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ABSTRACT 

Box-Jenkins models are suggested as  appropriate models for forecasting fishery dynamics Unlike 
standard production models. these models are empirical. dynamic, stochastic models Box-Jenkins 
models are not biased when estimating relationships between catch and effort, as are standard 
production models The use of these techniques is illustrated on catch and effort data for the skipjack 
tuna fleet in Hawaii An actual 12-month forecast is shown to  give a reasonable fit to the observed data 
Most of the discrepancies are explained by changes in the behavior of the fishermen 11 e .  economic 
factors,. rather than by lack of knowledge of the behavior of fish 

Accurate forecasting models would be useful in 
fishery management because extended jurisdic- 
tion and international agreements require pre- 
seasonal predictions of the actual catch of a fleet. 
In addition, improved forecasts of fish availability 
can lead to improved planning by fishermen or by 
processing firms. Forecasting techniques have 
expanded greatly in the last years, but few have 
been adapted to research in fisheries manage- 
ment. Instead, techniques designed to establish 
the equilibrium health of the stocks are also being 
used to attempt dynamic forecasting. 

At present, two least squares procedures are 
being used to estimate the general production 
model, the search procedure of Pella and Tom- 
linson (1969) and the weighted least squares of 
Fox (1970, 1971, 1975). The Fox procedure fits 
catch per unit effort against a function of lagged 
effort. Several authors (Chayes 1949; Eberhardt 
1970; Atchley et al. 1976) have demonstrated that 
scaling the dependent variable (i.e., catch) by 
the independent variables (Le., effort) biases 
the fit by introducing artificial correlation into 
the data. Johnston (1972) showed that ordinary 
least squares gave biased estimates and an  in- 
flated F-statistic when used with variables lagged 
on themselves. Neither the Fox nor the Pella- 
Tomlinson procedure accounts for the effect of 
autocorrelated errors in the estimation procedure 
which Granger and Newbold (1977) and Newbold 
and Davies 11978) have demonstrated bias both 
estimation and tests of fit. An examination of the 
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residuals in Fox (1971, figure 3B) clearly shows 
them to be autocorrelated. Residuals from many 
spawner-recruit curves display similar behavior. 

In this paper, the use of Box-Jenkins models 
for modeling and forecasting fisheries dynamics 
is explored. Box-Jenkins and other related fore- 
casting techniques are  specifically designed for 
estimating and testing models in the presence 
of autocorrelated errors. The fitted models are 
stochastic rather than deterministic, thus reflect- 
ing the variability found in most fisheries. The 
models are constructed empirically, and are best 
suited for forecasting. The models tell us little 
about the long-term health of the stocks, so that a 
judicious use of production, yield per recruit, and 
accurate forecasting models is required to give the 
best overall picture of the fishery. 

My preference for Box-Jenkins models over 
other forecasting methods now available is due to 
the good documentation (see for example Ander- 
son 1975; Box and Jenkins 1976; Granger and 
Newbold 1977) and computer accessibility. The 
results presented here were obtained using a 
package originally developed by David Pack a t  
Ohio State University and now available through 
Automatic Forecasting Systems.' 

The three-step process of' model identification. 
model estimation, and model diagnostic checking 
is illustrated by developing a model that makes 
monthly forecasts of skipjack tuna, Katsuwonus 
pelamis, catches in Hawaii. Experience with the 
model suggests that  for a 12-mo forecast of catch, 

'Reference to trade names does not imply endorsement bv the 
National Marine Fishenes Service. NOAA. 

887 Llanucnpt accepted Mav 1980 
FISHERY BULLETIN VOL 78 YO 4 1Y81 



FISHERY BVLLETIS VOL i R .  NO 4 

the data were aggregated into monthly totals, 
with the total number of fishing trips used as the 
measure of fishing effort. For monthly catch and 
effort during 1964-78 see Figures 1 and 2. 

There are  several causes for the observed sea- 
sonal variability. First, the tuna are only avail- 
able in large numbers seasonally. Second, price 
considerations, particularly around Christmas 
and New Year when there is large demand, tend to 
spur fishing even when availability is low. Third, 
with only 12 boats fishing, if 1 or 2 boats are not 
able to fish for a few weeks, the catch will drop 
sharply. Finally, environmental factors, partic- 
ularly weather (such as bad seas) will affect the 
landings since the boats are unable to fish. 

Folklore in Hawaii has it that the catch remains 
similar each year, no matter how many boats fish. 
Comitini3 examined the fishery using dummy 
variables and ordinary least squares to estimate 

'Comitini, S. 1977. An economic analysis of the state of 
Sea Grant Tech. Rep. the Hawaiian skipjack tuna fishery. 
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during peak months the forecast is within 15% of 
the observed catch (and is usually within 8-1092 of 
the observed catch), most turning points in the 
catch trend are  predicted, and the important 
feature of a low, flat catch during the summer 
months or high, peaked catches are  accurately 
predicted. Moreover, the reasons for forecasts with 
large errors appear to be related more to fisher- 
men's decisions in  face of weather and economic 
factors, than to mispredicting the availability 
of the fish. 

THE DATA AND 
UNDERLYING MODEL 

The data  to be analyzed are  landings of skipjack 
tuna by approximately 12 boats from Oahu during 
1964 through 1978. The raw data consist of the 
daily landings (each boat rarely stayed out more 
than a day or two), broken down by boat, and by 
four skipjack tuna size classes: large, medium, 
small, and extra small. For purposes of analysis, 
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FIGURE 1 -Level of Hawanan skipjack tuna catch by month. 1964-78 
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a Cobbs-Douglas production function. He con- 
cluded, among other things, that  natural fluctua- 
tions in resource availablity are significant, but 
did not include them in his analysis, nor did he 
provide a means for forecasting future catch. The 
National Marine Fisheries Service, using a re- 
gression model based on the previous year’s catch, 
water temperature, and salinity at the start of the 
year, makes yearly predictions tha t  have been 
mixed in  accuracy. 

Box-Jenkins models a re  autoregressive-inte- 
grated-moving-average models, or ARIMA mod- 
els. These are  linear, stochastic models that can 
describe fairly complex behavior, in contrast to 
Parrish and MacCall (1978) who use highly non- 
linear equations to model the fluctuations in  
fishery data. 

The modeling is based on the properties of 
stationary time series. A time series x t  is station- 
ary if it  has a constant mean, and if the covariance 
between events x t ,  x t - s  depends only on s and not 
on t. Many series are stationary after removing a 
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- 
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deterministic trend. Others a re  differenced in 
order to achieve stationary. Also, transforming 
the time series, particularly using the Box-Cox 
family of transformations, often improves the  
behavior of the time series. The initial step then is 
to transform and difference the data as necessary 
to achieve stationary. It is convenient to use the 
backshift operator BJ, where BJxt  = x t - j ,  to de- 
note lagged variables. Given the new series zt 
= (1 - B d ) x t ,  a mixture of autoregressive and 
moving average models are sought. Autoregres- 
sive models are models that  depend on the past 
history of the time series: 

Z t  = cb1zt-1 + 4 z Z t - 2  +...+ cbpzt-p + a2 

in terms of the backshift operator: 

(1 - cblB - 4 2 B 2  - ... - cbpBP)z t  = at 

while moving average models depend on past 
values of the noise or error: 
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FIGURE 2.--Number of fishing tnps per month by the Hawall skipjack tuna fleet 1964-78. near Oahu, Hawaii. 
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and effort for the period August 1977-December 
1978. The models with the best “fit” were then 
reestimated to make the forecast for 1979. To 
make clear the feedback nature of identification, 
estimation, and checking in Box-Jenkins models, 
results from models fixed to 163 and 180 mo of data 
are intermingled, but clearly labeled. 

A tentative model can be identified by esti- 
mating the autocorrelation and partial autocor- 
relation functions for each series. These are shown 
in Figures 3 and 4. Significant is the undamped 
sinusoidal behavior of each, with a period of 12 mo. 
Failure of both the autocorrelation and partial 
autocorrelation functions to go to  zero is a sign 
of a nonstationary series, and the need for dif- 
ferencing. The 12-mo period suggested a yearly 
seasonal model, so that twelfth differences were 
taken, Le., zt = (1 - B’*)x t .  

The estimated autocorrelation and partial auto- 
correlation functions for the differenced catch and 
effort series are  given in Tables 1 and 2. Following 
guidelines in appendix 9.1 in Box and Jenkins 
(19761, seasonal models with period s of the form: 

or: 

A model that has both moving average and auto- 
regressive parameters is a mixed autoregressive 
moving average model, whose representation in 
terms of the backshift operator is: 

(1 - 6 , B  - b z B 2  - . . . -  b p B P ) ( l  - B Y x t  

MODEL IDENTIFICATION 

The first step in the Box-Jenkins modeling 
process is to use properties of the data to tenta- 
tively identify a model. Even if a multivariate 
model (i.e., a model based on catch and effort) is 
the ultimate goal, univariate models of each series 
are constructed first. Often the univariate model 
produces forecasts that are almost as accurate as 
the multivariate model forecast. 

My procedure was to  identify, estimate, and 
check a series of models based on the data from 
January 1964 through July 1977. These models 
were used to forecast the already observed catch 
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FIGURE 3 -Estimated total catch autocorrelation function for  the catch of skipjack tuna near Oahu. Hawaii. 1964-78 
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TABLE 1 -Autocorrelation functions for 12th differenced effort senes of the Hawaii skipjack tuna fleet, 1964-78 

- 
I- = 0 2 -  

w 0 1 -  

0 

w -01 -  
a a 

2 
LL - 
z 
+ 
4, 

8 - 0 2 -  

e 2 -03 -  

Lag (mol 
Item 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

Regularauto 039 017 020 016 010 004 003 007 -002 -008  -020 -045 -018 -008  
SE 08 09 10 10 10 10 10 10 10 10 10 10 12 12 

Partialauto 39 03 15 03 01 - 04 00 00 - 08 - 07 - 19 - 39 15 04 

Item 15 16 17 18 19 20 21 22 23 24 25 26 27 
Lag (mol 

0 -  

Regular auto - 0 1 8  -013  -012 -017  -015  - 0 1 7  -012  005 004 002 000  -007 003 
SE 12 12 12 12 12 12 13 13 13 13 13 13 13 

Partial auto - 03 02 - 07 - 14 - 01 - 02 - 05 16 - 08 - 19 05 - 12 03 

TABLE 2 -Autocorrelation functions for 12th differenced catch senes of the Hawail skipjack tuna fleet, 1964-78 

Lag (mo) 
Item 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

Regularauto 058 040 033 020 011 005 001 002 -006 -012 -021  -038 -021  - 0 1 5  
SE 08 11 12 12 12 12 12 12 12 12 13 13 14 14 

Partialauto 58 09 10 - 07 - 03 - 04 - 00 04 - 11 - 07 - 17 - 29 28 03 

Lag (mol 
Item 15 16 17 18 19 20 21 22 23 24 25 26 27 

Regular auto - 0 1 6  -012  -008 -009  -008  -012  -010  -008 -008  -009 - 0 0 6  -006  - 0 0 5  
SE 14 14 14 14 14 14 14 14 14 14 14 14 14 

Partial auto - 01 - 06 - 02 - 07 02 - 05 - 04 - 04 - 11 - 17 - 19 - 01 - 02 

were hypothesized as the appropriate univariate 
models for both the catch and the effort time 
series. 

next step is a recursive procedure of estimating 
the parameters of the model, calculating the 
autocorrelation and partial autocorrelation func- 
tions of the residuals from the estimated model, 
and then testing the  residuals for significant 
departure from the assumption that  they are  
white noise. When a final model has been identi- 

ESTIMATION AND CHECKING 

Given a tentative model, such as Model (I), the 
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FIGURE 4 -Estimated effort autocorrelation function for the fishing tnps by the Hawaii skipjack tuna fleet near Oahu, 
Hawaii, 1964-78 
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correlation functions of the residuals (not shown) 
show no sign of additional lags or trend. The test 
statistic that  the residual series are not signifi- 
cantly different from white noise gave no reason 
to doubt the models adequacy, and overfitting by 
including a 8 2 B 2 4  term found this term to be 
nonsignificant. 

fied, overfitting is tried, that  is extra parameters 
are  added to see if they a r e  found to be not 
significantly different from zero. 

To insure tha t  I found the  simplest model 
possible, I fitted first the model zt = (1 - & B )  
(1 - 81B'2)u t ,  and then added parameters as 
seemed necessary based on the diagnostic check- 
ing. The estimates for Model (1) for catch and 
effort are  given in Tables 3 and 4. Estimates 
using two estimation techniques one using back- 
forecasting and one suppressing it, are  presented. 
Some programs do not have a backforecasting 
feature; my experience is tha t  the  estimated 
models obtained using backforecasting are  far  
superior, as can be seen in the tables presented. 

TABLE 3.-Parameter estimates for effort model. Model (1) 
(see text). (Baaed on 180 observations.) 

Pwameter 

e ,  
82 
8,  
e2 

x z  stabsbc 
on residuals 

Resdual 
mean square 

Resduel SE 
Resduel mean 

Estmate 

b:%rz?! SE 

-038349 007942 
- 11326 07996 
5894 08122 
ooo89 08609 

26.894 with 44 df 

1.018.60 
31.915 

1.629 

Esrmate using 
backforecasbng SE 

-0.44756 0.07886 
-.12795 07911 
.w93 .m50 - - 

37.319 wim 45 df 

755.270 
27.482 
0.5338 

TABLE 4.-Parameter estimates for catch model, Model (1) 
(see text). (Baaed on 163 observations.) 

Estimate suppressing 
Parameter backfwecashlW SE 

8, - 0  54100 0 08190 
82 - 22745 08235 
8 ,  75314 08718 
e ,  05184 09256 

,y2 statistic on resduds 
Resdual mean square 165.41 0 
Resdual SE 406 71 
Resdual mean 17506 

27 470 with 43 df 

The estimated autocorrelation and partial auto- 
correlation functions of the residuals from both 
models are given in Tables 5 and 6 .  For the effort 
series, there is no sign of a lack of fit, while for 
the catch series terms of lag three or four are 
suggested. An overspecified model: 

was estimated for both the catch and effort time 
series. The results are summarized in Thbles 7 and 
8. The estimated autocorrelation and partial auto- 

892 

TRANSFER FUNCTION MODELS 

If both the catch time series, say y t ,  and the 
effort time series, say x t ,  have been suitably 
transformed so that the resulting series are sta- 
tionary, a transfer function of the form: 

(1 - i31B - S z B 2  - . . . -  SrB'Ixt 

can be estimated where qt is not assumed to be 
white noise, but itself can be modeled as  an 
autoregressive-moving average process of u t .  

The procedures for identifying and estimating a 
transfer function model are similar to those for the 
univariate model, except that  attention is focused 
on the estimated cross-correlation function be- 
tween the "prewhitened" catch and effort series. 
Series are prewhitened if they are reduced to the 
residuals leR from a given model. In this instance, 
both series are prewhitened by the univariate 
model for effort estimated in the preceding sec- 
tion. The estimated correlation function, impulse 
response function, and residual noise autocorrela- 
tion function are given in Table 9. The estimated 
autocorrelation function for the noise is similar 
to the original univariate autocorrelations, sug- 
gesting a noise model of the form: 

Based on guidelines in Box and Jenkins (1976:386- 
388) and knowledge of the fishery, two models 
were hypothesized: 

(1 - B12)yt = ( 0 0 )  (1 - B12)xt + + ~ t  (4)  

Tables 10 and 11 summarize the estimates when 
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TABLE 5.-Estimated autocorrelation function for residuals of effort model for the Hawaii skipjack tuna 
fleet. 1964-78. 

Lag (mo) Item 1 2 3 4 5 7 8  9 10 11 12 

Auto 001 003 009 006 004 - 0 1 1  -005 004 -009 002 003 -001 
SE 07 07 07 08 08 08 08 08 08 08 08 08 

Item 13 14 15 16 17 18 19 20 21 22 23 24 

Auto 005 - 0 0 1  -OM - 0 0 9  -008 - 0 0 9  -007 -008 -016 010 007 - 0 0 2  

Lag (ma) 

SE 08 08 08 08 08 08 08 08 08 08 08 08 

TABLE 6.-Estimated autocorrelation function for residuals of catch model for the Hawaii skipjack tuna 
fleet, 1964-78. 

Auto 004 011 023 006 006 -005 000 010 -003 004 001 000 
SE 08 08 08 09 09 09 09 09 09 09 09 09 

Lag (mol Item 13 14 15 16 17 18 19 20 21 22 23 24 

Auto 005 - 0 0 1  -007 - 0 0 1  -OW -004 000 - 0 0 1  -006 001 -004 -003 
SE 09 09 09 09 09 09 09 09 09 09 09 09 

backforecasting is used in estimating the pa- 
rameters for Models (4) and (5). The chi-square 
statistics show no reason to suspect model inade- 
quacy. The residuals show no significant cross- 
correlation with total catch, when l/m (180 
observations in the series) is used as  a rough 
standard error. The residual iutocorrelation func- 
tion shows spikes around lag 15 that are higher 
than  would be desired, but overall the fit is 
reasonable, and the model residuals could reason- 
ably be modeled as white noise. 

DISCUSSION AND FORECASTS 

Two transfer function models and one univari- 
ate model have been used to  forecast the catch and 
effort in the skipjack tuna fishery during 1979. It 
is worth emphasizing that the original 12-mo fore- 
casts were made in January 1979 and the updated 
forecasts were made in May 1979, so the reported 
results are true forecasts- there was no a priori 
knowledge of the data to help improve the “fit” of 
the forecasts. The original catch and effort fore- 
casts are given in Tables 12 and 13 while the 
updated catch forecasts are given in Table 14. 

The models used to produce the forecasts are 
best understood when written out in difference 
equation form. The univariate model for catch is: 

TABLE 7.-Parameter estimates for effort model, Model (2)  
(see text). (Based on 180 observations.) 

Parameter 

@ I  

8 2  
03 
8 4  

8 5  

0,  
y z  StabstlC 

on reslduals 
ResdUal 

mean square 
Resldual SE 
Resdual mean 

Estimate 
suppressing 

backforecasting SE 

-036746 0 08004 
- 14976 08412 
- 16111 08458 
- 17096 08454 
- 11547 08089 

59065 06431 

20.696 with 42 df 

1,000.40 
31.629 

82151 

Estimate using 
backforecasting SE 

-0 43862 0 07930 
- 18144 08590 
- 15377 08617 
- 16298 08593 
- 17291 07998 

99483 00033 

27.494 with 42 df 

752.67 
27 435 

351 75 

TABLE 8.-Parameter estimates for catch model, Model (2) 
(see text). (Based on 180 observations.) 

Parameter 

Estimate 
suppressing 

backforecastinn SE 

8, 
H Z  

0, 
‘I 

8, 
x z  statistic 

on reslduals 
Resdual 

mean square 
Resldual SE 
Resdud mean 

‘I 

-0 55368 0 07972 
- 35882 08989 
- 33817 09056 
- 24282 09012 
- 12294 07994 

76951 05062 

15 092 with 42 df 

143,240 
378.47 

2.1150 

Estimate using 
backforecasting SE 

- 0 53771 0 07462 
- 43825 07543 
- 41197 01144 
- 30909 07479 
- 14974 07440 

99585 00825 

20 384 with 42 df 

115 170 
339 37 

3 3299 
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TABLE 11 -Parameter es t imates  for transfer model, Model (51 
(see text) (Based on 180 observations 1 

Estimate 
suppressing Estimate using 

Parameter backforecasting SE backforecasling SE 

0 86672 0 22308 6 ,  0 01286 0 30389 
62 88121 28641 - 70763 21659 

73488 73352 8 1855 82832 
w 1  - 1 301 1 2 16847 

68509 2 34577 -73133 1 58459 w 2  
- 49924 08302 - 46980 08013 H ,  

- 33234 06670 H ,  - 29495 09102 
e, - 16364 09191 - 17199 09012 
fl4 - 13639 08352 - 21746 08098 
e ,  83311 05511 99543 00623 

wo 67421 171214 

x 2  statistc 
on resduals 

Resdual 
mean square 85.673 69 066 

Resdual SE 292 70 262 80 
Resdual mean - 1 9979 - 2 4666 

38 906 with 43 dl 33 067 with 43 df 

i.e., catch this month is equal to the catch during 
the same month last year, adjusted by a difference 
of the weighted sums of the forecasting errors over 
the previous 4 mo. If the forecasts this year have 
consistently underpredicted compared with last 
year's forecasts, then the estimated catch is in- 
creased, while if the  forecasts this year have 
consistently overpredicted compared with last 
year's forecasts, then the estimated catch is 
decreased. The forecast maintains a balance be- 
tween keeping the catch in equilibrium and keep- 
ing the error in equilibrium. 

This impression of a yearly cycle with variabil- 
ity is reinforced when examining the polynomial 

TABLE 9.-Estimated cross-correlation function, impulse re- 
sponse function, and noise autocovar iance  function for a 
catch-effort transfer model for the Hawai i  skipjack tuna fleet, 
1964-78. 

Estimated 
impulse 

Lag Estimated Estnnated noise response 
(ma) cross-conelalion autmvariance SE wights 

0 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

0 651 
080 
070 
086 

- 033 
044 

- 098 
099 
103 

- 017 
043 

- 040 
- 20 

026 
- 109 

003 
- 098 

01 4 
- 110 
- 037 

006 
- 006 
- 108 

012 
- 108 
- 001 
- 108 

- 
0 49 

21 
16 
16 
10 
07 
03 
13 
14 

- 05 
- 14 
- 26 
- 05 

05 
- 12 
- 16 
- 01 
- 05 
- 12 
- 12 
- 16 
- 11 
- 18 
- 21 
- 09 
- 0 8  

0 10 
12 
12 
13 
13 
13 
13 
13 
13 
13 
13 
13 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
15 
15 
15 
15 

8 409 
1 035 

903 
1 1 1 1  
- 431 

566 
- 1  269 

1276 
1 334 
- 215 
556 

- 517 
- 1  555 

338 
- 1  404 
- 038 
- 415 

043 
- 1  271 

185 
- 1  422 
- 475 

080 
- 075 

- 1  393 
181 

- 1  390 

TABLE 10.-Parameter estimates for transfer model, Model (41 
(see textl. (Based on 180 observations.) 

Estimate 
suppressing Estimate using 

Parameter backforecastino SE backlorecastina SE 

75969 069403 80003 083561 
- 47621 07993 - 48894 07851 
- 32874 08734 -32633 06541 
- 17034 08803 - 14853 08666 
- 20033 07905 - 17506 07822 

83364 05271 99587 00707 
y' statistic 

Resdual 
on resrjuals 34 953 W l t h  43 d l  32018 wilh43df 

mean square 83.323 71 300 
Resdual SE 288 66 267 02 
Resldual mean ~ 15 152 0 18650 

TABLE 12.-Catch forecasts for 1979 for the Hawaii  skipjack 
tuna fleet from Models (11. i4), and 151 (see textl 

Model 

Month 

Jan 
Feb 
Mar 
Apr 
May 
June 
July 
Aug 
Swt  
OCt 
N O V  
Dec 

Total 

(41 
102 24 
78 91 

121 86 
202 05 
423 40 
595 39 
666 16 
528 09 
297 96 
224 28 
17399 
133 22 

3 547 55 

15) 
157 48 
123 32 
11883 
169 75 
406 87 
605 68 
684 99 
535 73 
294 92 
216 64 
168 83 
131 61 

3 614 65 

(11 

159.97 
117 81 
108 40 
175 82 
423 95 
598 17 
607 07 
523 14 
291 97 
222 96 
172 94 
132 58 

3 534 78 

Observed catch 
52 6488 
74 1184 

102 4088 
131 0658 
470 5 4 9  
358 5100 
600 6930 
600 5200 
148 3070 
79 3360 
27 5084 
84 7755 

2 730 4367 

TABLE 13 -Predicted and observed number of fishing tnps for 
the Hawrui skipjack tuna fleet in 1979 

Month Original prediction Updated prediction Observed 

Jan 98 93 53 
Feb 97 50 75 
Mar 101 06 78 
Apr 122 30 118 
May 17400 167 71 173 
June 196 16 18736 182 
July 209 37 206 14 200 
Aug 183 04 17981 174 
Sept 139 18 138 73 84 
oct 121 20 12045 84 
NOV 104 23 104 83 51 
Dec 100 92 100 51 109 

TABLE 14.-Updated forecasts of total catch for 1979 for the 
Hawaii  skipjack tuna fleet. 

Model 
Observed catch Month (4) t 5) 111 

May 393 21 4 
June 547 014 
July 644 638 
Aug 500 151 
Sept 293 130 
oct 220 557 
NOV 174 567 
Dec 130 947 

Total 2 904 218 

382 430 401 874 470 545 
586400 589524 358 510 
705 137 668 895 600 693 
527 945 521 456 600 520 
283 067 289 516 '48 307 
197 953 222 806 -9 336 
164 720 173 594 
136831 '33148 

27 5084 
a4 7 5 5  

2984483 3oooai3  23701949 
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representation of Model (1). The value of el is 
nearly one. Thus the term (1 - Ell2)  appears on 
both sides of the equation, and can be cancelled. 
Abraham and Box (1978) showed tha t  this is 
sufficient reason to suspect a deterministic cosine 
function trend with a moving average model 
around the trend, Given the high residual mean 
square for the model (115, 1701, this latter inter- 
pretation is consistent with the folklore on the 
fishery-highly variable but  on the  average 
things are  similar from year to year. 

within 8% of the observed total catch, and for the 
period July 1977-December 1978 the model fore- 
casted within 12% of the observed total catch. 

Except for June 1979, the summer months were 
predicted accurately. Experience with the model 
on the data from July 1977 suggests that the 
summer months a re  almost always predicted 
within 10% of the observed catch. In fact, in  March 
1979, an industry representative doubted the high 
catch forecasted for the summer, due to the low 
catch in January and February 1979. Similarly, 
the sharp drop in catch in September was pre- The first transfer function model is: 

~1 = 8.003~1 + ( ~ 1 - - 1 2  - 8.003~1-12) + ( a t  + 0.489~1-1 + 0.326~1-2 + O.149at-3 + 0.175~t -4)  (7)  

- t0.996~t-12 + 0.487Ut-13 + 0.325~1-14 + 0.148~~-15  + 0 .174~~-16) .  

This model has an  interpretation similar to that 
of the univariate model, except now catch per 
weighted units of effort are  compared between 
years. The second transfer function model com- 
pares lagged values of catch and effort also. 

It is difficult to judge the value of a forecast, 
since this will depend on the use being made of the 
forecast and the alternatives available. Granger 
and Newbold (1977) suggested the most appropri- 
ate measure of the value of a forecast is a loss 
function which reflects the loss from inaccurate 
forecast in the actual application for which the 
forecasts were developed. For forecasting the skip- 
jack tuna fishery in Hawaii, there were four 
immediate goals. The first was t o  give a reason- 
ably accurate estimate of total catch over the 
year, within a 1520% error rate. The second 
was to predict what kind of summer i t  would be, 
May through September being the main fishing 
months. This means predicting what month the 
fish s tar t  running, what month the fish stop 
running, and whether the  catch is high and 
peaked as in 1979, or flat and low as in 1978. An 
important concern is the relative size of the drop 
in catch when i t  occurs in September or October. 

A third concern was an  accurate forecast of the 
catch in December, when the holiday demand for 
sashimi ( a  Japanese raw fish delicacy) drives 
prices very high. And finally, an  increased under- 
standing of the dynamics of the fishery was 
desired. 

Based on these criteria, I feel the forecasts have 
performed well, especially compared with any 
alternative available. The error in predicting the 
1979 total catch is higher than desired. However, 
for the last 6 mo of 1977 the model forecasted 

dicted by the model. Again, in August 1979 an  
industry representative doubted tha t  a sharp 
decline in catch would occur in September, but 
said that this could be a useful piece of knowledge 
since their decisions would change if they knew 
they could expect the supply to  drop sharply. 

The forecasts have provided insight into the 
fishery. The major failures of the forecasts were 
January 1979 and October-December 1979. Jan-  
uary 1979 was a period of unusually bad storms, so 
that few fishing trips were made. However, the 
observed catch per trip was 0.993 metric tons ( t ) ,  
while Model (4) predicted a catch per trip of 1.033 t. 
The main source of the error in the forecast was 
the predicted number of trips to  be made. 

Similarly, the high summer catches, coupled 
with very high catches of yellowfin tuna, drove the 
price for skipjack tuna to very low levels. At the 
end of September, most of the boats went into 
drydock because of the prevailing low prices. The 
few boats that  remained tended not to be the 
industry leaders (Le., boats with a proven record of 
higher catch rates), and made only short forays 
rather than their usual fishing trips. 

The point of these explanations is that  the 
causes of the poor forecasts appear to be related 
not to the behavior of the fish stocks but rather to 
the behavior of the fishermen. Therefore. the 
effort t o  improve the forecasts needs to be di- 
rected at  understanding the fishery, rather than 
the fish. I A ~  economic study of the industry IS 

near completion.) 
Finally, water temperature and salinity data 

for one location off Oahu were included in the 
transfer function models. These variables added 
little to the forecasts. and since there is no 
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mechanistic explanation as to why these variables 
should affect the catch and effort, they are not 
being used at this time in the forecasts. (How- 
ever, the ability to include random environmental 
factors into the forecasting model is an  advantage 
when using stochastic models as compared with 
the normal deterministic production models.) Dis- 
aggregating by size class might also improve the 
forecasts. Prior to 1973, the catch of the large 
skipjack tuna and the total catch were highly 
correlated. Since 1973, this has not been true and 
there  has  been a definite change in  the  size 
composition of the catch. A disaggregated inter- 
vention model may be able to explain this change. 

SUMMARY 

Box-Jenkins models have been proposed as 
an alternate model for forecasting fishery data. 
ARIMA models provide maximum likelihood esti- 
mators tha t  a re  not biased when the data  is 
seasonal and autocorrelated, and when a variable 
is lagged on itself. Techniques are explored which 
allow the model to be constructed from the data 
up, rather than from theoretical models that  may 
not be supported by the data. The procedure is 
illustrated on skipjack tuna catches in Hawaii, 
which traditionally has  been considered too 
variable to forecast on a monthly basis in  a 
reasonable manner. 
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