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ABSTRACT 

New results by Henig [3] and White and Kim [ 111 on multiobjective Markov decision 
processes are combined with an approach tc  smooth out year-to-year fluctuations in 
harvest size, to produce a systematic method for determining mean-variance tradeoffs 
when harvesting a random population. Further procedures for accelerating computations 
also are discussed, and a salmon model suggested by Mathews [4] is used to illustrate the 
procedure. The suggested procedure generalizes Beddington and May [l] and May et al. 
[5], by presenting a systematic method to determine mean-variance tradeoffs, and sec- 
ondly by allowing for a much larger class of harvesting policies to be considered. 

1. INTRODUCTION 

In several recent papers, Beddington and May [ 11 and May et al. [5 ]  have 
raised the issue of high variances in the equilibrium harvests when 
stochastic populations are harvested at high levels. Their concerns suggest 
that there may be desirable tradeoffs between the average per-period 
harvest and the long-run (ergodic) variance of the harvests. In order to 
determine this tradeoff in a practical manner, what is needed is a systematic 
method to determine the mean-variance tradeoff among some subset of 
policies with desirable properties. 

In this paper, such a methodology is suggested. New results by Henig [3] 
and White and Kim [ 111 on multiobjective Markov decision problems are 
combined with an approach to smooth out year-to-year fluctuations in the 
harvest size, an approach studied analytically in Mendelssohn [6].  This leads 
to a systematic tradeoff of the mean and variance for only a subset of 
policies that are Pareto optimal policies for two well-defined objectives. The 
algorithm is applied to a model suggested by Mathews [4] for salmon runs 
off Bristol Bay, Alaska. Section 2 describes the model and the objective 
functions to be considered. Section 3 discusses the solution procedure and 
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computational considerations. Section 4 shows the results of the analysis 
when applied to the example. 

2. THEMODEL 

A population is to be managed over an infinite planning horizon. At the 
start of each period t, an initial population size x, is observed. During 
period t an amount z, is harvested, leaving a population size of y, = x, - z, at 
the end of the period. The population size x,+' at the start of the next 
period is a random function of y ,  and of a random variable D,, that is, 

XI  + I  = sty,, Dl1 (2.1 ) 

where the random variables D I ,  D2, D j ,  ... are assumed to be independent 
and identically distributed as the generic random variable D .  If a popula- 
tion size x is observed and a decision y is made, an expected one-period 
return of g(x, y )  is received. The returns are discounted by a factor a, 
0 < a  < 1, and letting E be the expectation operator, it is desired to 

00 

maximize E a I - 'g( x,, y , )  
I -  1 

s.t. (2.1); y1 E Y(X,), (2.2) 

where Y ( x )  constrains the population sizey that can be left given x .  For 
a = 1, the summation in (2.2) will not converge. The results presented can be 
used in this instance by allowing a to approach 1 from below. A simple 
example of (2.2) is to maximize total expected discounted yield, that is, 

m 

1 -  1 
maximize E a ' - ' (x , -y , )  

s.t. (2.1); o < y ,  < X I .  (2.3) 

A policy that maximizes (2.2) or (2.3) may produce harvest sizes that 
fluctuate sharply from period to period. This may not be undesirable. 
However, it is natural to desire to obtain a feel for what is lost if these 
fluctuations are smoothed out. One method [6] for smoothing out the 
period-to-period fluctuations in harvest size is to assess a cost for any 
change between z , - ,  and z,. Specifically, suppose for any decrease in the 
harvest size a cost of X.(z,- - 2,) is assessed, and for any increase in the 
harvest size a cost of E.(z,-z,-,) is assessed. Letting e=(A-E)/2 and 
c = (A + e)/2, this cost can be compactly represented as e-(z,  - - z,) + c- It, - 
~ , - ~ l .  In [6, 71 the approach is to combine the two objective functions. That 
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is, the new optimization problem becomes: 

00 

maximize E 2 a I-’ { g( x,,y,) - e[ z, - I - (x, -yJ]  - cl(x, -y,) - z, - I} 
t - 1  

s.t. (2.1); y , € Y ( x , ) ;  z,=x,-y,. (2.4) 

To smooth the total fluctuations, it is natural to assume A=&.  This 
implies e = 0 and c = A  = E ,  so that the one-period return for any state ( x ,  z )  
is 

g ( x , y )  -A(x -y - 21. (2.5) 

The desired tradeoff could be approximated by varying A, solving (2.4) 
for each value of A, and then calculating the ergodic distribution of each 
policy found. However, there is a more systematic method to achieve the 
same ends. Assume each period there are two separate returns, g ( x , y )  and 
-A(x -y  - zI. Then it is desired to find the set of Purefu optimal values and 
associated policies. ’ 

For any policy 6 ( x )  defined for all x in some set of possible states X, let 
v, = { u i }  be the vector value of expected returns when following policy 6, 
that is, it is a two-dimensional vector where ui is the expected return for 
objective i, i =  1,2, when following policy 6. Let V be the set of all possible 
return vectors. Then v,. is Pareto optimal and 6* is a Pareto optimal policy 
if there exists no other v, E V such that 

vi>ui .  for i,j=1,2, 

qj >& for some j. 

Intuitively, (2.6) says that a policy 6* is a Pareto optimal policy if any other 
policy 6 that increases the expected return for one objective decreases the 
expected return for the other objective. Thus when determining the mean- 
variance tradeoff, policies are included if they lower the costs due to 
fluctuations as they lower the “true” value of the harvest, or vice versa, 
increase the “true” value of the harvest if they increase the assessed cost due 
to fluctuations in harvest size. 

Given the set of Pareto optimal policies, the ergodic distribution for each 
policy is calculated. The mean and variance are then readily calculated 
from the ergodic distributions. 

3. COMPUTATIONAL TECHNIQUES AND CONSIDERATIONS 

In this section an approach to finding the set of Pareto optimal policies is 
described. Henig [ 31 has provided the theoretical foundation, and White and 
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Kim [ 111 an algorithm for efficiently calculating the Pareto optimal set. 
Suppose the problem has been redefined on a discrete grid. Letp(ij,u,) be 
the probability of going to statej from state i when the action chosen is a,. 
Here a state i refers to a particular vector pair (x,z), that is, the present 
population size and the harvest size last period. Let P[6] be the transition 
matrix for policy 6, and let P,x,,,[S] be the row of P[6] for state (x,z). Let 
r[(x,z), 6) be the two-dimensional row vector of rewards wher, (x,z) is the 
state and S is the policy, that is, ri[(x,z),6] is the immediate reward for 
objective i when (x,z) is the state and policy 6 is being followed. Let y be a 
two-dimensional vector such that 0 G y G 1 and 2 , y i  = 1. Let f be any 
real-valued two-dimensional vector, and define the following operators: 

and 

[ Uf](x,z)= max[M](x,z). (3.lb) 
6 

Let f be the unique vector where equality is obtained in (3.1 b), and let 6* 
be a maximizing policy. Then Henig [3, pp. 60-611 proves that 6* is a 
Pareto optimal policy if and only if it is a policy where the maximum is 
obtained in (3.lb) for some value of y. Writing out (3.1) specifically in our 
context, a policy is Pareto optimal if and only if it achieves, for some y, the 
maximum of 

White and Kim [ l l ]  show that by including y in the state vector, (3.2) can 
be treated as a partially observed Markov decision process, and use the 
special structure inherent in this problem to derive an efficient version of 
Sondik’s [ 101 algorithm for partially observed MDPs. 

The algorithm in White and Kim [ 111 solves a discrete-state and -action 
version of (3.2) simultaneously for all values of y in the interval [0, 11. This 
readily can be seen to be the equivalent of letting h vary in (2.5). Therefore, 
without loss of generality, X can be set equal to one (as can also be seen by 
rescaling the return function g at the outset). 

Given the set of Pareto optimal policies, which must be finite in number, 
the ergodic probability distribution (assuming an irreducible transition 
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TABLE 1 

Block Form of the Transition Matrixa 

I 0 

(X.2) 

States that 
have z ,  as 
optimal 
harvest 1 

(X,Z) 

States that 
have z, as 
optimal 
harvest 

States that 1 
(XJ) 

have zN as 
optimal 
harvest 1 

0 

0 

0 

0 

~ 

'P(,,,)(6*) are the appropriate rows of P(6*)  for an optimal policy 8'. 

matrix) can be calculated readily. Let 
tion, and calculate successively for a given 6* 

be an initial guess at this distribu- 

7r" = 77:- , P [ 6 * ] ,  (3.3) 

where T denotes the vector transpose. The iterations stop when the maxi- 
mum difference between .rr, and ""-, is at a satisfactory level. 

While the iterations described in (3.3) are straightforward, they are 
inefficient and impractical. Suppose the population size is defined on a 
25-point grid. Then there are 25 possible harvest sizes, so that there are 625 
states. This implies for any policy 6* that P [ 6 * ]  has 390,625 entries, which 
would require roughly 1,562 K of computer storage. However, P [ 6 * ]  is 
sparse, since if x - S * ( x , t )  = z', then a transition only can be made to states 
( x , z ' )  in the next period. Permute row and columns of P[6*]  so that the 
columns run through all values of x for each fixed value of I, and order the 
rows so that all states that harvest the same amount when following 6* are 
together. This yields a blocked matrix as in Table 1. A solution procedure is 
to iteratively solve (3.3) for each block in order until convergence is 
reached. This is precisely block Jacobi iterates as described in Young [12]. 
The advantage is both a reduction in computer storage (since only the 
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smaller blocks are used one at a time) and an acceleration of convergence 
[12, Chapter 141. 

4. EXAMPLE 

Mathews [4] has suggested the following model for salmon runs on the 
Wood River off Bristol Bay, Alaska. Let x, be the number of recruits at the 
start of period t, andy, the number of spawners at the end of period t. Then 

x, + I = exp{ D, } 4 . 0 7 7 ~ ~  exp{ - 0.800~~ }, 

D-Normal(O,O.2098). (4.1) 

The example problem is defined on a grid of 15 equally spaced points on 
(0,5] in units of 106 fish. The procedure used is described in detail in [7] . 
The constraint set Y ( x )  is assumed to be Y ( x ) = { y : O < y  <x}, a is arbi- 
trarily set at 0.97, and the primary one-period return is simply the yield, 
x, -yf, while the second objective is - hlx, -y,  - z, - I with h = 1. In applica- 
tions, it will be necessary to vary a to test the sensitivity of the results to the 
change in the discount factor. 
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FIG. 1. Long-run (ergodic) mean-standard-deviation tradeoff for the salmon model. 
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The mean-standard-deviation tradeoff curve using the techniques of Sec. 
3 is shown in Fig. 1. The points where y =0.0,0.25,0.5,0.75,1.0 are identi- 
fied in order to show how the tradeoff varies with y. It is clear from Fig. 1 
that substantial reductions can be made in the standard deviation with only 
minimal reductions in the mean per-period harvest. At y = 0.75 as compared 
with y = 1, the mean per-period harvest has only been reduced from 1.26 X 
106 to 1.2 X 106 fish (a reduction of 4.76%), while the standard deviation has 
been reduced from 0.83 x 106 to 0.70X 106 fish, a reduction of 15.66%. 

Figure 2 shows the change in the ergodic distribution for selected values 
of y. As y decreases, the tails become shorter, the mode higher and lower. 
The distribution is bimodal in the approximate range 0.8-0.6, and becomes 
extremely steep and narrow as y nears zero. 

Figure 3(a)-(e) shows an optimal policy for these same values of y. The 
figures are read by finding the appropriate ( x , z )  point on the figure, 
following the arrow in that region; the resulting t value is an optimal 
harvest for that state. In region I the harvest size decreases, in region I1 the 
harvest size remains the same, and in region 111 the harvest sue increases. 
Figures 2 and 3 show that as y varies from 1.0 to 0.0, region I1 increases at 
the expense of region 111, until region 111 disappears entirely, and while 
region I does not change in size, the probability of ever being in that region 
decreases to zero. 

I . 0 0 ,  I , 1 , , 

HARVEST SIZE 

FIG. 2. Long-run (ergodic) distribution for the salmon model as 7 varies. 
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5.  DISCUSSION AND SUMMARY 

New results on multiobjective Markov decision problems have been 
combined with an approach to smoothing harvests to produce a technique 
for determining the mean-variance tradeoff among the “best” subset of 
harvesting policies. The technique has been found to be computationally 
reasonable, and produces the maximum amount of information for the 
decisionmaker. 

The suggested technique greatly extends the analysis in Beddington and 
May [l] and May et al. [5 ] .  While the particular example used to illustrate 
the algorithm has Gaussian noise, the general formulation is not restricted 
to this class of models as in the cited references. Moreover, in these 
references, they set the growth term equal to zero, and assume that the 
one-period distribution of returns from any policy is equivalent to the 
long-run distribution of returns when following the same policy (i.e., they 
examine behavior when dx/d t  = 0). This assumption is very often false. The 
proposed optimization methods calculate explicitly the long-run distribution 
that arises when following a given policy. Also, by restricting the decision 
set Y(x) ,  the proposed models include as a subset models that require fixed 
effort or fixed harvests. However, since Y(x)  need not be so restricted, the 
class of decision processes that can be considered is much richer. 

Moreover, fixed-effort or fixed-harvest policies arise from conclusions 
based on deterministic models of population dynamics, conclusions that 
may not be appropriate for randomly varying populations. (In practice, 
most fisheries management, for example, varies the estimate of maximum 
sustained yield each year as the population changes.) By not being restricted 
to fixed-effort or fixed-harvest policies, it is possible to determine what the 
loss in value is from using such policies. The example in Sec. 4 suggests that 
the best fixed-harvest policy significantly reduces the average per-period 
harvest, It is proven analytically in [2,8,9] that optimal harvesting policies 
for randomly varying populations will rarely be of the fixed-effort or 
fixed-harvest type. 

The determination of the mean-variance tradeoff is only as good as the 
model that is used in the analysis. However, by providing an easy-to-under- 
stand tradeoff curve as well as much ancillary information about other 
characteristics of the policies under consideration, the decisionmaker is left 
in the best position to integrate this knowledge with other information 
available, both subjective and objective in nature. 

I am extremely grateful to Chelsea C. White and K. W. Kim for allowing 
me to see a preliminary version of their paper, and for several invaluable 
discussions on implementing their algorithm Mordechai Henig also supplied me 
with a copy of his Ph.D. dissertation, for which I am grateful. 
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