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ABSTRACT 

Statistics arising from double-tagging experiments may be applied to estimate tag-shedding prob- 
abilities directly, to estimate parameters of underlying theoretical shedding models, or to estimate 
mortality rates free of tag-shedding bias. 

Simple maximum likelihood estimators of tag retention rates, along with their asymptotic vari- 
ances, may be derived assuming conditional multinomial sampling models. If specific models of 
shedding are of interest, limitations of existing theory may be reduced by assuming the Type I1 
shedding rate is time-dependent. In the more realistic models and their simpler precursors, parame- 
ters may be estimated by least squares or by maximum likelihood methods. Complications arising in 
the direct maximization of the conditional likelihood may be circumvented by use of iteratively 
reweighted Gauss-Newton algorithms available in standard statistical software packages. Simple 
diagnostic plots may be helpful in model selection. 

When a sequence of double-tagged cohorts is released, recapture statistics may be treated sepa- 
rately or combined to estimate common shedding rates, but a more general linear model may be used 
to fully exploit the structure of the experiment and to estimate both common parameters and those 
unique to each cohort. 

When recapture times are unknown but the experiment spans a sufficiently long period, theratio 
u t  constant Type I1 tag-shedding rate to constant Type I1 total mortality rate may be estimated. 
Under similar circumstances, but with exact recapture times known for each fish, maximum like- 
lihood estimates of both parameters may be computed. 

If only the Type I1 mortality rate is of interest, it may be estimated free of tag-shedding bias by 
simple linear regression of appropriate double-tagging statistics, if Type I1 shedding and Type I1 
mortality are constant during the experiment. 

The estimation of fishing mortality rate, exploi- 
tation rate, and population size through mark 
and recapture experiments is often complicated 
by the incidental shedding or loss of marks. Fail- 
ure to account for tag shedding may lead to biased 
parameter estimates. Thus a well-designed tag- 
ging experiment will incorporate some provision 
for estimating shedding rates and computing 
correction factors. 

The approach usually taken is to release a 
group, or perhaps several groups of double- 
tagged fish, and then to estimate shedding rates 
using information on the number of fish returned 
in a sequence of recapture samples still bearing 
both tags and on the number of returns with only 
one tag remaining. A variety of statistical meth- 
ods and estimation procedures have been devel- 
oped. Papers by Beverton and Holt (1957), Gul- 
land (1963), Chapman et a]. (1965), Robson and 
Regier (1966), Chapman (19691, Bayliff and Mo- 
brand (1972), Seber (1973), Laurs et al. (1976), 
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Arnason and Mills (1981), Kirkwood (1981), and 
Seber and Felton (1981) a re  particularly n o t e  
worthy. In recent years attention has focused pri- 
marily on the regression methods developed by 
Chapman et al. (1965) and extended first by Bay- 
liff and Mobrand (1972) and most recently by 
Kirkwood (1981). 

Despite the extensive literature on double-tag- 
ging there is need for an integration of existing 
thought and for development of new ideas and 
statistical methods. Accordingly, this paper sur- 
veys basic tag-shedding theory and the most 
widely used analytical techniques, and describes 
a variety of new models and estimation proce- 
dures. Left unaddressed a re  several important 
aspects of planning double-tagging experiments. 
These are  the subject of a companion paper by 
Wetherall and Yong (1981). 

TAG LOSS I N  
SINGLE-TAGGING EXPERIMENTS 

To establish a context for later derivations we 
begin by reviewing the process of tag loss in a 
population of single-tagged fish. In  such a popu- 
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lation, losses may be caused by fishing mortality 
or recapture, natural mortality, tagging mortal- 
ity (mortality induced by the application or 
presence of the tag), permanent emigration, or 
by tag shedding. In addition, recaptured tags are 
considered “lost” if not detected in the catch and 
recovered, or, when recovered, if not returned or 
reported. 

bined effects of fishing mortality, mz), natural 
mortality, M(x), instantaneous tag shedding, 
L(d, and remaining losses, G(z). The usual as- 
sumptions are that the Type I1 losses operate in 
the manner of independent Poisson processes 
with constant rates and that the recovery and 
reporting rates also are constant. Under these 
conditions the model takes the familiar form 

Beverton and Holt (1957) recognized two kinds 
of losses, which they designated Type I and Type 
I1 (these are called Type A and Type B by Ricker 
1975). Type I losses are those which, in effect, re- 
duce the number of tags initially put out. They 
result from the pulse of tagging mortality and 
tag shedding occurring immediately after re- 
lease (or in a relatively brief period following 
release) and from the nonrecovery and nonreport- 
ing of tag recaptures. Type I1 losses are those 
Qappening steadily and gradually over an ex- 
tended period following release of the tagged 
fish. 

These relations may be stated more succinctly 
in a simple mathematical model. Let E( rl) denote 
the expected number of returns of tags recap- 
tured in the ith time interval following the re- 
lease of N(0)  single-tagged fish. Then 

where 7 = A p 5 
X = M + L + G .  

A variety of estimation schemes based on this 
equation have been developed, notably by Paulik 
(1963). These have been reviewed along with 
other mark-and-recapture approaches by Cor- 
mack (1968) and Seber (1973). The importance of 
assumptions on Type I and Type I1 losses in these 
procedures depends on which parameters are of 
central concern in the experiment. In fisheries 
applications the parameter most often focused on 
is the fishing mortality rate, F. Paulik’s single- 
release regression model with constant A, for 
estimating Fand the exploitation rate, p =(F/(F + M ) )  [l - exp(-(F + M)A)]  stems directly from 
Equation (1). In this situation, if Type I losses are 
present the model will estimate 7F rather than 

where ti = time at  the beginning of in- F. Subsequent estimates of X will be too large. 
Further, estimates of the exploitation rate will 
be negatively biased, and if these are used along 
with N,(O) to estimate total population sizes, such 
estimates will be inflated. Of course, this is the 
general effect of Type I losses on Petersen esti- 
mates. 

If Type I1 tagging mortality or Type I1 tag 
shedding occur, the estimate of F from this sin- 
gle-release model will not be affected, but the 
estimate of p will be less than the true exploita- 
tion rate of the unmarked population. 

Sometimes all recaptures are made during 
subintervals of equal length imbedded and ir- 
regularly spaced within the total recapture peri- 
od (e.g., in a salmon fishery with a complex pat- 
tern of open and closed periods). In this case, 
Paulik shows that the single-release model based 
on Equation (1) will give estimates of F and X 

terval i 
Ai = length of time interval i 

1 - A = probability that a tag is lost 
due to immediate tagging 
mortality 

1 - p = probability that a tag is shed 
immediately following re- 
lease 

F(u) = instantaneous fishing mor- 
tality rate at  time u 

1 - 5 (u) = probability that a tag recap- 
tured at time u is not re- 
covered and reported (a 
Type I loss) 

H(z) = total instantaneous rate of 
Type I1 tag loss at time 2. 

Here H(z) represents the unspecified com- 
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which are unaffected by Type I losses, and in fact 
will yield an estimate of 7 as well as the usual 
estimates of F and X. Since the conditions re- 
quired for this scheme will not often be encoun- 
tered, it will usually be necessary to conduct a 
multiple-release experiment, with at  least one 
preseason release, in order to obtain separate 
estimates of F, X, and 7. Models appropriate to 
this situation have also been extensively devel- 
oped by Paulik (1963). 

However, even in the multiple-release models 
the Type I1 tagging mortality and Type I1 shed- 
ding will generate an underestimate of the true 
exploitation rate. Thus while the problems im- 
posed by Type I losses may be circumvented by 
more elaborate experimental designs, the unde- 
sired effects of Type I1 losses remain. Two reme- 
dies are possible: 1) The single-tagging may be 
supplemented with a double-tagging experiment 
and other special studies to estimate Type I1 
components and determine correction factors, or 
2) double-tagging may be used exclusively to esti- 
mate mortality rates unaffected by Type I and 
Type I1 shedding. Both strategies are treated be- 
low. We note here that even when tag shedding 
and mortality are not the chief concerns of a tag- 
ging experiment, double-tagging is often em- 
ployed simply to increase expected recovery 
rates (e.g., Hynd 1969; Bayliff 1973). 

MODELS OF DOUBLE-TAGGING 

We restrict our attention to the case where 
members of the population are marked with two 
tags differing in position of attachment and pos- 
sibly type (call these Type A and Type B). We 
assume the burden of carrying both tags is equal 
to the stress of carrying either one alone. Fur- 
ther, we assume that the probabilities of loss are 
the same for each tag of a specified type and inde- 
pendent of the status of the other tag. Suppose a 
cohort of fish is double-tagged at time 0. For any 
fish still alive at  time t, the probability that the 
Type A tag has been shed can be stated as 

where gA(t) = exp 

An analogous expression exists with respect to 
tag B. Where shedding rates are assumed to be 
the same for tag Types A and B the subscripts 

can be dropped, i.e., the common probability of 
shedding by time t is 

If we set L(u) = L(constant), Equation (2) em- 
bodies the assumptions of Bayliff and Mobrand 
(1972)-Type I1 shedding is a simple Poisson 
process with an identical constant rate for each 
tag, so that each tag has the same probabiIity of 
shedding by time t .  Moreover, in due course all 
surviving fish will have shed both tags as long as 
L > 0, i.e., a(=) - 1. 

The validity of this particular set of assump- 
tions has recently been challenged by results of 
tag-shedding studies with northwest Atlantic 
bluefin tuna, Thunnus thynnus, (Baglin et al. 
1980) and with southern bluefin tuna, T. mac- 
coyii, (Kirkwood 1981). In the former case, it was 
found that the Type I1 shedding rate increased 
with time. In Kirkwood's analysis it was appar- 
ent that the Type I1 rate decreased markedly 
over time. Therefore, it clearly would be advan- 
tageous to construct a model permitting time- 
dependent Type I1 shedding rates. Kirkwood 
approached this problem by attacking the com- 
mon assumption of uniform shedding probabili- 
ties among all fish in the cohort. Instead, he con- 
sidered the Type I1 shedding rate for each tag 
applied to be constant over time, but further as- 
sumed that the rate for each tag was a random 
variable with specified probability density. In 
this light, the deterministic model at Equation 
(2) is replaced by the expectation J( t )  = E[n(t)]  
= 1 - p E[s( t)]. The average time-varying shed- 
ding rate at  time t may now be defined as 

where the expectations are taken with respect to 
the probability density of L. Following standard 
principles of reliability theory, this may be re- 
duced to 

Under Kirkwood's assumptions W ( t )  will de- 
crease with time as long as there is variation in 
shedding rate among tags, Le., there will be a 
continuous culling of tags with relatively high 
shedding probabilities. This concept is clearly an 
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simple model for this situation is L(t) =a +pt(y- l !  
permitting a wide variety of forms for the instan- 
taneous shedding process. In general, all three 
parameters of this model could be specified as 
random variables. Thus with a > 0, p > 0, and 
-w < y < w the probability of shedding might 
increase over time for some fish in a cohort, de- 
crease for others, and be constant for the remain- 
der. However, to simplify the analysis assume 
here that  y is fixed and identical for all members 
of the cohort. Now if (Y and p are  independently 
distributed as gamma random variables we have 

attractive alternative to the Bayliff-Mobrand 
model. 

Problems in which the instantaneous loss rate 
is treated as a random variable arise in a variety 
of contexts ranging from bioassay to analysis of 
labor turnover in corporations. Because of its 
unimodality and mathematical tractability, the 
distribution often selected to describe this varia- 
tion is the gamma distribution with mean A and 
variance A2/b (e.g., see Bartholomew 1973:186 
or McNolty et al. 1980). As Kirkwood (1981) 
showed, for the  tag-shedding problem, this 
choice leads to 

so that 
bA 

b + A t '  
* ( t )  = - 

The Bayliff-Mobrand model is now seen as a 
special deterministic case; when b - 00, J( t )  - 1 - p exp(-At) and *(t)  - A. Kirkwood con- 
sidered a fur ther  elaboration of Equation (3) by 
assuming only a fraction of the tags, 6, will have a 
nonzero probability of shedding; the remainder 
a re  regarded as permanently attached. In this 
event the expected probability of shedding by 
time t is 

While this approach significantly advances 
the realism and flexibility of tag-shedding the- 
ory, it fails to account for the apparent increase 
in average shedding rate as observed in the 
Atlantic bluefin tuna. Thus, although permitting 
variation in shedding rate among tags, it still 
considers the rate for each tag to be constant over 
time. 

This condition is not apt to hold. As Kirkwood 
(1981) himself pointed out, plastic dar t  tags may 
become so firmly imbedded and overgrown by 
tissue as time passes that  the probability of shed- 
ding approaches zero. This is most apt  to occur in 
species which grow slowly, such as the southern 
bluefin tuna. On the other hand, it is well known 
that  various metallic tags may corrode with time 
and their shedding probabilities increase. Plas- 
tic tags also deteriorate. 

Accordingly, consider the Type I1 shedding 
rate to be a function of time, L(t). A relatively 

and 

where the new symbols are  e, the expected value 
of p, and c, the reciprocal of the squared coeffi- 
cient of variation of p. Hence, if between-tagvar- 
iability in a and p approaches zero, 

and ?u(t) - A + f t ( ' - ' !  In the basic model a t  Equa- 
tion (4), for tags still in place at time t the condi- 
tional probability of shedding in the interval (t, 
t + dt) is independent oft. In the extended model 
a t  Equation (5), this conditional probability may 
also increase or decrease with t depending on 
Y. 

While elaboration of the tag-shedding equa- 
tions in this manner is straightforward, it is 
doubtful whether a very clear discrimination be- 
tween such parameter-laden models is possible 
given the usual recapture statistics. Distinctions 
between the extended models are  reduced by the 
integration of the shedding processes over sev- 
eral  recapture periods and are  further obscured 
by sampling variation. 

However, on the basis of these conceptual 
models of the tag-shedding process we can now 
write the well-known equations describing the 
expected number of tags of a specified type still 
attached a t  time t. For Nd(0) fish initially double- 
tagged with Types A and B tags, let 
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be the probability of survival to time t ,  where 
1 - TF = probability of immediate mortality and 
Z(u) = H(u)  - L(u) is the time dependent instan- 
taneous death rate. Then the expected number of 
fish bearing a single tag of Type A a t  time t is 
N A ( ~ )  = Nd(0) S(t)  J ~ ( t ) ( l  - J A ( ~ ) ) .  An analogous 
expression may be written for NB(~), and if the 
two tags are  considered identical, the subscripts 
A and B may be dropped to yield 

the expected number of fish still bearing a single 
tag  a t  time t. 

The expected number of double-tagged fish a t  
time t when A and B types are differentiated is 
Nd(t) = N(0) S(t)(l - J~(t))(l - JB(~)) or when 
no distinction is made between A and B types, 
NJt)  = Nd(0) S(t)(l - J(t))2. In any event, the 
total number of fish expected a t  time t with one 
or two tags remaining is N.(t)  = NJt)  + Nd(t). 

The processes described above are  not directly 
observable, so inferences about the shedding 
rates must be made on the basis of catch statis- 
tics. When recapture effort is exerted during a 
time interval we assume it is applied continu- 
ously. During a period of length Ai beginning a t  
time t; the expected number of recaptures of 
tagged fish in category j is therefore 

tt+A; 

E(r,) = 1 F(u) &(u) du (6) 
1; 

where j = A, B, s, d, . 

To complete the integral a t  Equation (6) it has 
been customary to make two key assumptions a t  
this juncture (Chapman e t  al. 1965). First, we as- 
sume the fishing mortality rate, F(u), is a step 
function constant within each recapture inter- 
val, i.e., F(u) = F, for t,< u< t ,  + A, Second, we 
assume the average value of N,(u) during the in- 
terval is approximately equal to N,(t ,  + 4/2) .  
[This approximation is generally quite good for 
A, of 1 yr  or less. If 4 ( u )  is linear over the interval 
the relation is exact regardless of A,.] Under 
these conditions the set of recapture equations 
becomes 

where T ,  t ,  + Ai /2 . 

The standard procedures for estimating shed- 
ding rate parameters, and many of those to be 
described shortly, rely on a sequence of ratios of 
the estimated or observed number of recaptures 
from the various categories during successive 
fishing periods. I t  is clear from the equations 
above that such ratios will be functions of 7, and 
the shedding parameters only, and independent 
of E ,  NJO) and any parameters of the survival 
function S( 7). 

Further ,  the ratios will be unaffected by non- 
recovery or nonreturn as long as these processes 
operate a t  constant levels with respect to re- 
captures during a given time interval and a t  
the same rates for each tagged fish category. 
Throughout this paper we assume this is so. 
However, this latter condition is one which could 
be violated easily, particularly if catches a re  not 
inspected carefully for tag  recaptures. Where 
fish a re  handled individually there may be no 
difference in recovery rates between single- and 
double-tagged fish. Otherwise, recovery rates 
may be greater in double-tagged individuals. 
Once tagged fish a re  recovered, there may be 
further problems with respect to return rates. 
Laurs et  al. (1976) in a study of shedding rates in 
North Pacific albacore, T. alalunga, and Myhre 
(1966) in experiments with Pacific halibut, H i p -  
poglossus stenolepis, allowed for the possibility 
that a certain proportion of double-tagged recov- 
eries would be misreported as having only a 
single tag. [For example, a fisherman might 
pocket one of the tags as a souvenir, or one tag  
might be simply lost after recapture.] 

ESTIMATION OF 
SHEDDING RATES AND 

PARAMETERS 

In the analysis of tag-shedding da ta  a broad 
range of objectives may be pursued, and these 
give rise to a variety of estimation problems and 
approaches. Fundamental ly ,  of course, the  
analyst wishes to correct systematic bias in esti- 
mates of basic population parameters caused by 
tag loss. There a re  several ways to do this. Where 
concurrent single-tagging and double-tagging 
experiments are conducted, information on shed- 
ding rates from the double-tagging may be used 
to compute adjustment factors, which in turn a re  
applied to recoveries from the primary single- 
tagging study. Thus in single-tag estimation pro- 
cedures based on Equation (l), for example, rL 
would simply be replaced by 
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now easily derived. We assume the conditional 
distribution of Td,, given (rdt + rsi), is binomial 
with parameter Pdi. The likelihood of the i t h  re- 
capture sample is thus 

where K, ,  estimated from double-tagging, is the 
probability that  a tag will still be attached a t  
time 3. If returns from the double-tagging ex- 
periment a re  too few to provide an estimate of 
K ,  for each recapture interval, interpolation is 
necessary. In  any event, in this approach only 
minimal assumptions need be made about the 
manner in which shedding occurs. 

In  most treatments of tag shedding, however, a 
specific model is postulated for the shedding 
process. Once the parameters of such a model a re  
es t imated,  appropriate  adjustments for t a g  
shedding are  made either to the single-tag recov- 
ery data, as above, or directly to estimated popu- 
lation parameters. A third strategy is to conduct 
the experiment entirely with double-tagged fish, 
and to estimate mortality rates and other popula- 
tion parameters directly, in such a way that no 
corrections a re  necessary. 

These various approaches a re  discussed now in 
greater detail, assuming a continuous recapture 
process. For situations in which tagged fish are  
recaptured once at most, but only in point sam- 
ples, some estimation procedures a re  given by 
Seber (1973) and Seber and Felton (1981). For 
multiple-recapture models of the Jolly-Seber 
type, again with point sampling, the reader 
should consult Arnason and Mills (1981). 

E s t i m a t i n g  Ad jus tmen t  Factors for 
Sing le -Tag  Recoveries 

Here we estimate K ~ ,  the probability of tag re- 
tention at time T,, the midpoint of the i th  recap- 
ture  period. We assume the shedding probabili- 
ties for each tag are  identical and independent of 
the status of the other tag, and that recovery and 
reporting rates a re  the same for recaptured fish 
bearing either one tag or two. Under these condi- 
tions the number of double-tag recoveries, T d c .  is 
proportional to K: and the number recovered 
with only a single tag remaining, r,,, is propor- 
tional by the same factor to2KL(1 - K ~ ) .  Of the total 
number of recoveries from the double-tagging 
experiment in the i th  period, the proportion 
bearing two tags is therefore 

Maximum likelihood ( M L )  estimates of the K ,  are  

The M L  estimator of ~i is easily found: 

This result is also given by Seber (1973) under 
somewhat different assumptions. The asymptotic 
variance of ;i is 

(10) 
2 K,(1 - K , )  (2 - K,)' 

0 2 ,  = 
2r., 

As usual, numerical estimates a re  computed by 
inserting ;i in place of K , .  

Note that C r  has a small negative statistical 
bias. In fact, using a Taylor series expansion it 
may be shown that 

Bias increases with time out, Le., as K,decreases, 
and is inversely related to the total number of re- 
captures. When K ,  = 0.5 and r ,  = 10, the negative 
bias in 2, is <4%. 

Note further that  since the likelihood function 
is conditioned on r,, inferences based on Equa-  
tions (9) and (10) apply strictly only to the par- 
ticular experimental outcome being studied, and 
not to the broader class of results which might be 
obtained in replications of the experiment. Pro- 
viding that the approximation in Equation (7) is 
valid, a more complicated unconditional model 
would yield the same estimate of K , ,  but the vari- 
ance of 2, would be greater,  reflecting the sto- 
chastic nature of the mortality and recapture 
processes which lead to the r,. Since our interest 
is in estimating shedding rates and not mortality 
rates, as a rule we consider only the simpler con- 
ditional likelihoods. 

Above we have assumed the two tags are  iden- 
tical insofar as shedding rates are  concerned. 
When they are  subject to different shedding 
rates another set of estimators is required. Where 
A and B tags are  identified, the number of A- 
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type recaptures, r A z ,  is proportional to K A ~ ( ~  - K B ~ )  

while TBt is proportional to K B , ( ~  - K A ~ ) .  The num- 
ber of double-tagged recaptures is proportional 
to K A ~  K & .  We assume the number of recaptures 
in the three classes are  trinomial given TAL + rBZ + rd,, with conditional probabilities 

These assumptions lead to the ML estimates 

Estimating Parameters of 
Specific Models 

Regression Methods 

Despite the directness and simplicity of the 
general adjustment procedure outlined above, 
most double-tag analyses have aimed a t  unravel- 
ing specific underlying mechanisms of the tag- 
shedding process. The probability of tag reten- 
tion, K , ,  is then seen as a continuous function of 
t ime and a vector of model parameters, 8, to be 
estimated from the recapture data. In  the termi- 
nology established above, K ,  =1 - J(s,) .Thus if 2, 
or some transformation of 2% is plotted against T~ 

the form of an appropriate shedding model may 
be revealed. In fact, this is the approach adopted 
in much of the recent tag-shedding literature, 
and various weighted regression procedures 
have been developed to handle the parameter 
estimation. The general formulation of these is: 
find e such that 

is minimum. In the two-parameter Bayliff-Mo- 
brand model yi =In;,, where Gt is given in Equa- 
tion (9), andfi  (e) = lnp - L T ~ .  In  the four-param- 
eter Kirkwood model 

y, = 1 - hKi 

In both cases the authors  suggest se t t ing  
w, = r t .  This is not optimal in a statistical sense, 
but is clearly preferable to equal weighting. I t  
should be noted further that  neither the Bayliff- 
Mobrand model nor the Kirkwood model is based 
on an explicit consideration of error structure for 
the observations. For example, there is consider- 
able support in the literature for a multiplicative 
error  in the recapture process, i.e., r,, = E(G*) 
exp(e,) and rd% = E(rd,) exp(cd,) and in this case 
the algebra leads one to the nonlinear model 

where ei has mean 0 and variance 
ate weights for this model are  

Appropri- 

The regression models discussed here have as- 
sumed that recaptures are  obtained from a single 
cohort of tagged fish. However, it is often the case 
that several lots of tagged fish a re  released a t  dif- 
ferent times, so the recaptures in a particular in- 
terval may come from different cohorts. In this 
event the analysis may be applied to each of the 
m cohorts separately, provided these a re  fairly 
large. When multiple releases are  made but the 
individual cohorts a re  small, so that relatively 
few recaptures are  expected from each cohort, 
the usual procedure is to assume mortality rates 
and shedding rates are  constant and identical for 
each group and to simply aggregate the recap- 
ture statistics from the several releases. Let the 
recapture intervals be of equal length, A, and let 
rSt, and rd?, denote the number of single-tagged 
and double-tagged fish from the j t h  cohort re- 
captured during the ith interval following that 
cohort's liberation. Employing the Bayliff-Mo- 
brand linear regression model, one can estimate 
lnp and L in the usual manner as 

p = (XT wx)-' xT w Y (11) 

where p = [lnp LIT 
X = {x l l )  is the augmented data  matrix 
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A second approach when the shedding rates 
are  constant and the rij are  sufficiently large is to 
t reat  returns from each of the m releases sepa- 
rately and then average the individual estimates. 
Thus the overall estimate of L, for example, 
would be 

such that xi1 = 1 for all i and 

Y = {yi) is the vector of dependent vari- 
~~2 = -(i - 1/2) A 

ables with elements 

Here W is a matrix of statistical weights, and mi 
is the number of cohorts for which recapture sta- 
tistics a re  available in the i th  postrelease inter- 
val. The symbol T denotes the matrix transpose. 

If sufficient recaptures a re  obtained to analyze 
each cohort separately (say zij L 10) but a com- 
mon shedding rate is assumed, several alterna- 
tive approaches a re  available. First  we can treat 
the separate releases as partial replicates of the 
same experiment and construct the dependent 
variables as  the logarithms of the geometric 
means of individual statistics for each cohort. 
Thus to estimate Inp and L we use Equation (11) 
as before but now set 

Although as  an estimator of In;, Equation (13) 
usually has slightly greater negative bias than 
Equation (12), such bias is negligible and the 
approach taken in Equation (13) has the advan- 
tage that  statistical weights may be calculated 
empirically for cases where m, 2 2. In particu- 
lar, define the i th  diagonal element of W a s  

where y, i s  given by Equation (13), and let qJ = 0 
for i # j .  When some of the m, a r e  equal to 1, then 
the w,, may be computed using the delta method 
as 

on the assumption that the rdt3 and r,, are  comple- 
mentary binomial variables. 

L = c w; Lj 
j=1 

where i j  is the estimated slope from the linear 
regression of 

on T,.  Here the individual estimate of L from the 
j t h  cohort is given a weight wi inversely propor- 
tional to its relative variance. In practice we sub- 
stitute the statistic 

$;. being the estimated variance of Lj computed 
in the j t h  regression. For the regression analysis 
itself, appropriate statistical weights for the yij 
would be proportional to 

Finally, the variance of e may be estimated as 

A third approach is to assume that the set of 
regression estimates from the m cohorts are  sam- 
pled from an underlying but unspecified stochas- 
tic process which, with respect to the estimation 
of Type I1 shedding rate, has mean L and vari- 
ance a i .  The regressions of yLJ on r, are  unweight- 
ed, and empirical estimates of Land  0: a r e  given 
very simply by 

and 
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where iJ  is the regression estimate correspond- 
ing to the j t h  cohort. 

A shortcoming of many double-tag analyses is 
that attention has been focused on estimating 
constant p and Ldespite the existence of multiple- 
release statistics. In fact the multiple-release ex- 
periment permits a more elaborate assessment 
of shedding processes, with the level of detail 
determined by specific characteristics of the 
experimental design. To illustrate this, consider 
an experiment with six recapture periods of 
equal length, A. Two cohorts of double-tagged 
fish are  released, a t  the beginning of the first and 
fourth periods. We assume there is a unique Type 
I shedding rate associated with each cohort, and 
that the Type I1 shedding rate is the same for 
each group but is a function of time following 
release. Specifically, we assume the latter rate is 
constant for two recapture intervals following 
the release of any cohort, may then change to 
another constant level for two more periods, and 
so on. 

The recapture statistics from the experiment 
may be arrayed as follows: 

Recapture interval: 
Release 
group 1 2 3 4 5 6  

1 %ll 5 1 2  5 1 3  5 1 4  5 1 5  5 1 6  

%ll %12 5 1 3  %l4 %15 %16 

2 5 2 1  522  523  

rdZl %22 rd23 

Note that  ml  = m2 = m3 = 2 and m4 = m5 = m6 
= 1. 

The parameter vector p = [lnpl lnpz LI  LZ L3IT 
may now be estimated from Equation (11)  with 
Y as given in Equation (13) and the data matrix 
defined as 

h 

As p u a l ,  the covariance matrix of B is estimated 
by V = ( X T W X ) - ' .  

With a little imagination this general linear 
model can easily be adapted to accommodate a 
wide variety of multiple-release experimental 
designs. Standard analysis of covariance tech- 

niques may be applied to test the associated 
hypotheses concerning p. 

Maximum Likelihood Methods 

As an alternative to the least squares methods 
we now describe some ML procedures for esti- 
mating the model parameters in the single-re- 
lease case. Given the total number of recaptures 
in the i th  period we again assume the numbers 
falling in the various classes are  multinomially 
distributed. Thus when the A and B tags are  
identical there are  just two classes, and the num- 
bers in each are  binomial variables with condi- 
tional expectations 

[l - J(Tt)IZ 

= "[ 1 - J(T,)' 1 
and E(?-,) = rz  (1  - p&). Assuming further that  
the statistics for successive periods a re  mutually 
independent, the joint likelihood function for the 
double-tag recovery data  {rdl r d z ,  ..., rdn}  given 
{TI,  r2, ..., r,] is 

where Pd; is a function of ~i and the vector of 
parameters to be estimated, e. 

When the A and B tags are  not identical, the 
recaptures a re  partitioned into three disjoint 
classes, and the numbers in each a r e  trinomial 
with expectations 

and 



Now the joint conditional likelihood of the re- 
capture sample is 

x (1 - PA, - PBz)rd’. 

In either case, once the underlying model and 
the corresponding elements of e are  identified, 
the ML estimates of e may be computed by maxi- 
mizing $, directly using a variety of iterative 
search procedures. In  some situations the deriva- 
tives of $, with respect to e a re  easily derived, but 
even then only numerical solutions a re  possible. 

For example, when A and B tags are  identical 
and J(T,) = 1 - p(exp(-LTz)), the ML estimates 
of p and L are  found by solving the system of 
equations 

n a 

i=l i=l 
0 = X ri Ci and 0 = X Ci 

,. 
The asymptotic covariance matrix of L and p^ 
may then be derived in the usual manner by in- 
verting the corresponding negative information 
matrix 

I =  

n 

i=l 
X T: 0; 

1 .  1 .  
X T ,  D, - X D, - _  

P i.1 p2 *=1 

r . 2  P d ,  (1 + 
where D, = 

1 - p d i  

Explicit analytical solutions are  possible when 
there is only a single recapture period centered 
a t  T and the model is reduced to a one-parameter 
function of either the Type I or Type I1 shedding 
rate, i.e., either J(T) = 1 - exp(-Lr) or J(T) 
= 1 - p.  In  this event the ML estimate of L (with 
p = 1) is 
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with asymptotic variance estimated by 

,.2 Ts (rs -k r d )  
OA = 

L T2rd (rs + 2rd)’ ’ 

or when shedding is a function of p only (with 
L = 0) 

and 

In the case of identical A and B tags a con- 
venient alternative to direct maximization of 
the likelihood function is to fit the recapture 
data  to their expectations using an iteratively re- 
weighted Gauss-Newton algorithm. To accom- 
plish this one may use routines available in cer- 
tain standard statistical software packages, e.g., 
BMDP2. Specifically, we find an admissible 
value of e which minimizes the sum of squares 

Since the r d t  are  assumed to be binomial (i.e., of 
“regular exponential” form), minimizing S‘ with 
a Gauss-Newton routine is equivalent to maxi- 
mizing the likelihood of Equation (14) provided 
the weights used a re  the reciprocals of the vari- 
ances of the rdt and are  recomputed a t  each itera- 
tion based on the current parameter values 
(Wedderburn 1974; Jennrich and Moore 1975; 
Jennrich and Ralston 197j3). In tljs case the 
weights must be W, = [ r ,  Pd,  (1 - Pdt)]-l, where 
P d ,  is the function Pd, evaluated a t  the current 
parameter estimates. Asymptotic standard er- 
rors for the parameter estimates are  also com- 
puted by the BMDP routine. 

A similar device may be used when a distinc- 
tion is made between A and B tags. Given r,, + r d ,  

we assume r d ,  is binomial with expectation 
E B ( y d , )  = (rA1 + rdl) (1 - J,(T~)) .  Analogously, 

2Reference to trade names does not imply endorsement by 
the National Marine Fisheries Service. NOAA. 
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E A ( r d i )  = (rBi + Tdi )  (1 - J A ( 7 ; ) ) .  Thus an itera- 
tively reweighted Gauss-Newton algorithm mini- 
mizing 

with W g i  'k~j  = [ ( T A ~  + r d i )  JB(Si ) ( l  -JB(Ti))]-' iS 
used to compute ML estimates of shedding pa- 
rameters for the B class of tags. A parallel pro- 
cedure gives ML estimates of parameters for the 
A class. Note that  the two sets of parameter esti- 
mates a re  not independent. 

Unknown Recapture Times 

A tacit assumption in the foregoing procedures 
is that the time between release and recapture 
for each returned fish is known to "interval accu- 
racy," and that exact recapture time information 
is available for only a fraction of the recoveries, 
so that all recoveries a re  grouped into the n time 
intervals to permit estimation. This will often be 
the case. However, in some fisheries it is conceiv- 
able that  only the crudest sort of information is 
available on recapture times. For estimation 
purposes, all that  is known is r d  and r,, the total 
number of recaptures in each class over the ex- 
perimental period (0, T).  When T is relatively 
small, say 1 yr  or less, then estimation of a single 
Type I or Type I1 shedding parameter is possible, 
as in Equation (15) or (16). In an experiment of 
longer duration this is not feasible. However, it is 
possible under certain circumstances to estimate 
the ratio of the Type I1 shedding rate to other 
Type I1 losses. Let fishing be constant, contin- 
uous, and uniform a t  an instantaneous rate F. 
Assume further that  the total instantaneous mor- 
tality rate is a constant, 2, and that shedding of 
tags occurs a t  an instantaneous rate L. If there 
are  no Type I losses, the ratio of E(r,?) to E(rd) in 
a double-tagging experiment approaches 

2L 
J : = -  

Z + L  

as T - -. Thus if L = aZ, a moment estimator 
of a is provided by 

,. 
A X a = -  

2 - 2  

and if one has an estimate of Zwhich has a syste- 
matic bias due to Type I1 shedding, say Z', then 
a corrected estimate may be obtained, i.e., 2' 

This method may also be used where single- 
tagging and double-tagging experiments a re  
run concurrently. Then if &(o) fish a re  released 
double-tagged and N8(0) with single tags, let rj 
and r: be recaptures from each group still bear- 
ing the initial complement of tags. Under the 
same assumptions as above this leads to 

= Z'(1 + ti)-1. 

Exact Recapture Times 

Turning now to the other end of the spectrum, 
under ideal conditions it is possible that the exact 
time out will be known for each fish returned. 
When exact recapture times are  available for all 
fish the returns from a single-tagging experi- 
ment may be analyzed using MLprocedures first 
developed by Gulland (1955) and later elabor- 
ated by Chapman (1961) and Paulik (1963). 
These rest on the assumption of binomial recap- 
ture probabilities based on constant Type I1 loss 
rates and on a resulting conditional recapture 
time distribution which is truncated negative 
exponential. Chapman et al. (1965) extended the 
same concepts to returns of fish initially double- 
tagged and still retaining both tags upon recap- 
ture, and showed that the difference between the 
estimated total Type I1 loss rate in a double-tag- 
ging experiment and the corresponding total 
Type I1 loss rate in a single-tagging study yielded 
an estimate of L. They noted that this is the best 
estimate of L possible using only the recapture 
information from a single-tagging experiment 
and from fish put out and returned with two tags. 
Left open was the possibility of combining this 
information with recapture times for fish initial- 
ly double-tagged but returned with only one tag 
still attached. For this class of fish the distribu- 
tion of recapture times is more complicated. 

We now consider an exact recapture time mod- 
el for an experiment based exclusively on fish 
initially double-tagged. Suppose NJ (0) double- 
tagged fish are  released a t  time0. Over the course 
of the experiment, terminating at time T, a total 
of rd fish are  recaptured and returned with both 
tags intact, and rs with only a single tag remain- 
ing. In addition, for each tagged fish returned 
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we assume the exact recapture time is known, 
i.e., we know { & I ,  t s z ,  ..., tws} and ( f d i ,  f d z ,  ..., t d r d ) .  

Let a d  = P r  {fish is returned with both tags 
intact in (0, T)]  and a, = Pr {fish is returned 
with one tag remaining in (0, T)).  Then, assum- 
ing independence between fish and between the 
two tags initially applied, the numbersof returns 
in the various classes are  trinomial random vari- 
ables, i.e., 

Nd(o)! 
pr{rd 9 r,] = 

'%! rs! ( N d ( 0 )  - r d  - rs)! 

Following principles set out previously we 
write the recapture probabilities as  

T 
= 2 1  f l u )  S(U) J(u) ( 1  - J(u)) du 

0 

and 

ad = 1 f l u )  S ( U )  ( 1  - J(U))' du. 
0 

Further ,  the conditional probability densities 
for recapture times a r e  

otherwise. 

The joint likelihood function for the observed 
numbers of single- and double-tag recoveries 
and the respective sets of recapture times may 
now be written as 

For  specified forms of F(u),  S(u), and J(u)  com- 
putation of ML estimates may now be contem- 
plated, although the form of C. is apt  to be exceed- 
ingly complex in most situations. For example, 
taking the most elementary case, assume that 
J(u)  = 1 - exp(-Lu), S(u) = exp[-(M + F)u]  
and F(u) = F f o r  0 < u< T.  Also let T -  00. Under 
these conditions the log-likelihood becomes 

In = K + 1: I n F  + (N,(O) - r )  

2LF2 x l n  1 -  ( ( F  + M + L)(F + M + 
- ( F  + M )  T .  - L(T, + 2Td) 

rs 

+ i=1 C In(1 - exp(-lts,)) 

where K is a function of the observations only, 

rs rd 

i=l i.1 
T, = C tsi, T d  = C t d i l  

T . =  T, + q, and r ,  = r, + r d .  

Using numerical methods this may now be maxi- 
mized as a function of F, M ,  and L in the usual 
manner to yield ML estimates of these parame- 
ters, as well as asymptotic variance estimates. 

A simpler approach which yields information 
on Z = F + M and L is to condition the likelihood 
of rd and rS on the total number of recaptures, 
r ,  i.e., 

This gives the log-likelihood 

In = K' + r. ( ln(Z + L )  + ln(Z + 2L) 

- ln(Z + 3L)] - ZT. - L(T. + T,) 

+ C In(1 - exp(-Lt,)) (18) 
rs 

1=1 

where K '  is independent of Z and L. 

Differentiating Equation (18) with respect to 
Z and L and setting the derivatives to zero one 
finds that the M L  estimates of Z and L satisfy, 
among other relations, the equation 

1 1 1 - -+-.----- T .  
r. Z + L  Z + 2 L  Z + 3 L  
_ -  

Combining this with the result a t  Equation (17) 

leads immediately to a solution for 2, i.e., 
h 
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need of no corrections. This is accomplished by 
substituting the dependent variable 

A h 

whence L = 2 Z. 

Estimating Mortality Rates by 
Double-Tagging All Fish 

In most of the preceding sections we assumed 
the basic purpose in double-tagging was to pro- 
vide auxilliary information on shedding rates 
which could then be applied to correct recapture 
statistics or mortality rate estimates obtained in 
a primary single-tagging experiment. An attrac- 
tive alternative is to use double-tagged fish en- 
tirely and to estimate the mortality rates and 
other vital parameters in such a way that no bias 
corrections are  necessary. If exact recapture 
times are  recorded, the M L  model just  discussed 
is appropriate. When recapture data are  grouped 
into YZ t ime intervals of length A i  centered a t  
times ~ i ,  a convenient context for developing this 
approach is the single-tagging regression model 
suggested by Chapman (1961) and discussed fur- 
ther by Cormack (1968) and Seber (1973). This 
takes the form 

where fi = the nominal fishing effort during 
period i 

2-1 f i  Ai f: = C f, A ,  + - = the estimated 
3=1 nominal  e f for t  

up to time rz 
q = the catchability coefficient 
e ,  = a random error term. 

In this particular model one obtains estimates 
of q and X ,  and, since N,(O) is known, an estimate 
of p as well. However, in the presence of Type I1 
shedding the exploitation rate for any period will 
be underestimated, Le., hidden in X will be the 
term L. The usual-procedur_e would be to correct 
2 by subtracting L, where L is obtained in an  in- 
dependent double-tagging experiment. Instead, 
if we apply the model directly to recapture statis- 
tics from a double-tagging experiment (Nd (0) 
fish initially double-tagged) we will obtain an 
estimate of X unaffected by Type I1 losses and in 

Further ,  it now transpires that  the estimate of 
the regression intercept term is free of Type I 
shedding effects, i.e., one will estimate ln[qNd(0)] 
rather than In[qpNd(0)]. 

If we assume rSi and rdi  are  complementary bi- 
nomial variables given rz ,  and that ri is Poisson, 
then approximately correct weights for the re- 
gression employing Equation (20) are  

When effort statistics are  not available so that 
a constant fishing mortality rate must be as- 
sumed, or when there is a linear dependence be- 
tween the two independent variables fL' and rL ,  
then separate estimates of q and X are  not pos- 
sible using the single-tag model of Equation (19) 
unless Type I errors are  absent. Nor is p esti- 
mable. Instead, one may only regress ln(T/Al) 
on 7% to yield estimates of ln[pFN,(O)]and (F+X) .  
But when the model is applied to a double-tag- 
ging experiment under the same restrictions, it 
is still possible to estimate both q and X un- 
affected by shedding. 

Note that the dependent variable of Equation 
(20) from the double-tagging experiment is anal- 
ogous to the one of Equation (19) appropriately 
corrected for tag  shedding, as in Equation (8). In 
both cases the recaptures rdt and r,, are  assumed 
to be point samples taken exactly at r2.  Thus 
while in the example above K ,  = p exp(-Lr,), the 
correction procedure of Equation (8) and the 
method outlined here are  independent of assump- 
tions on the manner of tag  shedding (cf. Seber 
1973:281), provided the recapture intervals a re  
reasonably small (say 1 yr or less). 

SUMMARY A N D  CONCLUSIONS 

The aim of this paper has been to extend the 
theory and methodology of estimating tag-shed- 
ding rates through double-tagging. Attention 
was focused on the situation most commonly en- 
countered in fishery applications, wherein two 
identical tags are  placed on each member of an 
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experimental cohort, tagged fish are recaptured 
at most once in a fishery which is essentially con- 
tinuous, and the time at liberty is known exactly 
for only a fraction of the recapture sample. 

The regression models studied by Chapman et 
al. (1965), Bayliff and Mobrand (1972), and Kirk- 
wood (1981) were extended to permit the Type I1 
shedding rate for each tagged fish to be a func- 
tion of time. Both deterministic and stochastic 
versions were presented and previously pub- 
lished models were shown to be special cases. 

If all tags are subject to the risk of shedding, 
i.e., if 6 = 1, and if data are available from several 
recapture periods, a simple plot of I d j  against 
T~ will reveal whether the average Type I1 shed- 
ding rate, \U(t), is constant; if it is, the relation- 
ship will be linear. In this event the most parsi- 
monious model consistent with the data will be 
the deterministic model based on a constant 
Type I1 shedding rate, L. In addition, if the 
points suggest a negative intercept on the ordi- 
nate the Type I retention rate, p, may beadded to 
the parameter set. One may then carry out the 
parameter estimation using either the Bayliff- 
Mobrand linear regression model, or the non- 
linear regression of ln(r8J2rdi) on 7i, depending 
on which error structure is assumed. However, 
since the plot of ln& versus T~ is approximately 
linear even with multiplicative error in the re- 
capture process, it probably makes little differ- 
ence which estimation method is used as long as 
proper statistical weights are incorporated. 

If 6 = 1 and the plot of Ink, versus ~i is nonlin- 
ear, one of the more complicated tag-shedding 
models is called for. A trend which is concave 
downward suggests that V(t )  is increasing with 
time and points to the stochastic model of Equa- 
tion (5) or its deterministic counterpart. On the 
other hand, upward concavity could be explained 
either by a model in which the Type I1 shedding 
rate decreased with time or by Kirkwood's (1981) 
hypothesis, or by a combination of the two as in 
Equation (5). 

Another useful diagnostic plot is 1 - K, against 
ri. These are the variables considered in Kirk- 
wood's nonlinear model. When L is constant the 
plotted points will be traced by a line analogous 
to a von Bertalanffy growth curve with asymp- 
tote 6 and location parameter p, and they should 
indicate which of these two parameters to in- 
clude in the model and how much precision to ex- 
pect in the resulting estimates. (In passing, it is 
worth mentioning that if S is to be estimated 
jointly with L, a longer experiment is required to 

700 

ensure high precision in the parameter estimates 
than if L alone is being estimated.) 

The treatment of recaptures from double-tag- 
ging experiments with multiple cohorts was dis- 
cussed in the context of the Bayliff-Mobrand 
model. Alternative methods of combining infor- 
mation from several cohorts to estimate common 
shedding parameters were proposed, and a gen- 
eral linear model approach was suggested for 
situations where more elaborate structural as- 
sumptions are made. A full numerical evaluation 
of these procedures remains to be done. 

As an alternative to the least squares regres- 
sion methods usually employed, some new ML 
procedures were presented. These are more diffi- 
cult to use than the regression techniques, but 
offer advantages in some situations. For exam- 
ple, when only two recapture periods are possible 
one cannot compute the precision of regression 
estimates in the Bayliff-Mobrand model, but 
standard errors in the equivalent M L  model are 
still estimable. The most promising method for 
deriving M L  estimates in the general case may 
be the iteratively reweighted Gauss-Newton 
algorithm. Indeed, if one has access to the right 
computer software (such as the BMDPAR and 
BMDP3R programs supplied by BMDP) this 
approach is nearly as easy to use as the simple 
Bayliff-Mobrand linear regression method. A 
sensible procedure would be to first study the 
diagnostic plots suggested above for the regres- 
sion analysis, and then fit the selected model 
using an iteratively reweighted least squares 
algorithm. 

The estimation procedures discussed above 
are applicable when data are grouped by recap- 
ture interval. For situations in which the exact 
time at liberty is known for each recapture an 
unconditional M L  model was developed. This 
may be applied not only to estimate shedding 
rates but also to estimate mortality rates un- 
affected by shedding. However, in its general 
form the likelihood function is rather compli- 
cated and only numerical solutions would be pos- 
sible in most situations. Analytical estimators 
for L and Z were derived for a simplified condi- 
tional likelihood. Besides the more stringent 
data requirements this model requires the extra 
assumption of constant mortality rates during 
the experiment. 

In the final section it was shown that through 
double-tagging it is possible to estimate mortal- 
ity rates free of tag-shedding biases even when 
the recapture data are available only to interval- 
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accuracy, and without resort to the usual concur- 
rent single-tagging experiment. The model was 
developed in the simple context of a fixed Type I1 
shedding rate, but the principle applies to more 
complicated shedding processes as well. If the 
burden imposed by the second tag can be ne- 
glected, it therefore seems advantageous to dou- 
ble-tag all fish. In any case, when shedding is ap- 
preciable the greater overall recovery rates from 
double-tagging make the exclusive use of double- 
tagged fish a proposition well worth considering. 
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