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INTRODUCTION 

Complex population dynamics techniques rely heavily on 
age structure information. For some species, accurate ageing 
methods have not been developed. Often the age structure of a 
fisheries catch (age-frequency) is estimated from sampled length- 
frequency (Majkowski and Hampton 1983), the age relation- 
ship being described by either an age-length key or a growth 
curve, such as the von Bertalanffy growth curve (Ricker 1958). 
The growth curve method is used when there are insufficient 
data to  construct an age-length key. But as noted by Kimura 
(1977) and later demonstrated by Westrheim and Ricker 
(1978), under conditions of varying year-class strength and 
substantial overlap of lengths between ages, age-length keys 
can yield nearly useless estimates of numbers-at-age. Even with 
bias correction procedures, the construction of a sufficient key 
can present difficulties. 

In this paper we deal specifically with the von Bertalanffy 
growth equation and the application of stochastic methods to 
reduce or eliminate biases. However, it should be noted that 
the method presented here may be applied to any growth equa- 
tion, as well as to cases where no growth equation has been fit- 
ted or where growth is discontinuous, as in crustaceans. 

The von Bertalanffy growth equation mathematically models 
the relationship between age and length, length being the de- 
pendent variable (see Equation (I)). As suggested by Gulland 
(1%9), age can be estimated from length by algebraically rear- 
ranging the growth equation so that age is the dependent vari- 
able (see Equation (2)). Regardless of whether length or age is 
the dependent variable, the von Bertalanffy relationship is 
deterministic, Le., there is a one-to-one correspondence be- 
tween age and length. 

Use of the von Bertalanffy growth equation for age-fre- 
quency estimation results in several types of biases (Powers 
1983). different from those inherent in age-length keys. In this 
paper we document these biases and propose a method for 
their resolution. 

AGE-FREQUENCY BIASES 

When growth is modeled according to the von Bertalanffy 
age-length relationship (Brody 1945; Ricker 1958) 

'This paper is summarized from research conducted by the authors and ap- 

'Souchwesf Fisheries Center La Jolla Laboratory, National Marine Fisheries 

'1837 Puterbaugh Street, San Diego, CA 92103. 

pears in Fishery Bu//e/in, Vol. 81, No. I ,  p. 91-%. 

Service, NOAA, 8604 La Jolla Shores Drive, La Jolla, CA 92038. 

Lt = Lo3 (1-exp [ - . k ( f - t o ) ] ) ,  (1) 

then age, t ,  can be converted to length: 

t = t ,+In(I-Lt/L,)/(-k) (2) 

where Lt = length at age t 
LO, = the asymptotic length 

k = the rate at which length reaches L m ,  and 
to = hypothetical age at which fish would have zero 

length. 

When computing numbers-at-age from Equation (2), esti- 
mation bias occurs from several sources. One bias is due to 
LO, being a fitted parameter. Thus, all numbers-at-length 
greater than Lm must either be eliminated or arbitrarily dis- 
tributed to older ages. Bias also results when lengths approach 
Loo and are mathematically allocated to ages above those at- 
tainable by fish within the stock. As lengths ( L )  approach Lw, 
Equation (2) will yield unreasonably old ages (Le., ages greater 
than are known to occur). 

Additional bias results from the deterministic nature of the 
von Bertalanffy equation. For example, back calculations of 
length to age from Equation (2), which are on a one-to-one 
basis, result in one determined age for any length. In reality, 
there can be a number of possible ages for any given length, 
the most probable age-at-length being that with the highest 
relative contribution of numbers-at-length. Since these back 
calculations are without probabilistic arguments, the deter- 
mined age is not necessarily the most probable for the given 
length. 

Back calculations of length to age also result in a mathe- 
matical estimation bias due to  the substitution of independent 
and dependent variables in moving from Equation (1) to Equa- 
tion (2). The degree of bias is likely to be a function of the 
amount of residual error in estimating length at age in fitting 
Equation (1). The bias will probably not be consistent between 
cases and the degree of bias will have to be considered sepa- 
rately for each case. Consequently, biases associated with 
equation transformation are not specifically dealt with here. 

A computer model can demonstrate these biases. For von 
Bertalanffy parameters LO, = 90.0 units, to = 0.0 units, and k 
= 0.30, predetermined numbers-at-age are assumed normally 
distributed with a standard daviation equal to 3 units about the 
von Bertalanffy length-at-age Equation (l), for ages ( I )  through 
(10). A length-frequency vector is then generated by: 1) Multi- 
plying the number-at-age times the probability of age occurring 
within each 0.5 unit length interval, thus generating a vector of 
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number-at-length for length intervals between 0 and 100 units 
for each age, and 2) accumulating numbers-at-length for each 
length interval over all ages. The numbers-at-age are then de- 
terministically estimated from Equation (2) by accumulating 
numbers-at-length over the length intervals at age. 

The bias from this model is illustrated by input and back- 
calculated numbers-at-age and their differences, which are 
listed in columns 2, 3, and 4, respectively, of Table 1. The in- 
put numbers-at-age represent a sample age distribution with 
varying year-class strengths. The differences in column 4 indi- 
cate a strong bias which increases with overlap of length distri- 
butions at age. The estimated ages of 11 1 fish were greater 
than the maximum age, 10. Thirty-five had lengths greater 
than L m  and, consequently, were not classifiable. 

Table 1.-Input and estimaled numbers-at-age for both the deterministic (column 
3) and stochastic (column 5) models, with the input numben-at-age in column 1 .  
The difference between the input cumhers-at-age and the deterministic eslimates 
are given in column 4. 

Numbers at age Estimated 
Age Input : Deterministic : Diff. : Stochastic 
0 7  (2) (3) (4) ( 5 )  

1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
>IO 
Inf. 

200 
400 
800 
200 
600 
300 
400 
300 
100 
100 
- 
- 

IW 
399 
760 
267 
441 
378 
320 
258 
164 
68 

111 
35 

1 
I 

40 
- 67 
159 
- 78 

80 
42 

-64 
32 

- 1 1 1  
- 35 

200 
400 
800 
200 
Nx) 

300 
400 
300 
100 
I 0 0  
- 
- 

STOCHASTIC MODEL 

With estimated variance of length-at-age, a stochastic model 
can be built from the von Bertalanffy relationship (or any 
other growth relation): For any age the probability of a speci- 
fied length interval is the probability of that interval taken over 
all length intervals containing that age. Thus, for all ages, a 
probability matrix (“P”-matrix) of dimension r by c can be 
computed, where r = the number of rows, or length intervals, 
and c = the number of columns, or ages, then P (1,l) = P 
(max. length, min. age). If the number-at-age vector is ‘‘a” 
( a ( ] )  = a (min. age)) and the number-at-length vector is L 
(L(1) = L (max. length)), then 

P a  = L .  (3) 

And as long as r > c,  then the numbers-at-age vector can be 
uniquely solved via least-squares: 

a = ( P I P ) - ’ P ‘ L .  (4) 

Applying this stochastic method (Equation (4)) to the previ- 
ous example, the numbers-at-age generated from the number- 
at-length vector is given in column 5 of Table 1. Since the 
probabilities of the P-matrix are the same as those used to gen- 
erate the number-at-length vector, it is not surprising that the 

solution yields unbiased results. This computed example illus- 
trates that the stochastic method yields unbiased estimates of 
age-frequency . 

‘ DISCUSSION 

Calculation of age from length via the von Bertalanffy growth 
equation results in several types of bias. The degree of bias is 
proportional to overlap in lengths-at-age and changes with 
weak or strong year-classes. When overlap increases with age, 
age-frequency estimates will generally be more biased for older 
ages than for younger ages. When overlap occurs, biases will 
always result, since the numbers-at-length will be allocated to 
unreasonably old ages. Any numbers-at-length for lengths 
greater than L m  will be undetermined in age estimation, re- 
sulting in downward biases for those ages contributing such 
lengths. 

Age estimation biases can be effectively removed by creating 
a stochastic model based on a matrix of length interval proba- 
bilities at age. The probability matrix (P-matrix) is indepen- 
dent of year-class strength and will effectively remove all 
sources of estimation bias, except that due to random varia- 
tion in length-frequency estimation. A probability model of 
the distribution of length-at-age with estimated parameters is 
necessary for estimating probabilities of length intervals at age 
for the P-matrix. As long as the von Bertalanffy growth param- 
eters are correct, the stochastic method based on accurate esti- 
mates of variance in length-at-age will yield unbiased results. 

There may be serious implications to the bias introduced by 
using the von Bertalanffy equation without bias correction. In 
fishery management, the overestimation of maximum age by 
the deterministic von Bertalanffy equation may produce 
underestimates of mortality rates, which may result in overesti- 
mates of population size and recruitment. Further, the deter- 
ministic method tends to “fill in” weak year-classes, which 
results in underestimates of year-class variability and overesti- 
mates of recruitment stability. In general, all of these affect ac- 
curacy of a stock assessment and contribute to improper 
advice for fishery management. 

Application of the stochastic method shown here to cover 
other growth equations and situations, such as discontinuous 
growth, is handled by simply estimating appropriate elements 
in the P-matrix for each case. 
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