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An iterative aggregation procedure is described for solving large scale, finite 
state, finite action Markov decision processes (MDPs). At each iteration, an 
aggregate master problem and a sequence of smaller subproblems are solved. 
The weights used to form the aggregate master problem are based on the 
estimates from the previous iteration. Each subproblem is a finite state, finite 
action MDP with a reduced state space and unequal row sums. Global 
convergence of the algorithm is proven under very weak assumptions. The 
proof relates this technique to other iterative methods that have been sug- 
gested for general linear programs. 

OST REAL applications of Markov decision processes (MDPs) M give rise to very large problems; this is particularly true if the state 
is represented as a vector of dimension greater than two or three. The 
major limitation to solving large scale MDPs appears to be in-core 
storage, as computers are now capable of performing iterations of algo- 
rithms for MDPs quickly. However, a 7-dimensional state with only 5 
grid points per dimension would have 78,125 states and a transition 
matrix for each policy that could not be stored in present-day computers. 
In this paper, an iterative aggregation procedure is described for solving 
large scale MDPs which relieves this storage burden considerably. 

The procedure to be described uses the linear programming (LP) 
formulation of a discounted MDP (d’Epenoux [1963]) and employs ideas 
for aggregation of LPs developed in Vakhutinskii and Dudkin [1973], 
Vakhutinskii et al. [ 1973, 19791, Agafanov and Makarova [ 19761, Zipkin 
[1977, 1980a, b], and Dudkin [1979]. In particular, for the special case of 
MDPs the procedure is an extension of Zipkin’s weighted row and column 
aggregation of LPs (Zipkin [ 1977, 1980bl) with optimal disaggregation, 
and of the extensive Russian literature on iterative aggregation proce- 
dures for LPs (Vakhutinskii and Dudkin [1973], Vakhutinskii et al. [1973, 
19791, Dudkin). At each iteration, the restrictions on how an aggregate 
problem may be formed are similar to those described in Thomas [ 19771 
and Whitt [1978] for approximating MDPs. 
Subject classifications: 116 finite state Markov decision processes, 637 linear programming-algorithms. 
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The major result of this paper is that if at each iteration the weights 
for aggregating the rows and columns of the LP are chosen properly, then 
the iterative procedure consisting of alternated aggregation and optimal 
disaggregation converges globally to an optimal primal and dual solution 
of the MDP. Convergence is proven using Zangwdl’s Convergence Theo- 
rem A ([ 19691, p. 19) for algorithms. 

For MDPs, the results extend those of Zipkin [1980a] by showing how 
to iteratively choose the weights for weighted row and column aggrega- 
tion, and by proving convergence of this procedure. Also, it is proven that 
for MDPs the LP described in Zipkin [1977] for optimal disaggregation 
can be reduced to a smaller MDP with unequal row sums (i.e., state and 
action dependent discount factors). This allows t h  subproblems to be 
solved by iterative techniques which are more efficient than linear 
programming. 

The Russian literature on iterative aggregation procedures for LPs 
involves sequences of complicated unconstrained quadratic programming 
problems. Proofs of convergence (particularly global convergence), when 
they have been found (Dudkin, Vakhutinskii et  al. [1979]), are compli- 
cated. The procedure presented in this paper was motivated by the 
realization that solving these quadratic programming problems is equiv- 
alent to one iteration of an esterigr pen.,:ty fuilction algorithm for solving 
(aggregate) LPs. When the Guadratic programs (i.e., the exterior penalty 
functions) are solved as relaxed LPs manv of the constraints are redun- 
dant. This yields a simpler iterative procedure and a stronger proof of 
convergence. 

The major drawback of the procedure is that each revision of the row 
weights is equivalent to a dual variable update when using multiplier 
methods (Rockafellar [ 1973]), and requires the computational equivalent 
of one iteration of successive approximations on the full MDP. It is 
believed that the iterative aggregation process should converge more 
quickly for large problems than successive approximations on the original 
MDP. However, several alternative procedures are suggested for calcu- 
lating the new row weights of each iteration requiring less computation 
but for which convergence is not proven. 

1. THE MODEL 

A Markov process is to be controlled over an infinite planning horizon. 
At the start of each period, a state i from a finite set of N states is 
observed, an action lz is chosen from a finite set of K actions (where for 
convenience it is assumed the same K actions are available at each state), 
and a transition is made to state j at the start of the next period with 
probability p(i ,  j: lz) .  

In each period, if state z is observed and action lz is selected, a cost 
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c(i ,  k )  is incurred. The cost in period t is discounted by a factor p'-', 
0 I p < 1, and it is desired to minimize the expected total cost over the 
infinite planning horizon. It is assumed that c(z, k )  is bounded (equiva- 
lently that 0 I c(i, k )  < for all i and k ) .  It is well known (d'Epenoux) 
that a solution to this MDP can be found by solving the following linear 
programming problem (LP): 

Maximize z%l u( i )  

s.t. C$l (8 ,  - pp(i, j : k ) ) u ( j )  5 c(i, k )  (1.1) 

for i =  1, ... , N; k = 1, ... , K 
where 

0 if i#j 
1 if i - j '  s t ,  = { 

Dual variables are denoted by u(i, k), i = 1, . . , M, k = 1, , K, and let 
u = { ~ ( i ) } ,  u = {u(i ,  k)}. Opitmal primal and dual variables are denoted 
by t7 = {G(i)} and iZ = {ii(i, k ) } .  

In forming an aggregate problem attention is restricted to a reasonable 
subset of possible aggregacions, similar to those described in Whitt. The 
idea is to form a reduced MDP with N' I N aggregate states and K' 5 K 
actions. In the LP formulation, each state has an associated column and 
each state-action pair has an associated row. Let u be a partition of 
(1, 2, ... , N} and let p be a partition of (1, 2, , K}. Let S,,, n = 
1, -. . , N' be the nth subset of u. Similarly, let AI, Z = 1, - , K' be the 
Zth subset of p. Hence S, references both the states and the associated 
columns that are aggregated into the nth state and column, and AI 
references the actions and associated rows that are aggregated into the 
Zth aggregate action and the associated (n, Z)th row. 

Following Dudkin, and Vakhutinskii et al. [1979], assume at  the t th 
iteration estimates u', ut for 6, ii are given. Define the following aggregated 
terms (Zipkin [1980b]): 

c'+'(n, I )  = (&EA! Etan ~ ( i ,  k)u'(i,  EA, C I e ,  u'(i, k ) )  
(1.2a) 
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The aggregate terms in (1.2) are defined so as to ensure that for any 
subset of states either the states are totally aggregated (both across 
columns and across rows by actions) or else the states are not aggregated 
at all across either rows or columns. For notational convenience, it is 
mumed that the partitions do not change with each iteration. However, 
the proofs do not depend on this assumption, and some basis for choosing 
the partitions at each iteration is supplied by the algorithm, 

Let h)(x) ,  f i ( x ) ,  i = 1, . . . , k be concave functions. For the problem: 
Max fo(x), s.t. f i ( x )  5 0 for i = 1, , k ,  the Lagrangean L(x, A) is 
given by: 

fo(.rj + A,fE(x) if A, 2 0 for i = 1, - .  . , k 

Let x *  = argmax, L(x,  A) and A* = argininx L ( x ,  A). The well known 
result that L(x*,  A) =I L(x* ,  A*) 2 L(x,  A*) is used in Theorem 2.2. 

{a otherwise. 

2. THE ALGORITHM AND ITS PROPERTIES 

The iterative aggregation procedure is as follows. Choose any uo, uo 
with m > uo I 0 and M > uo  2 0. Assume that after iteration t, ut and ut  
are given. 

Step (i). Form the aggregate coeWcients defined in (1.2). 
Step (ii). Solve the master program: 

Maximize C?=l z(n) 

s.t. ZL1 pf+l(n,  m:Z)z(nt) I ct+l(n, I )  (2.la) 

for n = 1, - - , N' and 1 = 1, - .  . , K'. 

Denote a primal solution to (2.la) by zt+' = {zt"(n)}, and the dual 
solution by A"' = {A'+'(n. 0;.  

Step (iii). Solve an LP for each n = 1, . . , N': 

Maximize CzESn u ( i )  

sat. C,ESn (&, - /?p( i , j :k) )u( j )  5 zt+l(n)fit+l(i, n : k )  (2.lb) 

for i E S,, and k = 1, -. . , K. 
Let ut+' be the vector consisting of the optimal solutions to all of these 
problems, and denote the optimal dual variables by n-;+l(i, k ) ,  where the 
subscript n denotes that i E S,,. 

Step (iu). Update the dual variables 
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where {a}' = max(a, 0). Return to Step (i), or else stop if fixed point has 
been found. 

Comment. The Russian literature (Vakhutinskii and Dudkin) also 
suggests updating the dual variables using the formula (similar but not 
identical to (2.2)) 

u'+'(i, k )  = (A'+'(& z ) / x k E A I  ZES, u'(i7 k ) ) {u t ( i ,  k )  

- (&, k )  + p C,N,lp(i , j:k)uf+'(j)  - ut+%))}+. b 

A fixed point of the iterative process, if one exists, is denoted by u * ,  u *. 
The corresponding values of z, X are denoted by z * ,  A*. Note that the N' 
LPs (2.lb) have d u d  LPs that are Leontief (Koehler et al. [1975]), and 
hence can be solved by iterative techniques. Each such LP can also be 
viewed as an MDP with unequal row sums. The update (2.2) is a 
modification of the usual update in the method of multipliers. 

It is conjectured that the dual LP to (2.la) is also Leontief. This is true 
for the few small numerical examples solved to date using the algorithm. 

An alternative to Step (iii) requiring less computational effort is fixed- 
weight disaggregation (Zipkin [ 1977; 1980a, b]): 

~ ' + ' ( i )  = (~'(~)z"' '(n))/(C,€-s, u'(J)) for i E Sn. (2.3) 

Similarly, Step (iv) can be replaced by a fixed-weight disaggregation: 

(2.4) 
ut+%, k )  = (u'ti, Iz)h'+'(n, Z))/(&€A[ CLES" u"i, k ) )  

for i E S n ;  k E Ai 

or, noting that Step (iii) of the algorithm yields a unique value of 
&++l(i, k )  for each (i, A): 

U t + l ( i ,  k )  = 7&+'(2, k ) .  (2.5) 

Yet another alternative is "optimal disaggregation" (Zipkin [ 1977]), 
which finds a solution with higher objective value than (2.3): 

Maximize CIEs,, u ( i )  

s.t. &S, (at, - /?p(i, j : k ) ) u ( j )  5 z'+'(n)$'(i, n : k )  (2.6a) 
for i E Sn; k = 1, 0 . -  , K 

(2.6b) Z I E ~ , ,  ( - - / ? . ( i , j : ~ ) ) u ( . d  5 Z'+'(n)fi'k n : k )  

for i $Z S,,; k = 1, - , K.  

Denote as before the optimal dual variables to (2.6a) as d+' ( i ,  k ) ,  and 
those of (2.6b) by wE;"(i, I z ) ,  p # n. Before proving properties of the 
iterative algorithm procedure, it is necessary to prove that a solution to 
(2.lb) solves (2.6). 
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LEMMA 2.1. In  the L P  (2.6), none of the constraints (2.6b) are binding, 
that is wr ' ( i ,  k )  = 0. 

Proof. The dual LP to (2.6) has the following general form 

Minimize CIEsn Cf-1 d i ,  k)h(i ,  k )  + &e,, Zf=1 wp(i, k)h(i ,  k )  

s.t. CESn CB1 (at, - Pp(j, i:k))v,(i, k )  

+ CJfs,, Cbl  (-pp(j, i:k))wp(i ,  k )  = 1 for i E S,. 

The dual LP is obviously Leontief. The lemma follows from Theorem 
2.5.1 in Koehler et al. 

The existence of an optimal solution to (1.1) has been well-established. 
The existence of a fixed point ( u * ,  u * )  for the iterative process will be 
proven by showing that ( u  *, u *) is a fixed point if and only if it is optimal 
in (1.1). 

THEOREM 2.1. ( u * ,  u *) is a fixedpoint of the zteratiueprocess described 
in Steps (i)-(iv) if and only i f  it is primal and dual optimal for (1.1). 

Proof. (V,  ii) is a fixed point. 
The proof proceeds by showing that if t l t  = U, ut  = U, then zf+'(n) = 

CtEsn 6(i), and ht+'(n, I )  = Ct,=s,, C k E ~ ,  U( i ,  12).  These values are optimal in 
the master problem if they are feasible and if they satisfy complementar- 
ity conditions. The latter is 

- c(i, k))(U(i, k)/CIEsn &A, U ( i ,  k ) ) )  (CtEsn EAEA, U ( i ,  k ) )  = 0. 

After cancelling out terms, this reduces to: 

( U ( i )  - (c(i, K) + p cIN,lp(i,j:k)U(j)))ii(i, k )  = o 
the complementarity condition for (l.l), which is true by assumption. 
Since V, ii are primal and dual feasible, positive weighted sums of the 
rows and columns cannot change this. Hence z'+'(n) = CtESn V ( i )  and 
Xt+'(n, I )  = CIEsn &aL U ( i ,  k )  are primal and dual feasible in the master 
problem. 

Depending on how the partitions are chosen, h'+'(n, I )  = 
CzEsn C k E ~ ,  U ( i ,  k )  may be positive for more than N' values of (n, I ) .  
However, at z'+'(n) = CLEs, V ( i ) ,  the (n, I)th constraint in (2.la) becomes: 

( l / & z E A L  CJES,, U(i ,  k ) )  C B E A ,  &S,, u(i, k )  

.[X;l (tit, - Bp(i, j:k))U(j)  - c(i, k ) ]  5 o 
which from the optimality of (U, U)  holds with equality for each (n, I ) .  
The master LP hence has possibly degenerate optimal solutions. The 
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values A‘+’(n, I) = CCEs, &A, C ( i ,  k )  in practice can be found by finding 
all possible optimal solutions to (2.la). 

Using the LP form of Step (iii) given in (2.6), it is evident that ut+’ = 
6. Since V is feasible and optimal, the second term on the right-hand side 
of (2.2) is always nonpositive. The first term reduces to U ( i ,  k ) .  If U(i, k )  
is zero, then the brackets imply Ut+’ (i ,  k )  = 0 = E( i ,  k ) .  If E( i, k )  > 0, then 

c( i ,  k )  + p x F l p ( i , j : k ) f i ( j )  - f i ( i )  = 0, so again ut+l(i, k )  = C( i ,  k ) .  

(v*, u * )  is optimal in (1.1). 

( u  *, u *) is optimal in (1.1) if v * is primal feasible, u * is dual feasible 
and (ti*, u * )  satisfies the complementarity conditions. As (v*, u * )  is a 
fixed point by assumption, then z * ( n )  = CCE.s,, v*( i ) ,  A*(n, I )  = 
CLEs, C h E ~ l  u*( i ,  k ) .  From (2.2), v* is feasible in (1.1) or else u * would not 
be a fixed point. 

As above, writing out the complementarity conditions for the master 
problem (2.la) at  ( z * ,  A*) and substituting in their values yields: 

Cf”=l EL1 ( v* ( i )  - (c(i ,  k )  + /? C~=J=1p( i , j :K)v*(J~))u*( i ,  h) = o 
so (v*, u *) indeed satisfies the complementarity condition. 

At X*(n, I )  = &s, &A, u*(i ,  k ) ,  (2.2) becomes 

u*(i ,  k )  = (u*(i ,  k )  - (c(i ,  k )  + /? Czl p ( i , j : k ) v * ( j )  - v*( i ) ) )+  

which is the usual dual update for the method of multipliers. As u *(i, k )  
is invariant at u *, it follows from Rockafellar that u * is dual optimal. 

It is shown in Zipkin [1977] that “optimal” weightings should be 
proportional to optimal values. A theorem similar to Theorem 2.1 is 
proven in Vakhutinskii et al. [1979]. The possible degeneracy of the 
master LP (2.la) suggests that at each iteration, partitions should 
be chosen such that ‘&s, ut(i,  k )  > 0 for only one I for each n = 

1, . , N‘.  In this case, the algorithm reduces to an aggregation procedure 
for policy evaluation, and a multiplier type step for policy improvement. 
Otherwise, partitions should be chosen such that the dual constraint 
matrix is Leontief. 

Theorem 2.2 states the main results of this paper, that under very weak 
conditions the iterative aggregation procedure converges to a solution of 
(1.1). Note that the iterative aggregation procedure can be viewed as a 
point to set map A: X R Y K  -+ R!? X B y K .  The theorem is proven by 
showing that the algorithm satisfies the conditions of Zangwill’s Theorem 
A (Zangwill[1969]). 

THEOREM 2.2. Assume for (vo, uo) > 0 that v’, u1 are nonnegative 
and hounded when one iteration of the procedure is performed. Let 
{ ( u t ,  ut)}?=o=l be the sequence of vectors generated by the algorithm. Then 
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either { ( u t ,  u t ) )  converges to (6, E) or else there is a convergent subse- 
quence with (V, E )  as the limit of the subsequence. 

Proof. It is necessary to show that A is an upper semicontinuous point 
to set map defined on a compact set, and that there exists some function 
that changes monotonically with each iteration of the algorithm. 

(i) The penalty function. 

x ( u t )  = cEl u'(i) - l / e  CKl Cf=1 ( [CK'- l (SL,  - Pp(i,j:k))u'(j) - c(i, 1213')~ 

monotonically decreases with t for some fixed value e > 0. 

Remark. This result relates iterative aggregation for MDPs to the 
iterative algorithm for nonaggregated linear programs proposed in Man- 
gasarian [1979]. 

Bertsekas [1975] has shown that there exists for linear programs an 
exact penalty function method such that for all e in the interval (0, a, 
the penalty function algorithm converges. Let e be one such value. Using 
(2.2), the Lagrangean function for the master problem (2.la) at iteration 
t + 1 can be written as 

Maximize C f i l  z (n)  - E211 C f l  w(n, 1) 

{&al CcEs,, ((X'(n, W-%, ~ ) / C ~ E A ~  &s, Ut-%, k ) )  

+ Cpy-1 ( 8 ,  - Pp(i,j:k))ut(j) - c(i, k))' 
(2.8) 

- (CZ1 z(n)  C,€s,, (az, - Pp(i,j:k))(uf(j)/C,,sn v t ( j ) )  - c(i, W)). 
At w(n, I )  = l / e  and at the trial value z(n)  = CZEsn ut ( i ) ,  (2.8) reduces to: 
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If in the second term of (2.10), 

(C$1 6, - Pp(i, j:k))u'(  j )  - c(i, k ) )  

1% (&sn (&, - Pp(i, u:k))zt(n)(ut-'(j)/C,€sn u t - ' ( j ) ) )  - c(i, K) 
then from the optimality of z'(n), h'(n, I )  in (2.la), the entire term would 
be zero. However, (2.lb) ensures that 

were replaced by 

(atJ - Pp(i, j : k ) ) u ' ( j )  

(C,Es,, (6, - pp(i,j:k))(zt(n)v'-'(j)/Ci,s,~ u t - ' ( j ) ) )  

and that their respective weighted sums (over k E Ai, i E Sn), weighted 
by 

(ht(n, Out-%, k ) ) / ( & a I  &s,, ut-%, A)) ,  

are identical. Hence the second term in (2.10) is still identically zero. For 
(i ,  k )  E I - ,  by definition 

Cgl (ai, - Pp(Z,j:k))u'(j)  - c(i, k )  5 0, 

hence 

(X'(n, W - ' ( n ,  &s, ut-'(n, I)) 
- <Cgl (&, - Pp( i , j :k ) )u t ( j )  - c(i ,  K)) I 0. 

These two results imply that (2.10) is less than or equal to ~ ( u ' ) .  
Moreover, this implies for w(n, I )  = l/e, maxz L(z,  w)  occurs at 

z(n)  = &s, ut(z) .  Therefore L(z'+', At+') 5 L(zt+', l/e) I L(zt ,  l/e) I 
x(ut ) .  The optimality of z'+', At+' in the master LP (2.la) and the fact 
that ut+' solves the N' problems (2.lb) guarantee that the penalty 
function evaluated at ut+' is less than or equal to L(zt+l,  At+'). 

(ii) The sequence { u t ,  ut> is bounded. 

By assumption. x ( u ' )  is finite, and from part (i) of the proof, x(u ' )  is 
nonincreasing with t ,  so the sequence {u t ,  ut}  is bounded above. Straight- 
forward algebra proves that the penalty function for (2.1) evaluated at z' 
provides a lower bound for x ( u t ) .  Since z t  is optimal in (2.1) at iteration 
t ,  %(ut)  L 0. By definition, ut L 0. Together, these facts imply { u t ,  u'} is 
bounded from below. 

(iii) The point to set map A is upper semicontinuous (closed). 

Since the partitions are the same each iteration, there exists three 
constant matrices T ' ( ( N ' K ' )  x l)), T2(1 x N ' ) ,  and T3(NK x N )  such 
that the constraints for the master problem in Step (i) can be written 
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(T1u')T3(uT2) 5 (T'u')c. 

As Lhe mapping is linear and continuous, and the constraint defines a 
convex set, the mapping A' is closed. Zangwdl [1969] proves that the 
maximization operator is closed; call this A2. Similarly, the constraints 
for the subproblems form closed maps, call them A3, A4, - - , A"+2, and 
Equation 2.2 is trivially closed, call this map A'. Therefore the map A 
can be written as A = AoA2A"+2 . A2A3A2A1. The assumption that 
(u ' ,  u ' )  is finite marantees that the algorithm produces a sequence of 
bounded vectors, that is, A is defined on a compact set. Closedness of A 
then follows from Corollary 4.2.1 in Zangwill ([1969], p. 96). 

(iv) The algorithm converges to a fixedpoint. 

That the algorithm converges follows from Theorem A in Zangwill 
[1969]. To show that it converges to a fixed point, the algorithm maps 
the sequence {u t ,  ut}?=' into the sequence {u t ,   ut)?=^. Two subsequences 
of a convergent sequence on a compact set have the same limit point. 
Denote it by ( u * ,  u * ) .  However, 

( u * ,  u * )  = limL, A: (ut,  ut )  = A(u*, u * )  

the final equality following from A being a closed map. 

When Steps (i)-(iv) of the iterative aggregation process are used only 
every kth iteration, and the alternatives (2.3), (2.4), or (2.5) are used at 
all other iterations, proofs of convergence follow closely the proof of 
Theorem 2.2 to derive the conditions necessary for Zangwill's other 
convergence theorems. Intuitively, either a fixed point is found, or else 
every kth iteration of the algorithm, the equivalent of one iteration of 
successive approximations is calculated. As long as the intermediate steps 
do not force the value function u and the dual variables u in undesirable 
directions, the algorithm converges since successive approximations con- 
verge when applied to MDPs. 

Finally, it is conjectured that convergence can be proven in an analo- 
gous manner to Theorem 2.2 if only some subset of the dual variables are 
adjusted by Equation 2.2 at each iteration. (This is in the spirit of several 
relaxation algorithms (Agmon [ 19541, Motzkin and Schoenberg [ 1954]).) 
For example, one partition at  a time could be updated each iteration 
using Equation 2.2. 

Theorem 2.2 can also be proven using the augmented Lagrangean in 
part (iii) instead of the penalty function. As the dual update (2.2) is a 
method of multipliers update, the algorithm approximates the maximum 
u for each ut+' in the augmented Lagrangean. Sufficient conditions for 
such approximate procedures to converge are given in Rockafellar. 

Clearly the algorithm need not be run until it converges if approximate 
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solutions are satisfactory. Since at  the end of each iteration T,,~ describes 
a nonrandomized policy that can be followed, any of the bounds for 
aggregate LPs or MDPs given in Whitt, Zipkin [1980b], and Mendelssohn 
[ 19801 can be used as stopping rules. 

3. CONCLUSION 

An iterative aggregation procedure for MDPs has been presented which 
converges globally to an optimal value function and to optimal dual 
variables. The process requires less in-core storage at  any point than does 
solving the full MDP. However, each iteration requires at least the 
computational equivalent of one iteration of successive approximations. 
Convergence should be more rapid using the iterative aggregation process. 

To reduce the computational burden, several alternative procedures 
are presented at  key steps. Convergence has not been proven when these 
procedures are used; however, if the full iterative aggregation process is 
used every Kth iteration, then again the algorithm converges globally. 

There should exist a more efficient computational method for updating 
the dual variables at each iteration, a method which converges globally. 
Improvements in this area should lead to truly efficient means for solving 
large-scale MDPs. 

. 

ACKNOWLEDGMENT 

I am grateful to Paul Zipkin, to an anonymous referee, and to the area 
editor for insightful comments and to the Center for Coastal Marine 
Studies, University of California at Santa Cruz, for its support. 

REFERENCES 

AGAFANOV, G. V., AND A. S. MAKAROVA. 1976. An Algorithm for Iterative 
Aggregation of Economic Hierarchy Systems as an Instrument for Consistency 
of Solutions of Multilevel Systems. Optimization Methods and Operations 
Research (Metody Optimizatsii i Issledovanie Operatsii, Akademiia Nauk 
SSSR, Sibirskoe Otdelenie, Energeticheskii Institut, pp. 132-148). (Translated 
from Russian by Wdvan G. Van Campen for the Southwest Fisheries Center 
Honolulu Laboratory, Natl. Mar. Fish. Serv., NOAA, Honolulu, HI 96812,1980, 
18 pp. Translation No. 43, limited distribution.) 

AGMON, S. 1954. The Relaxation Method for Linear Inequalities. Can. J.  Math. 

BERTSEKAS, D. P. 1975. Necessary and Sufficient Conditions for a Penalty 

D’EPENOUX, G. 1963. A Probabilistic Production and Inventory Problem. Mgmt. 

DUDKIN, I,. M. 1979. Iteratiije Aggregation and Its Application in Planning. 

6, 382-392. 

Method to Be Exact. Math. Progrant. 9, 87-99. 

Sci. 10, 98-108. 

Moscow. 



Markov Decision Processes 73 

KOEHLER, G. J., A. B. WHINSTON AND G. P. WRIGHT. 1975. Optimization over 
Leontief Substitution Systems. North Holland/American Elsevier, New York. 

MANGASARIAN, 0. L. 1979. Iterative Solution of Linear Programs, Computer 
Sciences Technical Report No. 327, University of Wisconsin, Madison. 

MENDELSSOHN, R. 1980. Improved Bounds for Aggregated Linear Programs. 
Opns. Res. 28, 1450-1453. 

MOTZKIN, TH., AND I. J. SCHOENBERG. 1954. The Relaxation Method for Linear 
Inequalities. Can. J.  Math. 6 ,  393-404. 

ROCKAFELLAR, R. T. 1973. The Multiplier Method of Hestenes and Powell 
Applied to Convex Programming. J. Optim. Theory Its Appl. 12,555-562. 

THOMAS, A. 1977. Models for Optimal Capacity Expansion, Ph.D. thesis, Yale 
University, New Haven, Conn. 

VAKHUTINSKII, I. YA., AND L. M. DUDKIN. 1973. Algorithm of Iterative Aggre- 
gation for the Solution of the Problem of Linear Programming of a General 
Nature. Izvestiia of the Siberian Section of the Academy of Sciences of the 
USSR Social Science Series (Akademiia Nauk SSSR, Sibirskoe Otdelenie, 
Izvestiia, Novosibirski, Seriia Obshchestvendykh Nauk s( l l ) ,  67-71). (Trans- 
lated from Russian by Wilvan G. Van Campen for the Southwest Fisheries 
Center Honolulu Laboratory, Natl. Mar. Fish. Sew., NOAA, Honolulu, HI 
96812, 8 p. Translation No. 41, limited distribution.) 

VAKHUTINSKII, I. YA., L. M. DUDKIN AND A. MAKAROV. 1973. An Iterative 
Aggregation Algorithm for Connecting a System of Branch Planning Models 
(with Energetics Example). Automation and Remote Control 10, 145-159. 

VAKHUTINSKII, I. YA., L. M. DUDKIN AND A. A. RYVKIN. 1979. Iterative Aggre- 
gation-A New Approach to the Solution of Large-Scale Problems. Econome- 
trica 47, 821-841. 

WHITT, W. 1978. Approximations of Dynamic Programs. Math. Opns. Res. 3, 

ZANGWILL, W. 1969. Nonlinear Programming-A Unified Approach. Prentice- 

ZIPKIN, P. 1977. Aggregation in Linear Programming, Ph.D. dissertation, Yale 

ZIPKIN, P. 1980a. Bounds on the Effect of Aggregating Variables in Linear 

ZIPKIN, P. 1980b. Bounds for Row-Aggregation in Linear Programming. Opns. 

231-243. 

Hall, Englwood Cliffs, N.J. 

University, New Haven, Conn., 189 pp. 

Programs. Opns. Res. 28,403-418. 

Res. 28, 903-916. 




