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A method of Kallio for improving bounds on the optimal value of a linear 
program calculated from an intermediate iteration is used to improve Zipkin’s 
bounds for an aggregated linear program. Both theoretical and computational 
results are given, demonstrating the improvement due to these new bounds. 

NE METHOD for solving large scale linear programs (LPs) or large 0 scale Markov decision processes (MDPs) is by first finding an exact 
solution to a smaller, aggregated problem; disaggregating this solution to 
the original problem; and finding bounds on the error from using the 
approximate solution. This has been studied extensively by Zipkin (1980) 
for fixed-weight aggregation. 

In related work, Kallio (1977) derives bounds for a nonaggregated LP 
which is stopped at some iteration of the simplex method, and uses a 
decomposition technique and marginal analysis to tighten the bounds. 
For nonaggregated LPs, Kallio’s Theorem 1 and Zipkin’s Proposition 2 
are identical. In this paper, Kallio’s method is used to improve the bounds 
for aggregated LPs and for fixed-weight aggregated MDPs. The notation 
of this paper follows that of Zipkin whenever possible. 

1. The Model 

The original LP is 

z*  = max cx 
subject to Ax 5 b 

x r o  

where c = (c,) is an n-vector, b = (b,) is an m-vector, A = (a,) is an m x 
n matrix, and x = (x,) is an n-vector of variables. 

Let u = {&:K = 1, . - .  , K }  be an arbitrary partition of (1,  - - , n}, and 
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nk = I s k  I .  Define dk to be the submatrix of A consisting of those columns 
whose indices are in sk. Define ck and x k  similarly. Let gk be a non- 
negative nk-vector whose components sum to unity, and define: 

Ak = dkgk,  Ck = C k g k ,  k = 1, - * * , K.  

Let A = (A’, - - - , AK), C = (El, - .  , FK) and X a K-vector of variables. 
Then the weighted column aggregate problem of (1) is: 

t = max FX 
subject to a I b (2) 

Xr 0. 

Let z *  be the optimal value of (1) and let x * ,  an n-vector, be an optimal 
solution to (1). Zipkin shows that for any partition 6’ = (sk’:k - 1, - - - , 
K’} of (1, . . . , n} such that there exist known positive numbers 
(dl, - - - , dn}  and known non-negative numbers { pl, - - , PK} with: 

’E.yk dJxJ* I pk, k = 1, - * - , K’ (3) 

then 

E I  z*  5 z + [a 
where 

[a = c f = = I  [maXJ,s;, ( (CJ - iA’)/dj}]+pk, 
E is the vector of optimal dual variables of (2), A’ is thej th  column of A, 
and (a)+ = max(0, a). 

Kallio assumes there are two known n-vectors, I and p, 0 I I I p I w, 
such that if the constraint I I x I p is added to (l), then the value of an 
optimal solution is unchanged. If t is the value of a current feasible basis, 
and z i  is the corresponding vector of simplex multipliers, Kallio’s bounds 
are: 

2 5  Z* iib + cJ’ (cJ  - iiA’)+-p, + C J  (C, - iiAJ)-*lJ (4) 

where (a) -  = min (a, 0). 
Kallio shows how a certain restricted dual problem can be solved by 

marginal analysis to yield a tighter bound than does (4). In what follows, 
it is assumed dJ in (3) is identically 1 for allj. The extension to the more 
general case is straightforward. Extending this idea to the aggregated LP, 
amend to (1) the K constraints CJGsk x, spk, k = 1, . . , K. Then the dual 
to this restricted problem is 

minimize ub + CP1 6kpk (5) 
S.t. U&t + Sk 2 Cj, j E s k i  k = 1, * * , K ,  U 2 O; 6 2 0. 



1452 Technical Notes 
- -  

Let C; = C, - iiAJ,8k = max,,s, (C;)+ and8= ( 8 k ) .  By assumption, (1) 
and (5) have the same optimal value z *, 
LEMMA 1. (E, 8) is a feasible solution to (2.5). 

Lemma 1 leads to the extension of Kallio's Theorem 1 for an aggregated 
LP. Consider (5) with u restricted to the set U = {ul u = 9zi, 9 E R}. The 
new restricted dual program is 

minimize 28 + CkK, 8kph 
s.t.(Cl - atJiil)9 + 8 h  2 c,, j E Sk; j = 1, - - , n, (6) 

U 2  0; 8 k  2 0, k = 1, e - . ,  K 
Let z(9) be an optimal value of (6) as a function of 9. 

THEOREM 1. z(9)  is a convex and piecewise linear function. Let ~ ( 9 )  
be the left-hand derivative of z(9) with respect to 9. Then the possible 
discontinuity points of ~ ( 9 )  where an optimum can occur are at 
e,, - , 8, where: 

cJ/C1 alJE1 if El alJE1 # 0 {- if E, a,,G = 0, for allj. 

Proof. The dual LP (6) can be decomposed into K subproblems, each 
of which has a solution valuemaxJEs,(c, - (@E1 ayiir))+pk, which are convex 
and piecewise linear. This implies that ~ ( 8 )  is given by: 

~ ( 9 )  = 28 + Cf=I [max,Es, (cJ - C@C1 al~6l))]+pk 

which is convex and piecewise linear since it is the sum of such functions. 
The rest of the theorem follows from this property and inspection of the 
formula for ~ ( 9 ) .  

Let z(9*)  be the minimum value of z(B), that is an optimal solution to 
, (6) over all possible values of 9. 

COROLLARY 1. Z 5 z * 5 ~ ( 9 ' )  5 Z + &. 
Proof. z (9* )  I Z + [a since Z + [a is equivalent to z(1), and 9* 

minimizes z(9*) .  By weak duality, a solution to (5) is greater than or 
equal to a solution of its dual problem. Since the constraint u E U 
restricts (5), z (8* )  is no less than an optimal value to (5), hence z(9*)  is 
a legitimate upper bound. 

Following and extending Kallio, for any value of 9, define the index 
j ( S ,  k )  to be the j where (c, - alJiil) is maximized for j E s h ,  k = 
l,---,K.DefinethesetJ(O)= { j ( j = j ( e , k ) , k = l , . . .  ,I(),anddefine 
the set I(O) = { j l j  E J(9); 9, I 8 and El alJii1 c 0 or 9, > 9 and El  a& z 
0). Then z-(f?) = Z - x , E ~ ( ~ )  Pk(xz a,C,). Using this formula for z-(9),  the 
marginal analysis to find z(B*) proceeds as in Kallio. At 9*,  z(B*) can be 
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evaluated by the formula z(B*) = Ze* + CJEI ,H. )  (c, - 8,*a,Jii,)pk. This 
involves evaluating at most K terms. 

Examples. This example is from Zipkin. The original problem is: 

z*  = max 2 . 5 ~ 1  + 3x2 + 4x:1 + 5x4 
subject to4x1 + 5x2 + 7x3 + lox4 5 54 

XI + 2x2 + x3 + 2x4 5 10 
XI, x2, Xn, x4 2 0. 

An optimal solution is xI* = “?I, x:$* = I 4 h ,  xz* = x4* = 0,  t* = 32. Zipkin 
solves two aggregate problems. For the first, K = 2, sl = (1, 2), s2 = 
(3, 4}, the column weights in each partition are (0.5, 0.5). The second 
aggregate problem changes the column weights to (0.75, 0.25). For the 
first problem, Z = 28%, U = (21/4x %x), and with p 1  = 10, p? = 8, the bounds 
are 28% 5 z *  5 34’%4. For finding the improved bound, 8, = 1.101, = 
0.4290; A = 2.116, O4 = 0.9231. Then e* = 8’ = 1.101, and the improved 
bound is 28% 5 z *  P 32.1855. 

For the second aggregate problem, Zipkin’s bounds are 30% 5 z *  c: 
332%~. For the improved bounds, el = 1.051, e,! = 0.9817; = 1.0606, 
8, = 0.8794. At an optimum, e* = 8, = 1.051, and the improved bound is 
30% 5 z*  5 32.1231. In both problems, the improved upper bound is an 
extremely tight bound on the true optimal value z *. 

In Mendelssohn (1978a-c) these results are extended to derive im- 
proved bounds by dominance for aggregated MDPs. A numerical example 
is presented for a real life model that has been suggested for use in 
managing salmon runs. 
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