
USING MARKOV DECISION MODELS AND RELATED TECHNIQUES 
FOR PURPOSES OTHER THAN SIMPLE OPTIMIZATION: 

ANALYZING THE CONSEQUENCES OF POLICY ALTERNATIVES 
ON THE MANAGEMENT OF SALMON RUNS 

ROY MENDELSSOHN' 

ABSTRACT 

The mathematics of Markov decision processes and related techniques are used to analyze a model 
relevant to salmon management. It is shown that the choice ofgrid can have a significant effect on the 
results obtained. Optimal policies that maximize total expected discounted return may be too variable. 
Smoothing costa are included to trade off long-run total return against the smoothness of the year-to- 
year fluctuations in the allowed harvest. Simpler, approximate policies that have a smoothing effect 
are also found. Preliminary analysis suggests the results are robust against misspecification of the 
parameters of the model. Concepts such as maximum sustainable yield would seem to impute a very 
high smoothing cost and are probably not practical for fish populations with a significant degree of 
randomness. 

The history of most managed natural populations 
is one of sizable, nondeterministic variations in 
the dynamics of the population. This observed 
variation tends to have two sources: The first 
source is actual randomness in the system, such as 
that due to environmental variability, which will 
exist no matter how accurate our models become; 
and the second source is the inaccurate or incom- 
plete specification of the transition probabilities 
themselves. Standard production models 
(Schaefer 1954; Pella and Tomlinson 1969 Fox 
1970,1971,1975) assume deterministicdynamics, 
as do most recent bioeconomic analyses, as in 
Clark (1976) or Anderson (1977). For randomly 
varying populations, a t  best only extremely low 
harvests may be sustainable year to year, and it is 
not difficult to develop realistic scenarios where 
policies that are sustainable in a deterministic 
model would cause possible depletion in a stochas- 
tic model. 

In this paper, the latest tools from stochastic 
optimization, particularly in the area of Markov 
decision problems (MDPs) are used to analyze a 
model relevant to salmon management. The view- 
point taken is that of the analyst, who must 
analyze trade offs and provide a decision maker 
with as few policies as possible that contain the 
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maximum amount of information, rather than 
that of the decision maker, who ultimately decides 
if a particular concern or trade off is worthwhile. 
The salmon model is used as an example-the goal 
is to gain insight into managing randomly varying 
populations. 

Ricker (1958) appears to be the first to examine 
the effects of variability on management. He used 
intuition and simulation to arrive at  policies that 
are of the same general form as many of the 
policies to be discussed in this paper. However, 
Ricker presented no systematic way of developing 
optimal policies and made the incorrect assump- 
tion that the long-run stochastic behavior will 
have a mean equal to the deterministic equilib- 
rium yield, with noise around this mean. 

Reed (1974) derived qualitative properties of op- 
timal policies if the random variable has a mean of 
1, if it affects the population dynamics in a multi- 
plicative manner, and if it has costs when the 
system is shut down (no harvesting) and then 
started up again (resumption of harvesting). 
Reed's results are not relevant to the model dis- 
cussed in this paper, since he assumed the deter- 
ministic population model is concave, while the 
models examined in what follows are pseudocon- 
cave. A more complete treatment of one dimen- 
sional stochastic growth models can be found in 
Mendelssohn and Sobel (in press). 

Walters (1975) and Walters and Hilborn (1976, 
1978) discussed a variety of topics as the concerns 
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tributed random variable, with mean a and var- 
iance b. 

For deterministic versions ofEquation (1.11, the 
primary objective of management is MSY 
(maximum sustainable yield), which is equivalent 
to the largest per period growth of the determinis- 
tic model. The stochastic equivalent of this criteri- 
on is to maximize the average per period harvest, 
or gain optimality. Mathematically, letting E be 
the expectation operator, this is 

of this paper. Some of the techniques they dis- 
cussed, particularly the filtering techniques (Wal- 
ters and Hilborn 19781, are only appropriate if the 
model has an additive error term. While a Ricker 
spawner-recruit curve can be transformed to  an 
additive model, many models do not have this fea- 
ture. 

I am presenting what I feel is an improved way 
to smooth out the fluctuations in the year-to-year 
harvests as compared with the method suggested 
in Walters (1975) and show that the Bayesian 
(adaptive) model discussed in Walters and Hilborn 
(1976) has an optimal policy with a very simple 
form that can be readily calculated. 

Moreover, a rigorous approach is taken to define 
the model on a grid and the effects of the grid 
choice. None of the papers cited deal with this 
important question; new results are presented 
which show that the most serious effect of the grid 
is on the estimates of the long-run (ergodic) prob- 
abilities of the population dynamics when follow- 
ing a given policy. Particularly the tail properties 
of the ergodic distribution, i.e., the long-run prob- 
ability of low harvest or low population sizes, are 
misestimated. This is a new finding even in the 
MDP literature, and has numerical implications, 
particularly when calculating the trade off be- 
tween the mean harvest of a given policy and the 
long-run probability of undesirable events when 
following that policy. 

THE MODEL 

The models to be analyzed were developed by 
Mathews (1967) to describe the spawner-recruit 
relationships of sockeye salmon, Oncorhynchus 
nerka, populations in two rivers that run into Bris- 
to1 Bay, Alaska. Oceanographic and other factors 
affect the number of recruits to a degree where the 
relationships can be modeled by the random equa- 
tions: 

Wood River: 
X1-1  = exp(d) ( 4 . 0 7 7 ~ ~ )  exp( -0.80oY,) 

d =N(0,0.2098) ( l . l a )  

Branch River: 
xt +, = exp(d) (4.554~)) exp(-1.845yt) 

d=N(O, 0.3352) ( l . lb)  

wherey, is the number of spawners in period t ,  xt+  1 

is the (random) number of recruits in period t+  1, 
and d.=N(a, b )  denotes that d is a normally dis- 

However, for many decision making situations, 
total expected discounted harvest may be a prefer- 
able criterion, since a discount factor can repre- 
sent a measure of risk or uncertainty about the 
system, over and above the variability due to the 
random variable d .  More formally, if a is a dis- 
count factor Oca<l,  the problem is to: 

r 1 

at-’ p ( x ,  - yt)  (1.2b) J 
subject to  O s y , a , ;  and Equation (1.1) 

wherep is a weighting factor, which could be 1 or 
could represent the average weight of the salmon 
harvested. 

All the results in this paper are for expected 
discounted return with a = 0.97. For a = 1, Equa- 
tion (1.2a) must be used, since Equation (1.2b) is 
infinite for most policies. The choice of a = 0.97 is 
arbitrary, though numerical runs for a ranging 
from 0.95 t o  1.00 produced no significant changes 
in the results. When actually implementing a 
model, a careful choice of a must be made, and the 
sensitivity of the results to  changes in the value of 
a should be tested. It should be mentioned that a = 
1 is just as much a discount factor as any other 
value and implies certain temporal preferences 
and attitudes towards risk that may not 
adequately reflect the decision maker’s prefer- 
ences. 

The shortcomings of Equation (l . la)  or ( l . lb )  
should also be noted, such as no account is taken of 
Ocean harvesting of the salmon, particularly by a 
foreign nation. This just reinforces the idea that 
the purpose of this analysis is not optimization per 
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se, but rather to  provide the decision maker with 
added insight and reasonable first choices. 

Defining the Model on 
a Discrete Grid 

In order to make Equation (1.2) amenable to  
numerical methods, it is necessary to define both 
the state space and the action space on a discrete 
grid, and then to redefine the transition prob- 
abilities, etc., on this grid. Several authors (Fox 
1973; Bertsekas 1976; Hinderer 1978; Waldmann 
1978; Whitt 1978; Larraneta2) have suggested 
techniques to reduce MDPs to a grid and give 
bounds on the error due to the approximation. I 
have shown elsewhere (Mendels~ohn~) that grid 
choice can have a significant effect on the analysis. 
An optimal policy and the value of an optimal 
policy may not be greatly affected by the choice of 
grid, but the estimated probabilistic behavior of 
the population dynamics is affected significantly 
hy the choice of grid. 

A first effort then is to find an adequate grid for 
the problem, a grid fine enough for both the de- 
sired accuracy and for realistic approximations of 
observed population sizes and coarse enough for 
computational efficiency. Increased computa- 
tional efficiency makes it reasonable to solve 
many variations of a given model, which allows for 
a more thorough exploration of the management 
questions of interest and their sensitivity to key 
assumptions. 

Several different grids were tried for Equation 
(1.2) for both the Branch and Wood Rivers. 

To define Equation (1.2) on a given grid, suppose 
a grid of k points has been chosen on which to 
discretize the problem and assume, as is reason- 
able for this problem, that the reduced action 
space (how many spawners to leave) is equivalent 
to the state space (how many recruits are observed 
at the beginning of the period). From Equation 
(1.1), letting R ,  and R2 represent the parameters 
of the Ricker equation 

= P(dS1nolna)  (2.1) 

'Lamaneta, J. C. 1978. Approaches to approximate Mar- 
kov decision processes. Paper presented at Joint National 
OW-S Meeting, Nov. 13-15,1978, L a  Ang., Calif. 

3Mendelaaohn, R. 1978. The effects ofgrid size and approx- 
imation techniques on the solutions of Markov derision pmb- 

where a = [R, y,exp(-R zy, )I. Let @ be the standard 
normal integral for a random variable d = dlu, 
and let x,, x , + ~  be any two adjacent points on the 
grid. Then: 

In x i  -In a 
P(d<lnxi-lna) = Q, 

P ( d S l n ~ ~ + ~  - h a )  = Q, 

so that one method of defining the transition prob- 
abilities on a grid is: 

In x i  -In a -4 u > *  

The discrete probability when the action is yt is 
equal to the total probability of going to any state 
in the interval (xi, x i + l ) .  

Ifzero is included as a state, the procedure needs 
to be modified slightly. Suppose the probability of 
going to x1 is known for each decision y. Then an 
arbitrary fraction of this probability is assigned as 
going to the zero state. In this paper, one-half of 
the probability in the interval ( 0 , ~ ~ )  is assigned to 
the zero state. The results have been found not to 
be sensitive to the value of the fraction; this is 
because zero is an absorbing state. Either there 
exists a policy that never reaches (0, x1 and hence 
never reaches zero, or else with probability one the 
population goes to zero in finite time. Hence, it is 
the size of (0, x , )  that most influences the results, 
not the fraction of this total that is assigned to 
going to the absorbing state. 

Adding an absorbing state is sensible if the ab- 
sorbing state is thought of as all states at  low 
enough population levels such that it would take 
years for the fishery to recover again, if it recovers 
a t  all. Without the absorbing state, the models in 
Equation ( l . la ,  b) will always recover in fairly 
short order. Since fisheries can be depleted, the 

lems. SWFC Admin. Rep. 20H, 15 p. Southwest Fish. Cent. 
Honolulu Lab., Natl. Mar. Fish. Serv. N O M ,  Honolulu, HI 
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inclusion of an absorbing state would seem to be a 
more realistic assumption. It is included in what 
follows. 

A coarser grid implies, in a sense, less informa- 
tion about the state of the system. As the interval 
(0, xl) becomes large, our information has de- 
creased about the true state of the population and 
this increased uncertainty is reflected in increased 
risk of absorbtion. Similarly, a finer grid implies 
more exact information-a grid should not be used 
which is finer than the precision of the estimate of 
the population size. 

Optimal policies for grids of 16,26,51,101, and 
501 equally spaced points (including zero) for both 
rivers are shown in Table 1. The optimal equilib 
rium population for the equivalent deterministic 
models are shown also. All numbers are in units of 
millions of fish. 

The optimal policies are all of the base stock 
variety, i.e. it is optimal to harvest to a fixed 
number of spawners, or else not to harvest at all. If 
the 501-point grid is taken as the standard, it can 
be seen that each coarser grid has as its base stock 
size the grid point closest to the base stock size for 
the 501-point grid. 

Figure 1 gives the long-run (ergodic) cumula- 
tive distribution of being in any state when follow- 
ing an optimal policy on grids of l6,26,51, and 101 
points. Grid size can be seen to play a crucial part 
in estimating the probabilistic behavior of the 
population. For the Wood River, extinction with 
probability one is predicted on grids of 16 and 26 
points, while the probability is zero on grids of 51 
and 101 points, so long as zero is not the initial 
state. Similar but not identical results are valid 
for the Branch River. It should be emphasized that 
for (Y = 1, i.e., when the objective is given by Equa- 
tion (1.2a), the estimated average per period har- 
vest of any policy depends entirely on the ergodic 
distribution that arises from that policy. There- 
fore, this variation in estimated long-run behavior 
due to changes in grid size is nontrivial. 

Probability one of extinction occurs because for 
a finite state, irreducible Markov chain with an 
absorbing state, the absorbing state is reached in 

TABLE 1.-Optimal policies for the different grid sizes. 

Wood River Grid size Branch River 
yf = mjn (xr 0.9333) 16 y = min ( x t ,  0.3333) 
yf = mm (xf, 0.840) 26 yt = min (xr. 0.4000) 
yt = rnln (xf, 0.700) 51 yt  = min (xf. 0.3000) 
y f  = rnln (xf, 0.770) 101 yf = min (xt .  0.3500) 
yf = min (xt ,  0.742) 501 y: = min (xt. 0.3500) 
Eauilibrium stock 0.735 Deterministic Eouilibrium stock 0.345 

1.00, 

.90; 
I 16.26 

__ 
6 

STATE innuun RIMRI 

FlGURE 1.-Ergodic cumulative distributions for optimal har- 
vesting strategies on grid sizes of 16,26,51, and 101 points for 
the Wood River and the Branch River. 

finite time with probability one. However, for the 
larger grids, there exist policies that are reducible, 
in the sense that if the chain does not start in the 
interval (0, x l ) ,  it will never enter that interval. 
SinceP[x,c(O,x, 11 = 0, and a fraction of this proba- 
bility has been assigned to the zero state, thenP(xt 
= 0) = 0. When using the smaller grids that induce 
Markov chains that are irreducible, the estimated 
time till absorption varies greatly also. For exam- 
ple, for the Branch River, ifP(xl = 0) = 0 andP(x, 
= w )  = ll@'-l), where w is a grid point and N is 
the number of states, then a 16-point grid predicts 
absorption with probability one after 2,000 itera- 
tions, the 26-point grid predicts only a 76% chance 
of absorbtion aRer 2,000 iterations, and the 51- 
point grid predicts only a 17% chance of absorp- 
tion. 

When maximizing total expected discounted re- 
turn, the discounted mean return depends on the 
values of these intermediate probability distribu- 
tions, so that coarser grids can be expected to un- 
derestimate the long-run value of the harvest. 

Finally, for the Wood River, note that the 51- 
and 101-point grids have similar long-run be- 
havior. These results suggest that in order to find 
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good policies, it is only necessary to use a grid size 
of 26 to 51 points for the problems under consider- 
ation. However, to analyze the long-run (prob- 
abilistic) behavior of a given policy, it is necessary 
to use a grid containing no fewer than 100 points. 

I t  should be reemphasized that the reason for 
considering a coarser grid is that a smaller prob- 
lem size allows for many problems to be solved at  a 
small cost. This is desirable to obtain insight into 
the sensitivity of the problem. However, it is pos- 
sible to solve quite large problems, making use of a 
variety of methods to accelerate computations (see 
for example Porteus 1971; Hastings and van 
Nunen 1977). For example, the 501-point grid for 
the Branch River used 1.80 s of CPU (central pro- 
cessing unit) time to perform the optimization. 
Computations, when smoothing costs are included 
(see Policy Analysis section), have 2,601 states. 
These used about 5 to 6 min of CPU time to per- 
form the computations, but at  a cost of about $20. 
Our experience is that it is possible to obtain 
reasonable estimates using coarse grids and that 
this suffices for initial policy investigation. How- 
ever, it is worthwhile to reanalyze the final two or 
three problems of greatest interest on a finer grid. 

POLICY ANALYSIS 

For the Wood River, the optimal policy for Equa- 
tion (1.2) is given by 

yf  = minimum (0.770, x,) 

and it produces a mean per period harvest of 
1.14758, and a standard deviation in the harvest of 
0.8963. The median harvest is 0.91, and no harvest 
occurs roughly 4.3% of the time. A harvest of 25% 
or less of the mean harvest occurs roughly 15% of 
the time, while a harvest greater than the mean 
harvest occurs approximately 38% of the time. 

Similarly, for the Branch River, an optimal pol- 
icy for Equation (1.2) is given by 

y,  = minimum (0.300, x,) 

and it produces a mean per period harvest of 
0.6622, and a standard deviation in the harvest of 
0.6120. The median harvest is roughly 0.500; 
there is a 3.9% chance of no harvest. A harvest of 
25% of the mean harvest or less occurs roughly 
14.5% of the time, and a harvest greater than the 
mean harvest occurs approximately 61% of the 
time. 

While these policies are similar in form to 
policies that are optimal for a deterministic ver- 
sion of Equation (1.2), they differ greatly in the 
year-to-year dynamics. There are two ways of 
fhding the optimal deterministic policy. The first 
way is to assume a general model of the form: 

= R l y ,  exp ( -R2y , )  

The second method is to assume a general model of 
the form: 

where as before, R ,  and R, are the parameters of 
the Ricker equation. The second method is prefer- 
able since it uses all the information available. As 
d is a normal random variable with mean zero and 
variance u2, it is easy to show that exp(d) is a 
lognormal random variable with expectation exp 
(M g2). Solving for the optimum sustained yield 
(OSY) population size for each river gives: 

Wood River Branch River 
x OSY 0.735 0.345 
OSY 1.1 1346 0.63804 

Both OSY values are lower than the mean per 
period harvests in the stochastic models, but the 
variation is too high to allow this amount to be 
harvested each year. However, the xosy level is a 
good estimate of the base stock size, and it is 
known a priori from Mendelssohn and Sobel (in 
press) that a base stock policy is optimal. 

In the deterministic model, oncexosy is reached, 
both the population size and the harvest size are 
maintained at  steady, equilibrium levels. An op- 
timal policy for the stochastic model, however, 
produces large fluctuations in both and may allow 
no harvesting 1 yr out of 25 in the long run. For 
many fisheries, these “boom and bust” conditions 
may not be acceptable. Many people, especially 
those with interest or mortgage payments, as are 
many fishermen, are concerned about smoothness 
of income received as well as the total amount 
received. The final decision on the acceptable 
amount of fluctuation is, of course, up to the deci- 
sion maker with appropriate input. 

There are several methods available to try to 
find a balance between the smoothness of the ran- 
dom income stream and its total discounted ex- 
pected value. Walters (1975) and Walters and Hil- 
born (1978) suggested fixing a given mean harvest 
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u ,  and then finding a policy that minimizes 

lim E - C (tt - u ) ~ .  This methodology de- 
T + -  
pends on the values of u chosen. I t  also determines 
the policy that minimizes the approximate long- 
run variance for a given long-run mean harvest. 
This is not equivalent to reducing the size of the 
year-to-year fluctuations. 

A second method is to include “smoothing costs” 
into the one-period return. This approach has been 
studied analytically by Mendel~sohn.~ Let y be the 
cost of a unit decrease in the harvest from year to 
year, and let E be the cost of a unit increase in the 
harvest from year to year. 

If z was harvested last year, then net revenues 
this year, for any harvest z,, are decreased by 

1 T  
T t = l  

Amended to Equation (1.2), this would imply a 
one-period net benefit of 

where (a)’ denotes the positive part ofa. An alter- 
nate form is to let e = (y-e)/2 and c = (y+ ~ ) / 2 .  Then 
the one-period return is: 

One advantage to the smoothing cost approach 
over other approaches is that p ,  e,  and c can be 
normalized so as to be interpreted as relative 
prices. That is, the normalized values p = 1, elp, 
and clp can be interpreted as the value of having 
the between period harvest “smoothed“ by one unit 
relative to the value of one unit of additional har- 
vest. Actual relative values are often difficult to 
determine. But by parameterizing on e and c, it is 
possible to present a decision maker not only a 
range of possible “optimal” policies and their con- 
sequences, but also some feeling for the relative 

4Mendelssohn, R. 1976. Harvesting with smoothing 
costs. SWFC Admin. Rep. 9H, 26 p. Southwest Fish. Cent. 
Honolulu Lab., Natl. Mar. Fish. Sew., NOAA, Honolulu, HI 
96812. 
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trade off between total income and the smoothness 
of the received income stream. 

For the Wood and Branch Rivers, two sets of 
computations were performed. The first set as- 
sumes that y = E, i.e., there is an equal concern for 
increases in allowable harvest as well as for de- 
creases. This is equivalent to e = 0.0 and c = y (or 
equivalently E).  The motivation for this cost struc- 
ture is that fishermen typically resist any decrease 
in the allowed harvest, hence y>O. However, al- 
lowing increases in the harvest size often signals 
fishermen to gear up and invest in equipment, 
thereby making it even more difficult to decrease 
the allowable harvest later on. Therefore this cost 
should be equal to a cost due to a decrease in the 
harvest. 

As a counterbalance to this, a second set of com- 
putations were performed with y>O but E = 0, Le., 
a cost only if the harvest is decreased. This is 
equivalent toc = e = 712. 

For the first set of computations, with e = 0.0 
and p = 1.0, values of c of 0.25, 0.50, 0.75, 1.00, 
1.25, 1.50, 1.75, and 2.00 were used. These are 
equivalent to  relative values of Ys, %, %, ?h, %, %, 
7 8 ,  and 1. For the second set of runs, with c = e, and 
p = 1.0, values of 0.25, 0.50, 0.75, 1.00 and 1.25 
were used. These are equivalent to a ratio of yIp 
equal to ?h, %, %, 1, 1%. The results are sum- 
marized in Figure 2(a)-(m) and Figure 3(a)-(m), 
which show an optimal policy for each river for 
each of these cases. All computations were per- 
formed on 26-point grids. 

The figures are read as follows. Suppose z was 
harvested last year and x is the observed popula- 
tion size this period. Find the point (x, z )  on the 
graph and follow the arrow in that zone to the 
appropriate boundary as indicated. Then read off 
the z value of this point; this is the optimal amount 
to harvest during this period. 

For example, ifc = 0.50, e = 0.00, x, = 0.84, and 
the harvest last period was 0.28, Figure 2(b) shows 
that the optimal policy for the Wood River is to 
harvest 0.28 this period. Note that the dashed line 
is the equivalent base stock harvest with no 
smoothing costs. 

While the policies in Figures 2 and 3 are optimal 
for the given relative values of p ,  e ,  and c, they are 
complex in nature and would be difficult for a 
layperson to understand. Practical management 
often implies determining simpler, good but sub- 
optimal policies that achieve the same objectives. 
These policies are often more desirable since they 
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are easier to implement and easier to explain the 
rationale to the public. 

As an example of suboptimal, approximate 
policies, the following nine modified base stock 

policies were examined: of 0.84. 

3) Policy of base stock size of 0.56 till 1.40, then a 
base stock size of 0.84. 

4) Harvest 0 till 0.28, harvest 0.28 till 0.84, a base 
stock size of 0.56 till 2.52, then a base stock size 

Wood River Branch River 

1) Base stock policy, base stock size = 0.84. 
2) Policy of base stock size of 0.56 till 2.52, then a 

5 )  Base stock policy, base stock size of 0.40. 
6) Base stock size of 0.4 till 1.6, then a base stock 

base stock size of 0.84. size of 0.6. 

X X 

F’IGURE 2(a-m).--Optimal policy functions for the Wood River for various assumptions about the relative value of smoothing costs. (See 
text for details). 
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ing costs are one-fourth to one-half the per unit 
value of the harvest. The mean per period harvest, 
variance, standard deviation, median per period 
harvest, etc. for these nine policies are given in 
Table 2. 

Policies 3 and 4 for the Wood River and 8 and 9 
for the Branch River demonstrate how these ap- 
proximate policies tend toward smoothing 
policies. For example, policy 4 has the same me- 
dian harvest as the optimal base stock harvest, 
almost never closes the fishery, significantly de- 

7) Base stock size of 0.2 till 0.6, then a base stock 
sue of 0.4. 

8) Base stock size of 0.2 till 1.0, then a base stock 
size of 0.4. 

9) Base stock size of 0.2 till 0.4, base stock size of 
0.4 till 1.2, base stock size of 0.6 after that. 

These nine approximate policies were devised 
by examining the functions that define the three 
regions in Figures 2 and 3. These approximate the 
boundaries of the three regions where the smooth- 

X X 

FIGURE 2.--Continued. 
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creases the percent of time there are low catches, 
and only reduces the mean per period harvest by 
33,800 fish. In order to achieve a smoother catch, 
"potlatch" harvests from time to time have been 
sacrificed. 

When looked at  closely, these policies are actu- 
ally very intuitive and represent an interesting 
variant of a base stock policy. These policies re- 
place a single base stock size by a dual base stock 
size policy. The first base stock size is lower than 
the original one, while the second base stock size is 

6 . 7 2 - i  

5.60 - 
5.04 - 

4.48 - 

3.92 - 

3.36 - 

2.80 - 

2.24 - 
I 

1.68r 

L 
O0 

u 
5.60 6.16 6.72 

X 

FIGURE 2 .4nt inued .  

greater than or equal to the original base stock 
size. This means that there are fewer states where 
there is no harvesting, but also lowers the likeli- 
hood of the really big harvests. The mean per period 
harvest tends to be very sensitive to these big 
harvests, while the median is not, particularly 
since the very large harvests are not too frequent. 

It is curious that the population dynamics are so 
sensitive to such fine tuning, for the difference 
between policy 1 and policy 3, say, is quite mar- 
ginal. It would be an interesting area of future 

( I )  C = E =  1.00 

56 112 168 224 2 8 0  336 392 448 504 5 6 0  616 67 

X 
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able if they were known to be robust against mis- 
specifying the parameters. This involves knowing 
how an optimal policy and total expected value 
would vary if the true underlying parameter val- 
ues differ from those specified, and also how the 
estimate of the long-run probability distribution 
differs from the true one. 

Walters and Hilborn (1976) have examined a 
similar question oftrying to solve the Bayes model 
of this problem, i.e., where there is an original 
prior probability given to  each value of the 
parameter, and this probability is updated each 
period using Bayes theorem and the observed val- 
ues during the period. However, they could not 
obtain a solution, and Walters and Hilborn (1978) 
raised questions as to the validity of some of their 
numerical approximations. 

Fortunately, qualitative results are possible for 
this particular class of Bayes problems. Let 8 be 
the parameter (or vector of parameters) under 
consideration. Let qo( 8)  be the initial prior dis- 
tribution on 8, and let qn (8 )  be the updated prior 
distribution aRer n period has elapsed. Let R be 
the set of all possible prior distributions. Then it is 
proven in van Hee (1977a) that if the state of the 
system is expanded t o  (x t ,  qt), the resulting optimi- 
zation problem is Markovian. Following argu- 
ments similar to those in Scarf (1959) and van Hee 
(1977a) it follows that an optimal Bayes policy 
takes the form: 

I 1  I 1  I I I I I I 1 1 -  
6.72 - 

6,16- (m) C = E =  1.25 7 

/' 

S W  560 t 
4.48 1 
336-  

2 8 0 -  

224 - 

I 68 - 
1 1 2 -  

5 6 -  

I I 
I 

I l I I I 1 1 l  
56 112 168 224 8.80 3.36 3.92 4 4 8  5 0 4  560 6.16 672 

/.I ...... ..'I I I I 1 1 I I ' 1 1 1  
56 112 168 224 8.80 3.36 3.92 4 4 8  5 0 4  560 6.16 672 

X 

FIGURE 2.4ontinued. 

research to determine guidelines for when fine 
tuning would be expected to produce such "trim- 
ming" ofthe tails ofthe ergodic (long-run probabil- 
ity) distribution. 

Including smoothing costs also tells us a great 
deal about traditional concepts of fisheries man- 
agement, such as MSY. It is clear from Figures 2 
and 3 that anything close to an MSY policy is 
optimal only if the smoothing costs exceed the per 
unit value ofthe harvest. As whole systems of laws 
for regulating fisheries have been constructed 
around the idea of smooth, constant harvests, it is 
clear that this imputes lower average catches, and 
a significant preference for constancy of the har- 
vest over total amount harvested. 

The analysis has assumed that Equation (1.1) or 
similar equations are available, and that the 
parameter estimates are accurate (in this case, 
estimates of R, , R,, and u2). In the latter case, 
management measures would seem more reason- 

For each element q E 0, there is an x ( q )  such 
that: 

do not harvest ifx, sx (q )  

harvest X, - x(q)  if x,>x(q). 

For example, if CT* in the distribution of d is itself a 
random variable, then each possible probability 
distribution of u* yields a possibly unique base 
stock size policy. 

TABLE 2.-Vital statisticsfor the nine policies approximating the smoothing cost policies for Wood and Branch Rivers 

2 1.0993 0.5460 0.7389 1.7 10.7 39.8 0.96 116 
3 1,1203 0.6506 0.8066 1.1 7.7 43.2 0.91 114 
4 1,1019 0.5758 0.7588 0.02 10.47 40 0.98 112 

Branch 5 0.6528 0.3982 0.6310 9.2 21.6 40 0.500 Oi 1 

7 0.6272 0.3077 0.5547 1.2 27.7 31.3 0.400 1 /2 

9 0.5995 0.3038 0.5512 0 72 22.63 39.3 0.500 3/4 

6 0.6290 02532 0.5032 9.1 21.5 37.2 0.500 114 

8 0.5920 0.2202 0.4693 1.9 35.7 26.3 0.500 3/6 
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Van Hee (1977a) defined a set of policies that he 
terms Bayes equivalent policies. For problems 
such as the salmon models under discussion, a 
Bayes equivalent policy would be found as follows: 

4.8 

4 4 -  

/ I l l /  1 1  I 1  1 1  1 

(a) C.0.25 E - 0 . 0  / 

- 

2 .8 

2.4 
z 

I I I I I I I I I I  I I 

(c )  Cm0.75 E=O.O 

- 

/ 

I 
/ 

O L  -.v' 

4.0 

1 
2 .o 

wherep(. I describes the dependence of the ran- 
dom variable d on 0. 

3)p(d,  q )  is used to solve a non-Bayesian Markov 
decision process, with p(d ,  q )  as the transition 
function. 

4)The optimal policy from step 3 above is used 
for one period. 

5 )  q( 8) is updated using Bayes theorem and the 
observations from the last period, and the updated 
q( .) is used in step 1 a t  the next time period. 

I t  is worth noting that a Bayes eqivalent policy 

t 

X X 

FIGURE 3(a-m).--Optimal policy functions for the Branch River for various assumptions about the relative value of smoothing costs. 
(See test for details.) 
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parameter 0 is a scalar, i.e., R, in our notation. 
Their problem, for which an optimal policy was not 
found, can be solved by following a policy outlined 
in the five steps above. 

Many models will not have the necessary struc- 
ture for a Bayes equivalent policy to be optimal for 
the full Bayes model, and unlike salmon manage- 
ment, estimates of the population size may not be 
available every year. A legitimate question is: 
suppose the present best estimate of 8 were to be 
used from hereafter. What would be the loss in 

is adaptive, as the prior distribution is updated 
each period. Moreover, it is not the same as fixing 
8 at its estimated value, and using a fixed value of 
0 in step 3. The difference can be seen in the 
integral in Equation (4.1). The reason for consider- 
ing Bayes equivalent policies is that van Hee 
(1977a, theorem 3.1) proved that for the models 
under discussion, when the objective is given by 
Equation (1.2a) or (1.2b1, then the Bayes equiva- 
lent policy is optimal for the full Bayes model. For 
example, in Walters and Hilborn (1976), the 

4.8 8 
4 4  - 

4 0  

36- 

3 2 -  

2 8 -  

2 4 -  

20- 

16-  

1 2 -  

8 -  

- 

4 -  

0- 

X 

FIGURE 3.-Continued. 
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expected value? Van Hee (1977b) gave bounds on 
this expected loss that are easy to compute. To 
obtain a feel for these bounds, both a2 and R, are 
assumed to be random variables. For the Wood 
River, R, could take on the values -0.6, -0.8 and 
-1.0, and for the Branch River R,  could take on the 
values -1.5, -1.85, and -2.00. For the Wood River, a2 
could assume the values of 0.35, 0.45, and 0.55, 
and for the Branch River v2 could assume the 
values 0.48,0.58, and 0.68. Three probability dis- 
tributions were used as the present prior probabil- 

4.8 

4 4 -  

4.0 

3.6 

1 1 1 1 1 1 1 1 1 1 1 1  
- 

/' 
(i) C.E.0.25 

/' 
/' 

/. 
- 

/' 
- ,/' 

ity ofthe parameter values. These were (45, %, %,), 
(?h, M ,  V S ) ,  (56, ?4, %I. The results of the optimiza- 
tion using the parameters at each fixed value 
(which are needed to calculate the bounds) are 
given in Table 3. Table 4 gives the bounds on the 
expected loss of value from using the present esti- 
mates of the parameters as in,Equation (1.1). 

Table 3 suggests that as fl varies for fixed val- 
ues of R, , R, , the mean per period harvest varies 
little, but the variance of the long-term harvest 
size distribution increases significantly. As R, 

/ l I I I I I / I I I I  

/. 
(k) C * E = 0 . 7 5  

/D /' / 
I 

4 4 -  

4 0 -  

3 6 -  
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timates have relatively small variance, then little 
is gained in expected value ifthe more complicated 
policy is used. The same may not be true if the 
population size is unobserved. 

All of these results suggest a model that is fairly 
robust to our lack of understanding of nature. A 
possible explanation for this can be made from the 
discussion on the effect of grid size. As long as 
there is some cutoff population size below which no 
harvesting is allowed, and this cutoff assures that 
the absorbing state cannot be reached with proba- 
bility one, then our management can only damage 
the stocks to  a degree. 

All of the policies examined in this paper have 
such a minimum cutoff. The rest of the policy will 
determine the relative mean and variance of the 
harvest, and techniques are presented to  examine 
these features in detail. Uncertainty about the 
values of the parameters will affect the total re- 
turn, but present estimates often can give a satis- 
factory approximation. The truly risk adverse de- 
cision maker can use present estimates of the 
parameters that are weighted to be on the cautious 
side. 

X 

FIGURE 3.-Continued. 

varies for fixed values ofR, , u2, both the mean and 
the variance vary significantly. Table 4 reinforces 
this impression to a degree. If the mean per period 
harvest does not vary significantly with changes 
in the value of u2, it might be expected that the 
present estimate of u2 will suffice. This is borne 
out by Table 4, where the bounds on the maximum 
expected total loss is <0.01, which is <I% of the 
optimal Bayes expected value. 

Some significant expected loss in value when R, 
varies is seen, but the loss is less than might be 
expected from Table3. The values in Table 4 when 
R, varies are all <4% of the true value. These 
results suggest that if Equation (1.1) is the correct 
form of the model, and the present parameter es- 

SUMMARY 

Uncertainty in fisheries management can be 
faced head on. Techniques exist that allow us to 
gain much insight on managing randomly varying 
populations. Optimization procedures allow us to 
reduce our attention to the few best policies, and to  
analyze their properties, rather than to pick 
policies ad hoc that meet no special criteria. 

Optimization under uncertainty can also lead to 
a reconsideration of what is valued in managing a 

TABLE 3 -TnaIs wth vaned parametem 

R w r  VaIuedRz Vauedm Op'rdpohcy p e d  harvest Vananca noharvest 
Mea per % tmle 

WCd -0 800 035 mn I X ~  0 7) lose0 0390976 0 79 
Wood -0 800 0 55 mn(xt on) 1 2 6 7  12422 7 8  
Wood -0 6M) 0458 mmk, 0980) 15108 13136 3 8  
Wood loo0 0458 min (x, 0563) 09225 04839 329 
Bland, 1 845 04.9 rnn (xr 0 35) 06122 02253 354 
Branch -1 845 068 mn ( x t  0 35) - - - 
Branch 1500 0 579 mnIxt 040) 1939 0 5254 5 82 
Branch -2 ooo 0 579 min (xt 0 30) 09075 03068 5 82 

TABLE 4.--Largest possible deviation in value of the approximate policy compared with the 
true Bayes policy. 

When 0 is uncertain -~ ~~~ . ~~ 

When Rz is uncertain ~~~ Probability . 
$I3, v,, v3 ~ 2 ,  ~0~ 1/4. '/e 113, 1 ~ 3 ,  ~i 114, bz, ~4 '/a, ~ 4 .  ?/e distribution 

Wood River 14 0.51 0 5  0.04 0 03 0.03 
r O . O 1  Branch Rlver 1 04 0.47 0.38 0.01 so.01 ._ 
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fishery-in the examples considered, some consis- 
tency in the amount harvested is a desirable al- 
ternative to high year-to-year fluctuations in the 
harvest size. But this reduced the average per 
period catch. Only in extreme situations, where 
the cost of smoothing out the catch is greater than 
the unit value of the catch, does any policy re- 
sembling MSY become optimal. 

Finally, it  is possible to obtain an  understand- 
ing of how robust the management measures are 
to misspecifications of the underlying model. This 
is important, since the model is only a guide to our 
decision making, not the answer. In the models 
considered, the “best” policies are robust in view of 
this uncertainty. 

A question not examined is the assumption that 
the population size is observed a t  the start of each 
period. This too is usually costly, and inexact. Re- 
cently, I and E. J. Sondik developed an efficient 
algorithm that addresses the relative merits of 
different sampling intervals for obtaining popula- 
tion  estimate^.^ Together, all of these techniques 
allow for an integrated, realistic approach to man- 
agement under uncertainty. 
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