
TWENlY 

Incorporation of Density Dependence 
and Harvest into a General 
Population Model for Seals 

DOUGLAS P. DEMASTER 

INTRODUCTION 

Population models constructed in an  attempt to simulate the behavior of real 
populations of seals have historically incorporated convenient and  sometimes 
arbitrary mathematical functions that have mathematically derived equilibria. 
At present, it is impossible to know what mathematical function best describes 
the form of the density dependence responses that are assumed operative in 
nature. Various functions have been applied (Chapman, 1961, 1973; Fowler and 
Smith, 1973; Allen, 1975; Lett and  Benjaminsen, 1977; Eberhardt and Siniff, 
1977), but until recently (Fowler, 1981; Chapter 23) no clear p a t t e r n  have 
emerged. T h e  various functions do seem to form a continuum ranging from con- 
servative linear functions (Allen, 1975). to nonlinear functions (Eberhardt and 
Siniff, 1977; Fowler, 1981; Chapter 10). Differences are related to the degree of 
density dependence expressed at any particular density, with linear functions 
having a gradual and consistent depressing effect on reproduction or survival 
when compared to nonlinear functions which concentrate changes into certain 
ranges of population levels. Therefore, simulation with linear and nonlinear 
functions should produce a range of types of population responses that should 
bracket the true population response in nature. Also, many population models 
assume that the age structure of the harvest has little or no effect on the predic- 
tions of the model (but see Chapter 23). In addition, many population models 
ignore the fact that  density dependence may be restricted to specific age classes 
with reproduction and survival of other age classes being essentially density inde- 
pendent (at least over the observed range of densities). If only those age classes 
beyond the ages in which reproduction and survival are density dependent are 
harvested, then i t  is conceivable that harvest mortality may not give rise to 
strictly compensatory responses (Brownie et al., 1978). Finally, some population 
models that incorporate density dependence are based on the assumption that 
the regulatory mechanisms are operative throughout the entire year. Some 
evidence exists that  this is not the case for Weddell seals (DeMaster. 1978). I t  
appears that, for this species at least, regulatory mechanisms are only operative 
at specific and predictable times of the year. T h e  purpose of this chapter is to 
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investigate the ways several factors influence the dynamics of a population of 
Weddell seals as represented by a collection of assumptions in the form of a 
population model. These include (1) changing the density-dependent functions 
from linear to nonlinear form, (2) changing the age at which survival is density 
dependent (from pups to adults), (3) changing the age structure of the harvest 
from a harvest of pups to a harvest of adults, and  (4) changing the time of the 
harvest. T h e  latter allows early density-dependent harvest compensation (to be 
defined later) to occur in one case but not in another. 

DENSITY DEPENDENCE AND A MODEL FOR SEALS 

A PROJECTION MATRIX 

A 25 X 25 projection matrix (Leslie, 1948) may be used for representing a 
population of female Weddell seals with 25 age classes. As constants, the entries 
of the top row (age specific reproduction as females born per female) were: bo = 
b,  = b, = 0; b, = 0.10, b, = 0.25, 6 ,  = 0.30, b, = 0.35, and  6 ,  = b, = b,, 
= 0.38, as derived from DeMaster (1978), Siniff et al. (1977), and  Stirling 
(1 971). Similarly, the subdiagonal entries (age-specific survival) may all be set 
equal to 0.85 (DeMaster, 1978). Such a matrix model, with constant 
parameters, produces a constant growth rate and age structure (Leslie, 1945). 

A more realistic approach involves a similar model that incorporates some 
type of density dependence into the transition matrix (Leslie, 1948; Fowler and 
Smith, 1973; Fowler and Barmore, 1979). Such density dependence is often 
assumed to be linear (Allen 1975), even though there is growing evidence to sup- 
port nonlinear functions for large mammals in general (Fowler, 1981; and 
Chapter 23). In this analysis the following four density-dependent functions were 
used: 

where Po 

Pi 
A = maximum annual survivorship 

M o  =constant associated with the number of female pups and their 

M I  = constant associated with the number of females 4 years of age or 

X I  = number of female pups 

X ,  = number of females 4 years of age or older 

= annual pup survivorship 

= annual survivorship of seals i years old 

survivorship 

older and their survivorship 
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= a constant that describes the shape of the curve in equations (2) 

X, = the maximum number of female pups in the population 

X, = the maximum number of females 4 years of age or older in the 

B 
and (3) 

population 

T h e  following values were used in the 22 simulations summarized in Table 1 : 

1000. T h e  estimated maximum annual survivorship A is a value derived from 
the available empirical data (DeMaster, 1978). X, and X K  were approximated 
by the maximum number of pups and  adult females that have previously been 
recorded in the McMurdo Sound study area (DeMaster, 1978). T h e  value of B 
was arbitrarily set equal to 0.02 (Eberhardt and  Siniff 1977) and represents a 
relatively rapid change in the shape of the nonlinear function (Figure 1). M o  was 
determined by simulating the population with the nonlinear form of pup sur- 
vivorship until an  equilibrium was reached, and  then using the equilibrium 
values of Po and X,  to solve for M, (Figure 1). A similar approach was used to 
solve for M I .  

A = 0.85; Mo = 0.000125; MI = 0.00003594; B = 0.02; X, = 350; XK = 

0.90 1 
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Figure 1 Linear (solid line) and nonlinear (dashed line) relationships between the sur- 
vival rate for pups and the number of female pups born. The linear form is fit through 
the initial point (0, 0.86) and the equilibrium point (308, 0.69). Dotted line shows 
equilibrium level of female pups born. 

T h e  simulation was allowed to continue until an equilibrium was reached or 
until the population went extinct as was done by Fowler and Smith (1 973) and 
Allen (1975): 

where X, +, = the 25 X 1 population vector for year t + I 
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L(X,) = the 25 X 25 variable projection matrix expressed as a function of 

X, 

H, 

x , 
= the 25 X 1 population vector for year t 

= the 25 X 1 harvest vector in year t 

T h e  original population vector was derived from Stirling (1971) and DeMaster 
(1 978): 

Age Frequency Age Frequency 

1 232 10 44 
2 179 11 37 
3 152 12 30 
4 130 13 26 
5 108 14 22 
6 90 15 18 
7 75 16 15 
8 63 17 12 
9 53 18 10 

At each iteration of the model, a new population vector is calculated. Appro- 
priate portions of the new population vector are then used to calculate the 
entries for the projection matrix using various combinations of equations (1)-(4). 
Thus, the influence of changing the form of the density-dependent function and 
the age a t  which survival is density dependent can be investigated. By changing 
the harvest vector from one containing all pups to a vector of only seals 4 years of 
age or older (harvest from each age class was proportional to the size of the par- 
ticular age class), the influence of varying the age structure of the harvest can be 
investigated. 

Equation (5) is representative of a situation where the harvest occurs after the 
age-specific survival and  reproduction have been realized. If the harvest occurs 
after the rates of survival and  reproduction have been determined, there is no 
chance for further compensation by the nonharvested segment of the population 
during that unit of time. In other words, there is no increase in the rates of 
reproduction or survival as a result of the removal of a segment of the population 
by harvesting. Such reactions, by necessity, can occur only in the next time step. 
This may or may not be a realistic situation. I t  is possible that populations may 
react to the density immediately following harvest (rather than prior to harvest) 
thus compensating for the harvest in the same time step (a  reversal of the situa- 
tion above). T o  determine the influence that any such harvest compensation 
may have on the equilibrium population a simulation that calculated the harvest 
before the projection was also investigated. This is represented in equation form 
as: 
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In this case, the entries for the projection matrix are calculated from the popula- 
tion vector subsequent to the harvest. 

The  simulations of female Weddell seal populations, as produced for this 
study (Table l ) ,  can be broken down into three categories. These are (1) simula- 
tions with no harvest (Table 2), (2) simulations in which only pups are harvested 
(Table 3), and (3) simulations in which only animals 4 years of.age and  older are 
harvested (Table 4). Cases 1 and 2 and  cases 3 and 4 must necessarily be 
equivalent in all ways a t  equilibrium because of the way in which the slope of the 
linear form of the density d e p e n d e x e  was derived. Cases 5 and 6 (Table 2) 
incorporated both adult  and  pup  survivorship that was density dependent. In 
these cases, the equilibrium population and number of female pups are not the 
same. This is because the equilibrium survival rates ( P o / P )  are not associated 
with the same number of female pups and  the number of adult females for the 
linear and nonlinear models. 

Table 1 Summary of 22 Simulations 

Harvest Composition 
Case PO P Compensation of Harvest 

1 Linear - No 0 
2 Nonlinear - No 0 
3 - Linear No 0 
4 - Nonlinear No 0 
5 Linear Linear No 0 
6 Nonlinear Nonlinear No 0 
7 Linear - 
8 Nonlinear - 
9 

No PUP 
No PUP 

Linear No PUP 
Nonlinear No PUP 

11 Linear Linear No PUP 

- 
10 - 

12 
13 
14 
15 
16 
17 
18 
19 

Nonlinear 
Linear 

Linear 
Nonlinear 

- 
Linear 

Nonlinear 

Nonlinear 
- 

- 

Linear 
Nonlinear 

Linear 

No 
Yes 
Yes 
No 
No 
No 
No 
No 

PUP 
PUP 
PUP 

Adult 
Adult 
Adult 
Adult 
Adult 

20 Nonlinear Nonlinear No Adult 
21 - Linear Yes Adult 
22 - Nonlinear Yes Adult 

RESULTS OF SIMULATIONS 

The results of simulations without harvest (Table 2) show that different density- 
dependent mechanisms will produce different equilibrium populations. Dif- 
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Table 2 
Harvest' 
Case Time to Return 
(see Table 1 )  Population XI Po/P Mean Age (20% reduction) 

Results of Weddell Seal Population Simulation in Which There Is NO 

1 .  Linear Po 1701 308 0.6937 5.05 250 

3 .  LinearP 1790 301 0.8202 4.51 230 
4. Nonlinear P 1790 302 0.8201 4.51 50 
5 .  Linear Po and P 893 156 0.7708/C.8346 4.76 170 
6 .  Nonlinear Po and P 1666 290 0.7715/0.8347 4.76 40 

2. Nonlinear Po 1701 308 0.6936 5.06 90 

'See Table 1 and text for details concerning the nature of the model in each case. 

ferent levels of pup  production will be associated with these equilibrium popula- 
tions. T h e  largest difference in equilibrium occurred between cases 4 and 5.  
When both pup  and  adult survival are linearly density dependent, the number 
of pups and  adults has to be substantially Icrrrer to reach equilibrium than  when 
only one of these density-dependent mechanisms are employed. I t  is interesting 
that when only the survival of pups ( P o )  is density dependent its equilibrium is 
less than when only the adult survival is density dependent. This is due to the dif- 
ferences in the composition of the resulting populations in the two cases, as 
explained in Chapter 23. 

Changing the age classes subject to density-dependent survival thus has a 
predictable effect on the mean age of the equilibrium population. T h e  same is 
true for the time necessary for the population to return to the equilibrium. 
When the survival of pups is density dependent, the mean age of the equilibrium 
population is greater than the mean age of the population when the survival of 
both pups and  adults are density dependent. Also, when survival for all age 
classes is density dependent, the mean age at  equilibrium is greater than when 
the survival for adults alone is density dependent (see Chapter 21). 

Estimates of the time necessary for the population to return to equilibrium 
were generated by reducing each age class of the equilibrium population by 
20%. and then finding how long it took for the population to reach a constant 
mean age (determined by a predetermined and uniform criterion). The  
nonlinear models were found to return more rapidly than the linear models 
because the nonlinear models used in this study have essentially maximum rates 
of growth until they approach the maximum population, while the linear models 
have growth rates that are constantly declining as the population increases. The  
most rapid return took 40 years, while the slowest return took 250 years (Table 
2). DeMaster (1978) documented a 50% reduction in the breeding population of 
the Weddell seal in McMurdo Sound between 1975 and 1976. Stirling et al. 
(1977) documented a 50% reduction in the number of ringed seals (Phoca 
hispzdu) in the western Canadian Arctic. Returning from such reductions, of 
course, would require even more time than indicated by these models. 

With a pup  harvest as part  of the population model, the population giving rise 
to a maximum sustainable yield (MSYP) and the maximum sustained yield itself 
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(MSY) were determined by finding the equilibrium population at various levels 
of harvest. T h e  largest harvest that the population could sustain was considered 
to be the MSY. By altering the form of the density-dependent function, the age 
at which it operates, and  the time a t  which it operates, a range of corresponding 
MSYP were determined. The  MSYP, expressed as a percentage of the 
equilibrium population (no harvest) was found to vary between 55 and 98 (Table 
3). In general, if only the form of the density dependence was changed, simula- 
tions with nonlinear density dependence had higher MSYP than the models with 
linear density dependence. Similarly, nonlinear models tended to have higher 
MSY values when expressed as a percentage of the total pup  production. A 
unique situation arose with nonlinear models in that some harvest rates actually 
increased the equilibrium populations (Table 3, case 14). In this case, harvesting 
40 pups increased the survivorship of the remaining pups to such an  extent that  
the equilibrium population of the model was 109 seals larger than the 
equilibrium population with no harvest at all. 

DENSITY DEPENDENCE AND A MODEL FOR SEALS 

Table 4 
of Adults" 

Results of Weddell Seal Population Simulation in Which There Is a Harvest 

MSYP Case 
(see Table 1) MSYP Equilibrium Harvest 

15. Linear Po 1166 0.69 I 
16. Nonlinear Po 1570 0.92 22 
17. Linear P 831 0.46 10 
18. Nonlinear P 1437 0.80 24 
19. Linear Po and P 665 0.74 3 
20. Nonlinear Po and P 1475 0.89 21 
21. Linear P compensation 831 0.46 10 
22. Nonlinear P compensation 1486 0.83 25 

"See Table 1 and text for details concerning the nature of the model in each case. 

When the age structure of the harvest is changed from exclusively a pup  
harvest to a situation in which all seals 4 years of age or older (approximate age 
of sexual maturity and subsequent return to breeding population: Stirling, 1971 ; 
Siniff et al.,  1977) are harvested, the MSYP, when expressed as a percentage of 
the nonharvested equilibrium population, varied between 46 and 92 (Table 4). 
This is essentially the same as the range of MSYP for the pup harvests. T h e  cases 
with adult  harvests were similar to cases with pup harvests in that those with 
linear density dependence had lower MSY values and  equilibrium populations 
than those with nonlinear density dependence. T h e  maximum adult harvest 
occurred in the case where nonlinear density dependence of adult survivorship 
and  harvest compensation were incorporated. In comparing the maximum 
yields for pup and  adult harvests, roughly twice as many pups can be harvest 
from one age class as adults can be harvested from 21 age classes. This supports 
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the prediction of Eberhardt and  Siniff (1977) that marine mammal populations 
are extremely sensitive to increases in adult mortality. 

The  simulations that incorporated pup harvests of various types had MSY 
values that ranged from 7% (Table 3, case 11) to 17% (Table 3. cases 8 and  14) 
of the pup numbers. Comparable ranges were even greater when harvest of 
adults is included in the cases being compared. For all harvest strategies that 
were examined in this work the MSYP, given as a percentage of the 
nonharvested equilibrium population, varied between 46 and 98. This analysis 
suggests that reasonable management decisions must incorporate information 
concerning the regulatory mechanisms, harvest compensation, time at which 
density dependence is expressed, and the age structure of the harvest. Specifi- 
cally, models and predictions for one species should not necessarily be accepted 
as general guidelines for the management of other species. 

DISCUSSION 

The Model 

The  main purpose of this chapter is to demonstrate the effects of different 
regulatory processes, types of harvests, and  harvest schedules. Therefore, the 
particular hypothetical relationships used to model the regulatory processes can 
be considered only as rough approximations of what may actually happen. T h e  
four types of density dependence in equations (1)-(4) represent a wide range of 
reasonable types of density dependence. By examining the extremes of a 
reasonable spectrum of possibilities, minimum and maximum estimates can be 
produced to create an interval within which the true value will occur. 

Other modes of regulation need investigating. Eberhardt (1977), for example, 
suggests that in addition to the survival of pups, age of first reproduction is a 
very important mechanism in the regulation of populations of marine mammals. 
For simplicity, age-specific reproduction was assumed constant in this model. 
This needs to be investigated. Some of the effects of changing this variable are 
examined by Fowler and Smith (1973), Fowler and Barmore (1977). and  
Eberhardt and Siniff (1977), and in Chapter 23. Preliminary modeling in this 
study suggested that manipulating the age of first reproduction may cause cyclic 
behavior (see May and Oster, 1976). 

T h e  particular nonlinear function used in this work is attractive because it 
comes close to approximating the concept of a threshold density. Tha t  is, sur- 
vival, for example, is essentially density dependent only when density is above 
the threshold. Chapman’s 1973 presentation of data on northern fur seals 
(Callorhinus ursinus) seems to support the threshold concept because recruit- 
ment was found to appear independent of density at low population levels. 
These are dynamics that conform to the general pattern described by Fowler 
(1981) and in Chapter 23. In this pattern,  most density-dependent change is 
restricted to a range of levels close to the equilibrium for large mammals. 
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Models Without  a Harvest 

This analysis indicates that  mechanisms that have relatively small effects on the 
growth rate of a population indeed may regulate those populations. However, 
the time necessary for this regulation to occur may be longer than the period 
during which environmental conditions are constant enough to allow for a con- 
stant equilibrium population. Because the minimum time necessary for the 
population to return to the equilibrium (after a 20% reduction in the popula- 
tion) was 40 years in this work, it seems unlikely that seal populations would ever 
reach a stationary age distribution (age distribution where age structure is con- 
stant). If it is assumed that declines can occur much more rapidly than increases 
(Stirling et al. 1977; DeMaster, 1978; Siniff et al., 1977; Payne, 1977). it may be 
that populations of pinnipeds will commonly be found to be increasing to a level 
their resources can maintain. However, periodically populations may rapidly 
decline, possibly owing to changes in some aspect of the physical environment. 
This type of growth pattern needs to be considered as far as future 
methodologies and  research (see Fowler, 1981). 

Considering the predictable manner in which the mean age of a population 
responded to various types of density dependence, it may be possible to use the 
change in the mean age of the population as it grows to infer something about 
the age class for which density-dependent mechanisms are operative. Tha t  is, if 
the mean age of the population increases as the population increases, it is most 
likely that density-dependent factors are affecting the younger age classes or the 
birth rate (see Chapter 21), and  vice versa. This approach may not be par- 
ticularly sensitive because of the relatively wide confidence interval around the 
mean age that is generated from a distribution of ages. However, such a tech- 
nique has been used successfully with southern elephant seals (M. leonina: Laws, 
1960) to determine the number of bulls to be culled. Further studies of this 
population parameter should be conducted. 

Models Incorporating Harvest 

T h e  incorporation of age-specific harvests into a general population model 
seems to be necessary in light of the findings in this study and  as shown in 
Chapter 23. The  fact that the maximum sustainable yield of adult female Wed- 
dell seals was only 1.7% in the most liberal population model in this study sug- 
gests that harvests as low'as 20 seals from a population of 1000 adult females may 
be critical. Since 1964, an  average of 30 adult females have been harvested from 
the McMurdo population of Weddell seals in the Antarctic. This population 
contains roughly 1000 adult females. T h e  1977-1978 harvest of this population 
was roughly 35 adult females (combined take of United States and flew 
Zealand). T h e  gradual decline of this population since 1967 may be, in part, a 
result of this adult harvest (DeMaster, 1978). 

On the other hand,  harvesting 17% of the female pup production could be 
sustained by this same simulated population. It is even conceivable that some 
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harvests may temporarily increase populations. A similar mechanism has been 
suggested for black bears (Kemp 1974). 

Analyses that have incorporated factors similar to those discussed in this 
chapter have been presented'by Stirling et al. (1976), Allen (1975), and Chap- 
man (1961). Stirling et al. (1976) simulated brown bear and polar bear popula- 
tions with a fixed age-specific rate of reproduction and  survival. Although it is 
not possible to generate MSY values with their model, a type of sensitivity 
analysis can be generated. The  authors found that various population projec- 
tions were extremely sensitive to manipulations that affected the mortality of 
adult females. 

Chapman (1961) estimates the MSY of 3-year-old male northern fur seals 
(Callorhinus ursinus) with two different types of density-dependent rates of 
recruitment. Both models are nonlinear, with one model producing a n  MSY of 
4575, when the population of pups is 68% of the maximum population of pups. 
The  other model produces a n  MSY of 46%, when the population of pups is 72% 
of the maximum pup population. T h e  estimated MSY of 3-year-old fur seals is 
much greater than the estimated MSY of pup  Weddell seals in this chapter. This 
is primarily because the intrinsic growth rate for fur seals is much larger than for 
Weddell seals. However, the population at which the MSY occurs for fur seals is 
bracketed by the estimates of the MSY population produced in this chapter for 
Weddell seals. 

CONCLUSIONS 

It is difficult to generalize from these results because of the hypothetical nature 
of the model and because each manipulation was associated with a unique MSY 
and equilibrium population. Estimates of the MSY were found to be higher for 
nonlinear than linear models, higher for pup harvests than adult harvests. These 
results are consistent with the general patterns described in Chapter 23. Models 
that incorporated harvest compensation produced higher MSY than models that  
did not. 

T h e  management of populations of pinnipeds is confounded by difficulties in 
assessing population levels, regulatory mechanisms, and  controlling factors. T h e  
recent criticisms of the concept of MSY (Larkin, 1977) and the current use of the 
concept of optimum sustainable population (OSP) (Marine Mammal Commis- 
sion, 1975) seem to stem from an awareness of how sensitive current MSY 
estimates are to changes in the marine community (particularly of fishery stocks) 
and changes in the age structure of the harvest. In the future, the population 
models that are used to estimate MSY values must incorporate these factors. 
Changes in the community structure will necessarily alter the equilibrium 
population of seals, and adjustment procedures need to be established. Perhaps 
initial carrying capacity estimates should be compared with current carrying 
capacity estimates. Perhaps, the effect of varying environments may have to be 
incorporated in future models by determining MSYs (stated as a percentage) in 
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advance, but then delaying the determination of the quotas until an assessment 
of the current populations are made. Finally, the idea that one general model 
will predict maximum harvest rates and  equilibrium stocks for many or all seals 
seems doubtful. For each species, the regulating mechanisms, and  controlling 
factors must be identified before MSYs can be derived. In addition, the age 
structure of any proposed harvests must be incorporated in management 
oriented models because this is critical in determining the MSY for any par-  
ticular population. 

DENSITY DEPENDENCE AND A MODEL FOR SEALS 
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