainable yield, because natural fluctuations in recruitment success will not allow a given biomass to be maintained. Sustainability decreases with increasing variability and will be discussed in more detail later.

A somewhat surprising result of the model is that the equilibrium yield is considcrably greater than the expected population growth in the absence of a fishery (560000 t per year as opposed to 353000 t per year). This is contrary to the assumption of equality often made in production modeling, and arises from the fact that reproduction is periodic rather than continuous with immediate recruitment. Qualitatively, the phenomenon arises from the competing risk of death from fishing and natural causes, so that many fish taken by the fishery would not have reproduced at the next spawning in any case. A simple correction factor can easily be derived from gucsses of mortality rates, and could significantly improve the performance of catch-transition production models (e.g., Schaefer, 1957; Pella and Tomlinson, 1969), particularly when

Figure 6. Equilibrium yield and growth rates for the northern anchow central stock. Growth is mean population growth in the absence of fishing. Equilibrium yicld is given for no harvest of prespanners ($\boldsymbol{T}=0$), and for partial availability of prespativners ($\tau=0.2$).
applied to stocks in which reproduction is seasonal (MacCall, 1978).
Another rather surprising property of the equilibrium yield curve is the fact that yield decreases when prespawners are harvested (484000 t per year as opposed to 560000 t per year). Yield per recruit considerations indicate that maximum yield per recruit is obtained by fishing the resource intensively with a small size at cntry (MacCall, Stauffer, and Troadec, 1976). The present model, which includes reproduction, indicates that harvesting anchovies immediately before spawning results in a twofold loss to the population: loss of the fish and of its progeny. The model predicts that yield will gencrally be near a maximum when fish are taken as soon after spawning as possible. Whether these are valid conclusions remains to be seen. For comparison, the Peruvian anchoveta fishery was highly productive under intensive fishing of prespawners in the 1960s. However, the above two considerations may also help explain the unexpectedly slow recovery of the anchoveta resource since the population collapse of the carly 1970 s.

STOCHASTIC MODEL

While the above deterministic model is uscful for estimating the approximate long-term productivity of the northern anchovy central stock, it is unable to provide a realistic and useful description of short-term productivity and variability. Spawning biomass has shown large fluctuations about the hypothesized trend (Fig. 1). A simple stochastic model can be derived from the second method (iterative least squarcs) of
logistic parameter estimation described above. Equation (3) of the population growth model can be rewritten as

$$
\begin{align*}
\ln B_{\mathrm{T}} & =\ln \left(B_{\mathrm{T}}+R_{\mathrm{T}}\right) \\
& =\ln \left[\frac{1}{B_{\infty}}+\left(\frac{1}{B_{\mathrm{T}-1}}-\frac{1}{B \infty}\right) \mathrm{e}^{-r}\right]^{-1}+\varepsilon \tag{23}
\end{align*}
$$

or more simply

$$
\ln B \dot{\mathbb{T}}=\ln \hat{B}_{\dot{T}}+\varepsilon
$$

where ε is a stochastic error term with mean $=0$, $B_{\dot{T}}^{*}$ is surviving biomass plus recruitment, and \hat{B}_{T}^{*} is predicted from $B_{\mathrm{T}-1}$ by the deterministic growth model. There are three principal sources of this error: 1) variability of population processes, particularly recruitment, 2) error of observation of biomass at time r, and 3) error of observation at time $T-1$. A more complicated model could be constructed with stochastic crrors in recruitment and in obscrved population size respectively. Such a model would allow simulations of population and fishers behavior over long periods. However, there is at present no definitive way to separate the components of the error term in (23). Thus there would be a wide spectrum of simulation model results depending on the portion of the variability assigned to recruitment.

The simple stochastic model (23) does not require that the error term be separated into components, but requires the assumption that the effect of the fishery on a population of the observed biomass would be a close approximation of the effects of a fishery on a population of the actual biomass. This assumption also occurs in the second method of logistic parameter estimation, so the paramcters inherently reflect this assumption. On the other hand, there is a defmite non-linearity in the model, such that responses to an underestimated biomass are not equal and opposite to responses to an equally overestimated biomass. This problem should not be severe except when large catches are being taken from small biomasses.
A plot of $\ln B_{\mathrm{T}}^{\dot{T}}$ against $\ln \hat{B}_{\mathrm{T}}^{*}$ from 1952 to 1966, where the latter variate is corrected for catches according to the second logistic parameter estimation method, shows the deterministic model to be a good description of the average ycar-to-ycar behavior of the obscrved spawning biomasscs (Fig. 7). The residual error term $\left(\varepsilon=\ln B_{\mathbf{T}}^{*}-\ln \hat{B}_{\mathrm{T}}^{*}\right)$ is well behaved when plotted against $\ln B_{T}^{*}$ (Fig. 7), with a mean of 0.016 and a standard deviation of $0 \cdot 496$. The mean is sufficiently near zero to justify acceptance of the parameter estimates of $B \infty$ (arithmetic mean) and r for predictive purposcs. The residuals show no distinct

Figure 7. Comparison of predicted and observed spawning biomasses, including a plot of residuals.
changes in pattern over the range of obscrved biomasses. Therefore, ε will be assumed to be normally distributed ($\mu=0, \sigma=0.496$) in the stochastic model.

Equation (23) is cquivalent to

$$
\begin{gather*}
B_{\mathrm{T}+1}^{*}=B_{\mathrm{T}+1}+R_{\mathrm{T}+1}= \\
\mathrm{e}^{\mathrm{E}}\left[\frac{1}{B \infty}+\left(\frac{1}{B_{\mathrm{T}}}-\frac{1}{B_{\infty}}\right) \mathrm{e}^{-\mathrm{r}}\right]^{-1} \tag{24}
\end{gather*}
$$

so if there is no fishing, $R_{\mathrm{T}+1}$ can be obtained by the analogue of (4):

$$
\begin{gather*}
R_{\mathrm{T}+1}=\mathrm{e}^{\mathrm{E}} \\
{\left[\frac{1}{B \infty}+\left(\frac{1}{B_{\mathrm{T}}}-\frac{1}{B \infty}\right) \mathrm{e}^{-r}\right]^{-1}} \tag{25}\\
-B_{\mathrm{x}} \mathrm{e}^{-(M-G)}
\end{gather*}
$$

Note that R_{T+1} is not actual recruitment, but apparent recruitment, since the observation error of B_{T} and B_{T+1} is included in the stochastic crror term. For this reason, apparent recruitment can become negative for low values of e^{E}. Equation (25) can be used to estimate

Table 6. Conditions for negative apparent recruitment, and probabilitics of occurrence based on an assumed normal distribution ($\sigma_{\xi}=0.496$)

$\begin{aligned} & \text { Spawning biomass } \\ & B \cdot(1000 \mathrm{t}) \end{aligned}$	Minimum ε for positive apparent eccruiment	Probability ε - $\varepsilon_{\text {min }}$
1	$-1 \cdot 16$	0.0096
500	-- 1-11	$0 \cdot 0125$
2000	-0.96	(10262
$+000$	-0.79	16.0539
6000	-0.65	0.0951
10000	$-0 \cdot 41$	$0 \cdot 2033$

values of ε which give negative apparent recruitment for various levels of $B_{\mathbf{T}}$. Some sample values. with their probabilities, are given in Table 6. White no instances of negative apparent recruitment have occurred in the time series of CalCOFI spawningbiomass estimates, there appears to be no reason, other than low probability, for such a condition not to be observed in the future.

Catch will be given as a finction of spanning biomass, which could either reflect levels of nominal fishing effort, or in this case, be controlled by a variable quota management system of the form

$$
Q=\left\{\begin{array}{l}
\left.a: B_{\mathrm{T}}-b\right), B_{\mathrm{T}}-b>0 \tag{26}\\
c, \text { oherwise }
\end{array}\right.
$$

where Q is a reduction fishery quota, b is minimum spawning inomass for a quota to be established, and a is a fraction of the excess pawning biomass over level b. The quantity s is a small mainenance fishery for non-reduction uses such as live bait.

When we include exploitation of prespawners in the stochastic model the equations become lengthy. The quantity R_{T+1} which is given by (25) is substituted into (9) to give an expression relating ratch to B_{T}, ε and F :

$$
\begin{align*}
& r=\frac{F}{F=M-G} B_{\mathrm{T}}\left[1-\mathrm{e}^{-\left(F^{\prime}+M-G\right)}\right] \\
& \left.+\left.\omega\right|^{1} \mathrm{e}^{\varepsilon}\left[\begin{array}{l}
1 \\
B \infty
\end{array} \frac{1}{B_{\mathrm{T}}}-\frac{1}{B \infty} \mathrm{c}^{-,}\right]^{-1}-B_{\mathrm{T}} \mathrm{e}^{-(M-G)}\right\} \\
& c^{(M-G) \top} \frac{\varphi_{F}}{\varphi F-M-G}\left[1-\mathrm{e}^{\left.-(\varphi F+M-G)^{\top}\right]}\right] \tag{27}
\end{align*}
$$

MARKOV MODEL
While the stochastic model could be investigated by Monte Carlo simulation methods, the model is uniquely adaptable to treatment as a Markov process, which can directly provide probability distri-
butions of observed liomass. Various discrete levels of biomass can le treated as states. Since the model contains no tinue lags, transition probabilities between states are stationary.
For a vector of n discrete observed biomass valucs B_{1}, \ldots, B_{n} (in ascending order), we wish to calculate the elements of a matrix containing the probabifities that a population of observed size B_{i} at time t will lecome a population of observed size B_{3} at time $\mathrm{T}+1$. The probabilities of each possible transition are assodated with the corresponding error term ε_{t}. which has the properties described in the stochastic population mudel.
Since we are given that the obscrved biomass at time T is B_{i} and the observed biomass at time $\mathrm{T}+1$ is B_{j}, Lquation (8) provides us with

$$
\begin{equation*}
B_{j}=B_{i} \mathrm{e}^{-(F+M-G)}+R_{\mathbf{T}+\mathrm{t}} \mathrm{c}-\varphi F \mathrm{~T} \tag{28}
\end{equation*}
$$

where $R_{T_{+1}}$ is given by (25). Therefore,

$$
\begin{aligned}
& D_{j}-B_{i} \mathrm{e}^{-(\mu+M-G)+} \\
& \left.\^{\mathrm{c}^{\varepsilon i j}}\left[\begin{array}{c}
1 \\
B \infty
\end{array}\left(\begin{array}{c}
1 \\
B_{i}
\end{array}-\frac{1}{B x}\right) \mathrm{e}^{-r}\right]^{-1}-B_{i} \mathrm{c}^{-\left(M 1-G_{i}\right)}\right\}^{\mathrm{e}-\varphi F \tau}
\end{aligned}
$$

or

$$
\begin{align*}
& \varepsilon_{i j}= \\
& \ln \left(\begin{array}{c}
{\left[B_{j}-B_{i} \mathrm{C}-(F+M-G)\right]} \\
\mathrm{c}^{\varphi P^{\top} \mathrm{T}} \div B_{i} \mathrm{c}-(M-G) \\
\left.\left[\begin{array}{cc}
1 & 1 \\
\overline{B \alpha} & 1 \\
B_{i} & B
\end{array}\right) \mathrm{e}^{-r}\right]^{-1}
\end{array}\right) \tag{29}
\end{align*}
$$

In implementing the Markov model on a computer, (29) can be substituted for ε in (27), so that F can be estimated iteratively given B_{i}, B_{j}, and Y_{i}. This value of F then gives $\varepsilon_{i j}$ from (29), and a prohability can be computed for the transition. Note that r_{i} is determined by B_{i} and the quota formula (26). Each different quota formula will give a different and unique transition probability matrix.
The Markov model was based on a 30×30 probability matrix. Discrete biomasses were a gcometric serics from $B_{1}=200000 \mathrm{t}$ to $B_{30}=16000000 \mathrm{t}$, with an element ratio (s) of $1 \cdot 16312$. The probability associated with $\varepsilon_{i j}$ was calculated from a fixed value of B_{i}, and an interval centered about B_{j} :

$$
\begin{equation*}
P\left(\varepsilon_{i j}\right)=\tilde{F}\left(B_{j} / s B_{i}\right)-\tilde{F}\left(B_{j} / k^{\prime} s B_{i}\right) \tag{30}
\end{equation*}
$$

where \mathfrak{F} is the cumulative density function for the normal distribution. The probabilities corresponding to the tails of the distribution were assigned to $\varepsilon_{6,1}$ and $\varepsilon_{i, 30}$, respectively. The quantity $\tilde{\mathcal{F} \text { was calculated }}$ by a polynomial approximation.

Each harvest policy (26) generates a unique transition probability matrix. Any probability vector associated with the vector of discrete observed population sizes B can be multiplied by the transition probability matrix to obtain a new vector of probabilities reflecting the likelihood of observing the corresponding population sizes in the following year. This multiplication can be used to investigate the probable near-term effects of management decisions. In the case of an infinite time horizon, which could be appropriate to long-term management policy, we can find the stable probability distribution to which all beginning probability distributions tend to converge after repeated multiplication by the transition probability matrix. This stable probability distribution is that eigenvector of the transition probability matrix whose cigenvalue is 1 . Actually, after about 10 multiplications by the transition matrix, most initial probability vectors converge to very nearly the stable probability distribution given by the eigervector.

While the model is at present used to evaluate alternative pre-specificd quota policies, other uses are possible. If an objective function can be specified, the Markov model could serve as a basis for determining the optimum harvest policy (Mendelssohn ${ }^{3}$, MS). In a management mode, the model can provide an a priori probability distribution so that biomass could be estimated by efficient Bayes methods.

Example Application

Threc fishery management policies will be examined and compared (Fig. 8, Table 7). A "no fishery" policy (Case I) allows only 10000 shom tons' amual harvest for live bait and fresh-fish markets. This policy allows the biomass to remain at virgin levels and forms a basis for comparison. The "prescm"" fishery (Case II) was recently adopted by the United States as an optimum yicld policy, wherein the greatest overall benefit arises from maintainiug a biomass somewhat larger than that resulting from a strictly maximum yicld policy. A maximum yield or "heavy fishing" policy (Case III) passes through the peak of the equilibrium yield curve. Theoretically the largest yield would be obtained by a policy with a very stecp slope and a fishery cutoff at about 1.5 million short tons. That policy would produce a highly variable fishery, whereas our Case III seeks to stabilize the fishery by virtue of a shallower slope and a lower fishery cutoff point.

When plotted on a \log scale, the stable probability distributions resemble normal density functions (Fig. 9). The discontinuity at the tails of the distributions

[^1]Table 7. Comparison of resource characteristics under three harvest policies, and under the special case of an unequal sex composition in the landings. Values in million short tons

Harvest	Minimal (I)	Optimal (II)	Heavy (III)	$\begin{gathered} \text { Optimal (II) } \\ \text { (sex ratio } \\ 1 \cdot 73 ₹: 18) \end{gathered}$
Slope (a)	-	0.33	0.33	0.33
Cutoff (b)	-	1.00	0.50	1.00
Maintenance (c)	0.01	0.01	0.01	$0 \cdot 01$
Assumed maximum	0.01	1.00	$1-00$	$1 \cdot 00$
Spawning biomass characteristics				
Median	3.35	2.05	$1 \cdot 66$	1.84
Mcan	$4 \cdot 12$	$2 \cdot 75$	$2 \cdot 35$	$2 \cdot 48$
Standard deviation	$2 \cdot 95$	$2 \cdot 32$	$2 \cdot 19$	2.15
Probability (percentage of sears)				
$B<0.5$	$1 \cdot 3$	$4 \cdot 4$	$8 \cdot 7$	$5 \cdot 7$
$B<1 \cdot 0$	$6 \cdot 6$	$18 \cdot 4$	28.2	22.3
$B<1 \cdot 5$	$1+9$	$34 \cdot 5$	$45 \cdot 3$	$39 \cdot 8$
$B<2 \cdot 0$	$24 \cdot 6$	$48 \cdot 4$	$58 \cdot 3$	$54 \cdot 1$
$B<2 \cdot 5$	$34 \cdot 4$	$59 \cdot 6$	67.9	$65 \cdot 0$
Yield characteristics				
Mrdian	-	0.351	0.387	$7 \quad 0.280$
Mean	-	0.442	0.467	$7 \quad 0.393$
Standard deviation	-	0.379	$0 \cdot 362$	$2 \quad 0.370$
Probability (percentage of years)				
$r=0.01$	100	$18 \cdot 4$	8.7	$22 \cdot 3$
$r<0 \cdot 1$	100	28.2	$15 \cdot 9$	$33 \cdot 1$
$r<0 \cdot 5$	100	$59 \cdot 6$	$58 \cdot 3$	$65 \cdot 0$
$1 *<1 \cdot 0$	100	80.0	$80 \cdot 3$	83.7

is slight. Under a minimal fishery (Case I), the highest probabilities are associated with biomasses near $B x$, as expected. However, the variability of the biomass is high, with a 25% probability of observing a biomass of less than 2 million short tons in any given year (Table 7). As fishing becomes more intense, the peak biomass shifts to lower values, and the probability distributions become flatter. Mean yield from Case III is only 6% greater than that from Case II; however, the mean biomass is 14% smaller, showing little marginal value from the heavy policy, especially if bencfits arise from increased biomass. The lower fishery cutoff point of Case III results in fewer years of fishery closures, but at the same time would delay recoveries from periods of low abundance. Expected valucs and variances of more complicated fishery measures, such as economic yield, are easily calculated if the measure can be expressed in terms of biomass and catch.

Figure 8. Threc harvest policies examined by the model: I, minimal fishing; II, nptimal fishing; III, heavy fishing.

discussion of tile stochastic model

Previous estimates of potential yield from the northern anchovy central stock have been based on the Gulland (1970) approximation formula. A wide range of potential , ields was given, depending on the base years for determining "virgin biomass" (MacCall, Stauffer, and Troadec, 1976). Reasonable estimates ranged from 1 to 2 million short tons per year. The model developed in this paper suggests a much smaller potential yield of about 450000 short tons per year. In view of the historical low biomasses of anchovy, the Gulland potential yield estimates seem high, and are clearly not sustainable. The present estimate of potential yield seems somewhat low when compared with fisheries on similar species. However, many of those fisheries have subsequently experienced severe depletion, and the expectations may have been too high.

This model cmphasizes the role of natural population variability in fishery projections. While the cquilibrium yield curve from the deterministic model indicates a maximum yield of 484000 short tons, the stochastic model shows that somewhat less than this can be expected, and only under a highly fluctuating fishery. Yields of 200000 to 300000 t are more nearly sustainable in the strict sense.

In any particular ycar, abundance is determined by natural variations in recruitment, and a fishery will have little cffect. However, over the long term, a fishery strongly modifies the probability distribution of biomasses. When a period of low abundance occurs under a fishery, one must not simply blame it on the fishery nor explain it away as an unavoidable natural
event. In actuality, low abundance must be interpreted as a natural event which has leecome more likely because of the fishery. Management policies which do not reduce fishing pressure at low population sizes greatly increase the probabilitics of low population sizes, often to the point of virtual certainty. The California sardine fishery, which had no cffective constraint on fishing pressure or harvest, is such a case. An inflexible constant quota, even if set at a level below maximum equilibrium yield, contains a large risk of prolonged or possibly irreversible low population sizes.

The management policy adopted for the northern anchovy contral stock (Fig. 8, Table 7) attempts to maintain an average population somewhat larger than that producing strictly maximum yich, by means of a harvest quota formula (26). Biomass was seen as contributing benefits by providing forage to other consumable and non-consumable predators, by providing more readily available supplies of live bait for recreational fishing, and by reducing harvesting costs of the reduction fishery. A reserve spawning biomass of 1 million short tons serves to preserve the reproductive capacity of the resource during adverse periods, and should help maintain some stability of trophic relationships in the ecosystem. When the resource is abundant, the allowable harvest will increase.

This variable quota policy is very resistant to errors in the model predictions. If the resource is more productive than anticipated, a larger biomass will obtain, and allowable harvest will increase. Similarly, if the resource is less productive, there will be a smaller average biomass and a smaller harvest. Random

Figure 9. Spawning biomass probability distribution for three harvest policies.
variability is likely to produce periods of apparent high productivity and periods of apparent low productivity. Biomasses are serially correlated, protracting these periods somewhat longer than might be expected from random runs alone. A very large number of years will have to pass before the model can be adequately tested against actual resource performance.

There is considerable imprecision in the variability predicted by the model. The small number of olsservations resuls in a wide confidence interval. The substitution of obscrved biomass for actual biomass in the calculations results in an overestimate of yesource variance, the actual biomass being less variable than our imprecise estimates. Howerer, positive serial correlation in recruiment strengths is likely; although none was detected in the short time series which was available. As an exurme case of serial correlation, we must consider possible changes in the oceanic "regines", as may have occurred in the late $10 \% 0$ s and early 1950s. Such serial correlation will increase the variability of population size, and the model predicts a lowering of average population size and yich.

A further error in the model predictions arises from the assumption that the fishery impact on the spawning biomass is measured by total yield. The fishery for the northern anchory is peculiar in that the sex ratio of landings has averaged 1.73 females to each male by weight, whereas the population itself appears to be evenly distributed between the sexes (Klingbeil, 1978). Thus it appears likely that the fishery may have a disproportionate impact on the biomass of female fish, and therefore on the spawning potential of the population. If this hypothesis is true, the expected yield and biomass will be less than anticipated (Table 7), and the resource may be overfished with respect to the stated goal of optimum yield. As a
corollary, management which encourages the harvesting of male fish could potentially increase yield at litte loss to population size, and a more optimal utilization of the resource would result.

SUMMARY

The low anchowy central stock biomass in the early 19j0 was probalily due to a series of reproductive failures rather than to competition from the Pacific sardine. The pattern of anchovy population growth since 1951 can be empirically described by a logistic grovith curve, which forms the basis of a population growth model. Estimated maximum equifibrium yield (404000 short tons/year) is higher than maximum growth rate (353000 short tons'year) due to competing risk of death and discontinuous reproduction. Asymptotic maxiaum spawning biomass is 3.9 million tons. A stochastic population growth model was derived from the deteministic logistic model by considering error in anmual population size predictions. This model was implemented as a Markov process with various biomasses as states, and stationary transition probabilities based on a given harvest policy. The stable probability distribution indicates that the resource is highly variable in a natural unharvested state. Management policies can be examined by the model, providing expected values, variances, and probabilitics of various events or conditions. The present management policy of allowing a reduction fishery to harvest one third of the excess over 1 million short tons' spawning biomass could be expected to have a mean annual yield of 443000 short tons and a mean spawning biomass of 2.75 million short tons. Because the fishery harvests a disproportionate amount of females, there may be a corresponding disproportio-
nate impact on spawning potential, in which case the above management policy may result in overfishing with respect to the desired goal of optimum yield.

ACKNOWLEDGEMENTS

I wish to thank Dr Gary D. Stauffer, Dr Daniel D. Huppert, and Mr John Radovich for their many constructive suggestions. I also wish to thank the Southwest Fisheries Center, National Oceanic and Atmospheric Administration, La Jolla, California, and the Marine Research Committee of the State of California for their support.

REFERENCES

Bakun, A. 1973. Coastal upwelling indices, West Coast of North America, 1946-1971. NOAA Tech. Rep., NMFS SSRF-671, 103 pp .
Beauchamp, J. J., and Olson, J. S. 1973. Corrections for bias in regression estimates after logarithmic transformation. Ecology, 54: 1403-1407.
Collins, R. A. 1969. Size and age composition of northern anchovy (Engraulis mordax) in the California anchovy reduction fishery for the 1965-66, 1966-67 and 1967-68 seasons. Calif. Dept. Fish and Game, Fish. Bull., 147: 56-74.
Collins, R.A., and MacCall, A. D. 1977. California's Pacific bonito resource, its status and management. Calif. Dept. Fish and Game, Mar. Res. Tech. Rcp., 35: 1-39.
Convay, G. R., Glass, N. R., and Wilcox, J. C. 1970. Fitting nonlinear models to biological data by Marquardt's algoritim. Ecology; 51: 503-507.
Gulland, J. A. 1970. Preface. In The fish resources of the oceans, pp. 1-4. Ed. by J. A. Gulland. FAO Fish. Tech. Pap., 97 : 425 pp.
Klingbeil, R. 1978. Sex ratios of the northern anchovy, Engraulis mordax, oft southern California. Calif. Fish Game, 64: 200-209.
Lasker, R. 1978. The relation between oceanographic conditions and larval anchovy food in the California Current: Identifica-
tion of factors contributing to recruitment failure. Rapp. P.-v. Réun. Cons. Int. Explor. Mcr, 173: 212-230.
MacCall, A. D. 1974. The mortality rate of Engraulis mordax in southern California. Mar. Res. Comm., Calif, coop. oceanic fish. Invest., Rep. 17: 131-135.
MacCall, A. D. 1978. A note on production modeling of populations with discontinuous reproduction. Calif. Fisis Game, 64: 225-227
MacCall, A. D., Stauffer, G. D., and Troadec, J. P. 1976. Southern California recreational and commercial marine fisheries. Mar. Fish. Rev. 38(1): 1-32.
Parrish, R. H., MacCall, A. D. 1978. Climatic variation and exploitation in the Pacific mackerel fishery. Calif. Dept. Fish and Game, Fish Bull., 167: 1-110.
Peila, J. J., and Tomlinson, P. K. 1969. A gencralized stock production model. Bull. Inter-Amer. Trop. Tuna Comm., 13: 419-496.
Richards, F. J. 1959. A flexible growth function for empirical use. J. Exp. Botany, 10(29): 290-300.
Schaffer, M. B. 1957. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Occan. Bull, Inter-Amer. Trop. Tuna Comm. 2(6): 245-285.
Seber, G. 1973. The estimation of amimal abundance and related parameters. Hafacr Press, New York, 506 pp .
Smith, P. E. 1972. The increase in spawning biomass of northern anchovy, Engraulis mordax. Fish. Bull. (U.S.), 70: 849-874.
Soutar, A., and Isaacs.J.D. 1974. Abundance of pelagic fish during the 19 th and 20th centuries as recorded in anacrobic sediment off the Californias. Fish. Bull. (U.S.) 72: 257-273.
Spratt. J. D. 1975. Growth rate of the northern anchovy Engraulis mordax in southern California waters, calculated from otoliths. Calif. Fish Game. 61: 116-126.
Stauffer, G. D. 1973. A growth model for salmonids reared in hatchery environments. Ph.D. thesis. University of Washington, 213 pp .
Taft, B. 1960. A statistical study of the estimation of abundance of sardine (Sardinops caerulea) eggs. Limno. Occanogr. 5(3): 245-264.
Tombinson, P. K. 1970. A generalization of the Murphy catcl equation. J. Fish. Res. Bd Can., 27: 821-825.
Vrooman, A. M., and Smith, P. E. 1971 . Biomass of the subpopulations of northern anchovy Engruulis mordax Girard. Mar Res. Comm., Calif. coop. oceanic fish. Invest., Rep. 15: 49-51

[^0]: ${ }^{2}$ James Zweifel and Paul E. Snith, NMFS, La Jolla, California,

[^1]: ' Roy Mendelssohn, NMFS, Honolulu, Hawaii, USA.

