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ABSTRACT 

Qualitative properties of optimal policies for stochastic, multispecies harvesting models 
are described. Conditions that imply that a k-species model can be decomposed into k 
single species models are discussed. For a discrete, stochastic version of the Loth-Volt- 
erra models, it is shown that finding an optimal policy can be narrowed to finding the 
globally optimal harvest, and to using constraints developed on the partial derivatives of 
an optimal policy to accelerate computations. For a discrete stochastic m i o n  of a 
comptition model developed by Silliman. it is proven that knowledge of the globally 
optimal harvest is sufficient to completely describe an optimal policy. Approximate 
policies that are easier to solve are suggested. The results suggest that an optimal 
harvesting policy will tend to simplify the ecosystem-that is harvest to low levels 
unwanted or less valuable species. 

INTRODUCTION 

In a previous paper, I extended the results for stochastic, singlespecies, 
pooled-age-class harvesting models to stochastic multi-age-class models (see 
[4] and references cited there). These models consider a single stock or 
species separate from its interaction with other species. Biological systems 
are noted for having complex food webs, and it is desirable to examine the 
effects these interactions have on optimal harvesting strategies. This is 
particularly true when two or more interacting species are being exploited 
by a single fishery, or are being managed by a single controller or agency. 

Let x, (possibly a k-vector) denote the size of a stock or stocks at the 
beginning of period, t, z, (possibly a k-vector) the amount harvested in 
period t ,  andy, =x, -2, the amount remaining at the end of period t after 

+This is a revised version of Chapter 4 of my dissertation, submitted in partial 
fulfillment of the requirements for a Ph.D. at Yale University. 
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harvesting has ceased. Assume x,+ is a random function of yf ,  that is, 

where D1, D,, . . . , D, are independent, identically distributed random vec- 
tors, distributed as the generic random vector D. 

In each period, observing x and harvesting to y produces a return 
G(x,y), discounted by a factor a, O<a G 1. Following Mendelssohn and 
Sobel [5], this problem can be formulated as the following system of 
recursive functions : 

where 

and where the domain X is a convex set, representing the set of all possible 
population sizes. It is assumed that X is bounded, which is realistic, since 
real populations cannot be negative, nor can they be infinite. 

Multispecies harvesting models have been considered to a limited extent 
in the literature. Quirk and Smith [6] present results for a continuous-time, 
deterministic Lotka-Voltema-type system, but under very restrictive assump- 
tions. Hilborn [ 11 uses numerical dynamic programming to study harvesting 
strategies for noninteracting species that are jointly harvested. 

Three types of stochastic multispecies models are analyzed in this paper. 
The first is a model of k noninteracting species that are jointly harvested, 
but whose return structure is separable. It is shown that the entire problem 
can be reduced to k one-dimensional problems. This result is similar to 
previous results in [4]. 

The second model is a discretized version of the Lotka-Volterra model 
for competing species or predator-prey systems. In this model, the growth 
rate for each species and all the interaction coefficients are assumed to be 
random variables. It is also assumed that each species is harvested, and that 
each species can be targeted. The first assumption can be easily relaxed; the 
second assumption can be relaxed if the model of “by-catches” retains all 
the necessary concavity properties. For example, if the by-catches are 
linear, then straightforward modifications to Theorem 2 can be made. 

The third model is a model due to Silliman [9] based on laboratory 
experiments. This model is similar to the Lotka-Volterra equations, except 
that the interactior. term is linear instead of quadratic. 
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1. MODELS AND RESULTS 

The k-dimensional notation of Mendelssohn [4] is adapted to the k- 
species problem by letting superscript i denote species instead of age-class. 
The first model to be considered has k species that interact only in the 
return function. A single boat or fleet harvests k noninteracting species. Let 
g'(x',y') be the net benefit of harvesting species i from x i  individuals toy' 
individuals. The boat or fleet may also experience costs that are indepen- 
dent of whether or not it harvests, but depend on the total time away from 
port. One possible structure for these costs is that it is proportional to a 
weighted sum of the total harvest sizes. This could arise if the time spent in 
searching for and harvesting each species is proportional to the size of the 
harvest from that species. Thus, the total return from harvesting is 

k 

G(x,Y)= { g ' ( ~ ' , ~ ' ) - c ~ ' ( x ' - ~ ' ) } ,  (1) 
i- I 

c,wi  > 0 for all i. 

The growth of each species is a random function which depends on the 
number of individuals of that species only, that is, 

x;+ = s [ y,, d,] = s i [  y;, d: 1, i = 1, . . . , k. 

Theorem 1 states that the model described by Eqs. (1) and (2) is 
separable into k subproblems where each species is considered separately 
from all others. The advantage of this is that a k-dimensional problem can 
be reduced to k one-dimensional problems where the stronger results of 
Mendelssohn and Sobel [5] can be applied. 

THEOREM 1 

In the dynamic-programming problem (I), if G[x, y] and S[y, d] are gioen by 
Eqs. (1) and (2), respective&, then the problem can be separated info k 
one-dimensional subproblem of the form 

fA(* ) = 0, 
R ( x  ') = m:x , { g '( x ',y ') - cw i( x - y i ,  + aEf-  ] ( s i [  y i ,  d']) } . 

o < y  <x' 

Proot 

The Lotka-Volterra equations are usually represented as 

The proof follows from a similar proof in Veinott [lo]. 

i j -  1 ,..., k, k-2w. 
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If 4 is positive, then speciesj is a prey of species i. If av is negative, then 
species j is either a competitor or a predator of species i. (Detailed 
discussions of these equations and their shortcomings can be found in [3, 7, 
81.1 

One possible discretized version of (3) is 

To include harvesting, it is assumed that a harvest of z; from any species i 
produces a return p izj in period t ,  and that the transition (4) depends only 
on the number left after harvest, y;= x; - 2;. It is further assumed that each 
ri ,  i = 1,. . . , k, and uv, i j -  1,. . . , k, are random variables such that r i  > 0 
with probability one, av 2 0 with probability one if species j is a prey of 
species i ,  and a,, < 0 with probability one if species j is a predator or 
competitor of species i .  The dynamic program then is 

where 

and S[y,r,a] is given by [4]. 
The analysis concentrates on a modification of (5). Let 

Then, as in [4, Theorem 31, there is an equivalent problem: 

where 

J A Y ) =  G(Y) + aHn- r(S[~,r,al) 

and n goes from 1 to T- 1 if the original planning horizon is T periods. Let 
&(x) be an optimal policy function with component function ai(x). 
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THEOREM 2 

Let x,* be the global optimum of J,(x) for x E X .  

(a) In a competitive system (that is, aii < 0 with probability one for all i j ) :  

(i) J,(y) is concaue for all n. 
(ii) Zf x x,*, then A,(x)=x,*; if x <x,*, then A,(x)=x; and 

for all i. 

(iii) Let I be the set of i’s such that xi <x.*‘, and I‘ the set of i’s such that 
xi >x,“. Then 

aa;(x) 
ax] O <  - < I  for iEZ,  j E Z u I C ,  

aa,‘(x) 
axj - l < -  < O  for i E P ,  j E Z  

(b) In the more general system, assume piaii +piaji < 0 with probability one 
for all i j .  Then: 

(iv) JJy) is pseudoconcaue for all n. 
(v) (i)-(iii) abooe are oalid. 

Proof. (a): G(y) is twice differentiable. Then 

where 4 is the expected value of a#. Thus G(.) is concave. S[y,r,a] is 
concave if each si[y,r, a] is concave. Again, si[y,r,a] is twice differentiable, 
and 

a Y [ y ,  r, a] 
ay i ay j = aii 4 0 with probability one, 

so S[ e ,  e ,  -1 is concave. From the usual arguments about a dynamic-pro- 
gramming problem “inheriting” concavity properties through time (see [5n, 
this implies J,(y) is concave, and fn(x) is concave and continuous. This 
proves (i). Claim (ii) is immediate from the concavity of J,,(.) and the 
definition of x,* as the global optimum, since the gradient of a concave 
function is diagonally antitone. 
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Claim (iii) is proven using the monotonicity of the derivative of a 
concave function. That is, 

[ V J,,(x') - V Jn(x) ] [x ' -x]  < 0. 

In particular, if x' = x:, then 

[ - vJ , (x ) ] [X: -x ]  < 0. 

Claim (iii) is essentially that if x i  < x,*', then an optimal solution has 
d ( x )  5: x i ,  no matter what the value of the other xi. Let 8 be a k-vector that 
has value zero except at the ith component, which has value 6'. Suppose 
x * + Z ~ , J - Z , , ~ ~  is such that for all i E P ,  V'J,(X++Z,€~.~'-Z~,,~')> 
0. The theorem will be true if this point is as good as any other point that 
decreases one or several of the species in I .  Suppose not. Then 

1 O i J , , ( x * +  2 8-  x 8-  2 A' 

-J,,(x*+ 8 -  z8) 
i E I C  i E I  i E I  

i E I C  i E I  

= -VJ, , (x*+ 2 8 -  x 8 - y  i E I  X ) ( A )  (8) 
i E I C  i E I  

by the mean-value theorem, where 0 < y  < 1, and A has as its ith component 
hi. However, (8) implies 

i E I E  i E I  i E I  

which contradicts the concavity of J,,(x). Therefore the inequality in (8) 
must be reversed. This implies 

O <  - , i€Z, jEZuZC,  
axj 

To obtain the upper and lower bounds, let z = x - y be the decision variable. 
Then parallel arguments (as in [5] or [4, Theorem 3D yield identical 
inequalities for the optimal amount harvested. This yields the other bounds. 
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The proof has assumed the existence of the partial derivatives on the 
relative interior of X. However, an identical argument to [5, Corollary 4.21 
proves their existence. 

(b): The proof of the general model would be the same as for part (a), 
since piav +pjqi 4 0 with probability one assures that GO.) is concave. 
However, S[y, r, a] is not necessarily concave, so the proof breaks down. The 
proof therefore is to show that S[y,r,a] is a logconcave, and that an 
appropriate transformation of variables transforms this problem into a 
problem that satisfies the concavity assumptions of part (a). 

For any i, and for any fixed value of r,a, 

2 
a 2  1 aii -logs'[y,r,a]= - - - 

a y  Y ' *  (l+ri+x,ayyjY' 

The function logsi[y,r,a] is concave if for any k-vector I > O  we have 
r ~ z  G 0 where I) is the Hessian matrix of cross partial derivatives. This is 
equivalent to 

z i 2  
-- 

Y i 2  

which equals 

j -  1 J - I  I > j  

f k 

In the transformed problem (7), let N, = In x,, so that x, = exp(N,). Then 
the transformation becomes: 
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which is concave, and the constraint set is 
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which is a convex set that is increasing in N1+,. Results (i), (ii), (iii) now 
hold for this transformed problem, and J,,(y) is logconcave. However, J,,(y) 
logconcave implies J,,(y) is pseudoconcave, which is the desired claim (iv). 

In the competitive system, it is straightforward to show that if q i ( l  + P )  
< p i ,  then it is optimal to remove this species entirely at the outset. This is 
not necessarily true for a species that is a prey for a more valuable species, 
since this species has higher future value. 

The usefulness of Theorem 2 is that most of the computational work is to 
find x,’ for each n. Particularly on a discretized version of the model, any 
efficient search technique can be used to find x:, which should help reduce 
the fabled “curse of dimensionality.” A second way to increase computa- 
tional efficiency is to use A,(x), the optimal policy for G(y), as a near-opti- 
mal stationary policy. This can easily be calculated by any standard routine 
for concave optimization. It is conjectured that th is  will be a good ap- 
proximation to a competitive system, since the less valuable species should 
lose value through time, as they have more of a chance of reducing the 
valuable species. Thus, this “myopic” policy should be a conservative 
policy. 

For a predator-prey system, however, the approximation should be 
weaker, since prey species may increase in value through time. The 
“myopic” policy should tend to overharvest these species. 

In either case, the effect of “optimal” harvesting should be to “simplify” 
the ecosystem, that is, reduce low-valued competitors, or low-valued preda- 
tors that are not prey for any other species, to very low or zero levels. Even 
if these species are not harvested to zero, this increases the chance of their 
random extinction. Simplification of the ecosystem through harvesting 
places great reliance on the accuracy of the model, particularly to popula- 
tion ranges that have never been observed, but may come about due to 
harvesting. This suggests caution should be used in applying these results, 
since there exist few if any striking examples of the Lotka-Volterra equa- 
tions explaining the behavior of a real ecosystem. 

Silliman [9] performed laboratory studies on the competition between 
guppies (Poecilia reticulata) and red swordtail hybrids (Xiphophorus 
maculatus X X .  helleri). The dynamics of each species can be described by a 
growth function which depends only on the size of that species and a linear 
interaction term. A discrete stochastic version of Silliman’s model is 

x,i+,=ri(y/ ,d/)-  2 m 5 j ,  i ~ = 1 , 2 ,  (9) 
jzi 

mi > O  w.p. 1, 
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where r i ( - , d i )  is concave, continuous, and nondecreasing for each d’. The 
return from harvesting each species is assumed to be proportional to the 
amount harvested from that species, that is, 

2 

G(x,y)= xpi*(x i -y’ )  p i > O  foralli. (10) 
i- 1 

Equation (9) is appropriate for two species competing for the same 
resource. Intuitively, one would expect that if we increase the number left of 
one species after harvesting, we will not decrease the number left of the 
second species. In fact, a stronger statement than that can be made. 

The dynamic program (1) becomes 

where H,,(y)=aEfn,_I(S[y,d,m])-2~,lp~i and S[y,d,m] is given by Eq. (9). 
For all x E X, let x$ be the global maximum of H,,(y). Theorem 3 states that 
an optimal policy for (1 1) “uncouples” the species in the sense that given x:, 
the optimal policy for each species depends only on its size relative to x:, 
regardless of the size of the competing species. 

THEOREM 3 

If for each n, x: is a global optimum of H,,(.) gioen in (1 l), then for each n 
and all x E  X ,  

where aAb denotes component-by-conponent minimums. 

Pro05 A proof similar to that of Theorem 3 in [4] shows that H , , Q  is 
concave and continuous in y and that f.(x) is concave, continuous, and 
nondecreasing . 

If x > $, then clearly A,,(x) =x:, since x: is by definition a global 
optimum. Otherwise, it is necessary to show that if xI>x, then A,,@’)> 

Let 8‘ be the column vector that has zero in every coordinate except the 
ith, which has the value 6 > 0. Suppose A,,(x) has been found for some 
x E X.  Then it is clear that 

An(JO* 

a:(x+iY) >a:(x), 

since if it were lower, the resulting value would have to be dominated by 
A,@), which is feasible and by definition no less in value. It therefore 



258 

remains to show that 
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At n-2, 

~ 2 ( y ) = p ' { ~ E [ r ' ( y ' , d ' ) - m ' 4 ~ ]  - y ' }  

+p'{ "E[ r2(y2,d2)- rnz'y']  -y2} 

= [ ap'Er'(y' ,d')-p'y'-  ap'E(m''y')] 

+ [ ap2Er2(y',d2) - p y -  ap'E(m'42)], 

which is the s u m  of two concave functions, one of which depends only on 
y' and the other only ony'. Therefore, at r=2, it is true that: 

(i) A,(x') > A2(x) if x' > x, 
(ii) ViH2(y) is nonincreasing in y ', 
(iii) ViH,(y) is nondecreasing in yJ. 
Assume as an inductive hypothesis that (i), (ii), and (iii) are valid in 

periods 2,3,. . . , n - 1. Then at period n, 

v'H,,(y) = E { [ ap + [ V'H,, - '(S[y, d, m]r\xl! - ') - p i ]  + ] ( - m @) ) 
+ E { [ @' + [ VJHn - 1(s[Y7 d, m]& - 1) -2-91 + ] ( 4']( y', d')) ) -p'. 

(12) 

If y ' is increased, si[y, d, m] is not decreased, and d[y, d, m] is not increased, 
so by (ii) and (iii), ViH,,- is not increased. Since (- mu) 4 0 with probabil- 
ity 1, then the first term is nondecreasing in y '. Similarly, if y is increased, 
s'[y,d,m] is not decreased, and s'[y,d,m] is not increased. By (ii) and (iii), 
this implies VJH,,-, is not decreased. Since by assumption 4'1 is nonnega- 
tive, then the second term is nondecreasing in y i .  

What has been shown is that 

V'H,(y+6') > V'H,(y). 

In particular, V4i(,(A,,(x) + y i ,  > VJH,,(A,,(x)) for 0 4 y ' < 6'. By the nec- 
essary and sufficient conditions for an optimum of a constrained concave 
function, this implies 

A,,(x+a) >A,,(x). (13) 

x<x:, V'H,(x)>O for i=1,2; hence x is optimal. If x'>x,d and xJ<x,,,  d 

To see that (13) together with (ii) and (iii) implies the theorem, note that 
for x>x)l the theorem is obvious. Because of (13) and (ii) and (iii), for 
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then from (iii), V'H,,(XAX:) < V'H,,(x:), which implies u,'(x) <ui(x:). Simi- 
larly, (ii) implies ViH,,(x~x:)  > V'H,(x!), so that uL(x)= XI. However, in- 
creasing a coordinate at a time, it is straightforward to. show that if 
ui(x) <xf, then (13) would be violated. 

The induction is complete if (i), (ii), and (iii) can be shown for period n. 

An optimal policy from Theorem 3 is shown in Fig. 1, where xo-  

(i) and (iii) have already been proven; (ii) follows from concavity. 

( X , " ' , X ~ .  The policy has four regions, depending on whether or not x d is 
obtainable from the present population size. 

As n becomes large, x: will tend to a single vector xo. If p'wp2, it is 
expected that an optimal policy will reduce one of the competitors to very 
low levels, while maintaining the more valuable species near its single- 
species base stock size. This "simplification" of the population dynamics is 
not, in most instances, a desirable feature, particularly if we have doubts 
that the model contains enough "richness" to accurately portray this sim- 
plified ecosystem. Extensions to more than two species are possible given 
similar assumptions. 

I I 

X :' 
Population size of species I 

Fro. 1. Optional harvesting strategy for Silliman model at period n. In zone I, Species 
2 is harvested to xt';  species 1 is not harvested. In zone 11, species 1 and 2 are harvested 
to x:',x,"' respectively. In zone 111, specia 1 is harvested to x:'; species 2 is not harvested. 
In zone IV, neither species is harvested. 
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A simple predator-prey model analogous to the species competition 
model given by Eq. (9) is 

Here species 1 is the predator. It grows at a rate which is a mixture of its 
own population size and that of its prey, and decreases by a convex, 
nondecreasing function of its own population size, r l ( y l , d l ) .  Species 2 is the 
prey species. It increases by a concave function r2(y2,d2) and decreases by 
predation at a random rate m 5 ' .  

Let 4 be a realization of the random variable d' ,  and q a realization of 6 .  
Corollary 3 assumes that q - r'['l( - ,n < 0 for all possible combinations of 
(q,Q This is equivalent to assuming that the predator population is nonin- 
creasing in size without the presence of the prey. This would be true of an 
exclusive predator, which is not usual for fish species. However, the 
corollary gives insight into how harvesting will affect the ecosystem. The 
proof of Corollary 3 is not given, since given the above assumption, it is 
identical to that given for Theorem 3. 

COROLLARY 3 

u, in Theorem 3, S[y,d,b,m] is given by Eq. (14) instead of (9), with 
(d, b, m) possibly random, rl( - , d I) conuex, continuous, and nonakcreasing for 
each d I,  and r2( *, d2)  concave, continuous, and nondecreasing for each d2,  then 
for each n and all x E X ,  there exists an x: such that an optimal policy is 
given by 

A,,(x) = .:AX. 

Similarly to Theorem 3, x!! should tend to some xO as n gets large. If the 
prey species is much more valuable than the predator, an optimal policy will 
be to leave the predator at very low population sizes, and the prey close to a 
single-species optimum. If the predator is the more valuable species, then an 
optimal policy will tend to a prey population size that gives maximum 
growth to the predator. The prey should then be only a secondary or 
marginal component of the catch. This behavior is often observed in mixed 
fisheries. 

I am indebted to Profasor Matthew J. Sobel for many he@d and stimulat- 
ing discussions during the course of my writing, and for his guidance and 
encouragement. 
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