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Estimates of mortality rates from age distributions are biased by imprecision in age estimation, even if age 
estimates are unbiased. I have derived a method for predicting the magnitude of this bias from information 
on the precision of age determination. Monte Carlo simulations show that bias can be accurately predicted. 
The commonly used Chapman-Robson mortality estimator is shown to be robust to imprecision in age 
determination if all age-classes are included. Errors are likely, however, if one or more age-classes are 
excluded or if other mortality estimators are used. Biases can be corrected if the distribution of age- 
estimation errors is known. 
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A 

L’estimation des taux de  mortalite d’aprhs les distributions des dges est biaisee en raison de  I’imprecision 
de  la determination de  I’age, m&me si les estimations des ages ne sont pas biaisees. Nous avons mis au 
point une rnethode par laquelle on peut connaitre I‘irnportance de  ce biais d’apres des renseignements 
sur la precision de  la determination de  I’age. Les simulations de Monte Carlo revelent qu’il est possible de  
determiner le biais avec exactitude. Nous avons constate que I’estimation de  Chapman-Robson, qui est 
couramment employee pour determiner la mortalite, peut absorber I’imprecision de la determination de  
I‘age lorsqu’on emploie toutes les classes d’age. Toutefois, i l  est probable qu’il y ait des erreurs si l‘on 
exclut une ou plusieurs classes d’dge ou si I’on emploie d’autres estimateurs pour determiner la mortalite. 
II est possible de  corriger le biais si I’on connait la distribution des erreurs des estimations de  I’dge. 
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ge-frequency distributions have frequently been used 
to estimate mortality rates via an application of stable 
population theory. Many methods have been proposed 

‘ for extracting this mortality information from age dis- 
tributions (Deevey 1947; Chapman and Robson 1960; Caughley 
1966; Barlow 1982). All of these methods have assumed that 
ages could be determined without error. In fact, error in age 
estimation is a very real problem (Beamish and Foumier 1981; 
Chang 1982). Clearly, mortality rates could be biased if age 
estimation is biased. Here I address a slightly different question: 
can biased mortality estimates result from imprecise, but 
unbiased ages? 

The assumptions required for estimating mortality rate (or its 
complement, survival rate) from age frequencies are stringent. 
Stated briefly, a population must be in stable age distribution 
and its growth rate must be known. These assumptions are 
treated in detail elsewhere (Caughley 1966; Barlow 1982). 
Despite stringent assumptions, use of these methods is common 
in fishery, marine mammal, and other wildlife research. The 
assumption of accurate age determinations has always been 
implicit, though usually unspoken. 

Given a population with a zero growth rate, a stable age 
distribution, and a constant mortality rate with age, Chapman 
and Robson (1960) have derived a minimum variance, unbiased 
estimator of that population’s survival rate based solely on 
sampled age frequencies. Because the Chapman-Robson (C-R) 
method is unbiased in cases where aging is deterministic, this 
method was chosen to examine potential biases when errors 
occur in age determination. Standard errors of the predicted 
survival rates can also be estimated from the C-R method. 

The C-R survival rate estimator can be expressed in vector 
notation as 

where n is the vector of observed frequencies by age-class and u 
is a vector defined such that E ,  = i - 1. This survival rate esti- 
mator can be reformulated in terms of two parameters: sample 
size and a scaled mean age (Chapman and Robson 1960, Q. 4). 
It is trivial to show that an unbiased error in estimating ages will 
not affect the expected value of the scaled mean age. Impreci- 
sion in estimating ages will, therefore, not affect the expected 
value of C-R survival rate if all age-classes are included. 
Frequently the first several age-classes are excluded because 
their abundance cannot be estimated without bias (e.g. Barlow 
1982, Chap. 1). The exclusion of the first age-classes can 
introduce a bias in the estimation of survival rates when age 
estimation is subject to errors. In this paper, 1 derive an 
expression that predicts the magnitude of this bias and use 
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Monte Carlo simulations to verify the ability of this expression 
to predict bias accurately. 

I only consider the special case for which age estimation is 
unbiased. In fact, there are few situations where the probability 
of counting too many annual layers would equal the probability 
of counting too few. It will be assumed that these types of errors 
can be corrected with calibration studies. 

Methods 

To remain consistent with the terminology of Chapman and 
Robson (1960) and common usage, ages and errors in ages are 
represented as discrete integers (days, years, etc.). The distribu- 
tion of aging errors is seldom uniform over all ages. Most 
commonly, young animals can be aged with greater precision 
than older animals. The probability distribution of age estimates 
for a given age-class can be given as columns of a transition 
probability matrix (e.g. Table 1). The ( i ,  j)th element of such a 
matrix, P, would represent the probability that an individual in 
age-class j would be interpreted as belonging to age-class i. The 
product of the transition matrix times the true age distribution of 
a sample, n,  would thus give the age distribution that might be 
expected to be observed given n, m :  
(2) Pen = m.  
The observed age distribution would be expected to differ from 
the true age distribution unless (trivially) P is the identity 
matrix, or (miraculously) n is an eigenvector of P with a unit 
eigenvalue. 

When errors in aging are considered, the expected C-R 
survival rate could be estimated by substituting m for n in 
Equation 1: 

m-v’  
(3) ŝ  = - - 

1 mi  + m.u’ - I 
i =  k 

where k is the first age-class included in the estimation and u is 
defined such that u, = 0 if i S k ,  and u, = i - k if i > k .  

In this study, the expected value of s  ̂ was calculated for a 
range of values of the actual survivorship (s = 0.25-0.75) and 
the first age-class to be included ( k  = 1-10), The expected age 
distribution of a sample was estimated as the geometric series 
corresponding to the true survivorship. The distribution of aging 
errors was determined by the probability transition matrix 
(Table 1). For all ages, the aging errors were symmetric about 
the true age; hence, the expected age of any individual would 
equal its true age. Biases due to aging errors were estimated as 
the difference between the survival rate calculated using 
Equations 2 and 3 and the true survival rate. 
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TABLE 1. Probability distributions of aging errors by age-class. Elements indicate the probability that an individual with a 
given true age will be assigned to the indicated categories of estimated age. Note that errors are symmetrically distributed about 
the principle diagonal within columns. Note also that aging precision is assumed constant for individuals older than 6. 

True age 
Estimated 

age 1 2  3 4 5 6 7 8 9 10 11 12 13 14 1 5 * . .  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 

1.0 0.1 
0.8 0.2 0.1 0.1 0.1 
0.1 0.6 0.2 0.1 0.1 0.1 

0.2 0.4 0.2 0.1 0.1 0.1 
0.2 0.2 0.1 0.1 0.1 0.1 
0.1 0.2 0.2 0.1 0.1 0.1 0.1 

0.1 0.1 0.2 0.1 0.1 0.1 0.1 
0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 

0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 
0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 

0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 

0.1 0.1 0.1 0.1 0.2 0.1 0.1 
0.1 0.1 0.1 0.1 0.2 0.1 

0.1 0.1 0.1 0.1 0.2 

0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1. . . 

Monte Carlo simulations were used to test the ability of the 
described procedures to estimate bias resulting from errors in 
age determinations. Age distributions were generated by ran- 
domly drawing discrete samples (with replacement) from a 
population with a geometric series distribution. This is analo- 
gous to a population with constant recruitment and with a 
survival rate that does not vary with age. In order to mimic 
error in age determination, a random integer was added to or 
subtracted from each age selected from the population. Again 
the distribution of errors was taken from Table 1. 

For purposes of illustration, mean values of the C-R estimate 
were calculated from simulations using three different survival 
rates (0.3, 0.5, and 0.7) and three different starting ages (1,2, 
and 3). These fall within the range of values used in the 
deterministic approach. The simulation was run with lo00 age 
distributions (with errors) for each of these nine permutations. 
Sample sizes for “aged” individuals of all age-classes were set 
so that the nominal sample for survival rate estimation was 200. 
Survival rates were only estimated for those individuals whose 
“apparent” age was greater than or equal to a given starting age 
( 1 ,  2, or 3 ) ;  hence, sample size varied slightly about this 
nominal value due to stochastic effects. Means and standard 
deviations of survival rates were calculated for each set of lo00 
age distributions. 

Results 

The expected survival rate estimates from the C-R method 
are shown in Fig. 1 for a range of true survival rates and 
number of excluded age-classes. As predicted, the method is 
unbiased if all age-classes are included. If the initial age- 
class(es) are excluded, an appreciable bias can result. For the 
given error matrix, the magnitude of this bias is greater when 
survival rates are low and smaller when survival rates are high. 
When the first included age-class is 10 or greater, the bias dis- 
appears completely. 

The results of the Monte Carlo simulation confirm these 
results. The average survival rates estimated using the C-R 
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method are given in Table 2 for each of the nine combinations of 
true survival rates and starting ages. Each represents the average 
estimate from loo0 randomly selected age distributions with 
simulated error in age determination. Also tabulated are the 
survival rates predicted using Equations 2 and 3 and the 
expected (geometric series) age distributions. The magnitude of 
the bias observedin the simulations was in good agreement with 
the bias predicted from Equation 3. Observed standard errors in 
the survival rate estimates were only trivially different from 
those predicted by the C-R formulations (J. Barlow, unpubl. 
data). 

Discussion 

Age distributions typically resemble a declining exponential 
function. Errors in aging will usually change the shape of such a 

TABLE 2. Results of Monte Carlo simulations of sur- 
vival rate estimation with errors in age determinations. 
Mean survival rate estimates are averages of 1000 C-R 
estimates from randomly selected and transformed age 
distributions. F‘redicted survival rate estimates are from 
Equations 2 and 3, using a geometric series age distri- 
bution (corresponding to the actual survival rate) for n. 

First age-class included 

1 2 3 

S 0.3 0.3 0.3 
Mean f 0.2993 0.3492 0.3589 
F’redicted f 0.3000 0.3490 0.3597 
S 0.5 0.5 0.5 
Mean f 0.4995 0.5254 0.5452 
F’redicted f 0.5000 0.5250 0.5446 

S 0.7 0.7 0.7 
Mean f 0.6996 0.7079 0.7221 
Redicted f 0.7000 0.7090 0.7225 
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FIRST INCLUDED AGE-CLASS 
FIG. 1. Apparent survival rates from the C-R method as a function of the first age-class to be included 
in the estimation. Each line represents a different value of the true survival rate. Errors in age determina- 
tion are as given in Table 1. 

function. It is somewhat fortuitous that the C-R estimator is 
robust to such changes (if errors are unbiased and all age-classes 
are included). In the example used here, the method was also 
unbiased for age-classes I O  and greater. This age is the greatest 
possible “apparent” age corresponding to the true age at which 
aging precision becomes constant (Table 1). The C-R method is 
thus also unbiased in cases where aging precision does not vary 
with age. 

The implications of these results go far beyond the simple 
examples given here. From information presented thus far, it 
would seem obvious that bias can be avoided by using the C-R 
estimator and including all age-classes for which age determina- 
tion is imprecise. Unfortunately, this solution has a greater 
conceptual than practical value. 

The C-R survival estimator is valid only in the special case 
where survival rates are constant with age. The decision to use 
this method is typically based on whether the observed age 
frequencies fit an expected geometric series age distribution. 
Robson and Chapman (1961) have formulated a stepwise test 
that allows the elimination of age-classes that do not meet this 
expectation. One problem is that errors in age estimation change 
the shape of the observed age-frequency distribution. Although 
the true age distribution of a sample may follow a geometric 
series, the observed distribution may be significantly different, 
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and thus might result in a decision not to use the C-R method or 
to erroneously eliminate the first age-class(es). 

To demonstrate this, Monte Carlo simulations were again 
used, with the first age-class being chosen by a stepwise 
chi-square test (Robson and Chapman 1961). Survival rates of 
0.3, 0.5, and 0.7 were used, a simulated sample of 1000 aged 
individuals was drawn, and random errors were introduced in 
age estimates as before. Using the method of Robson and 
Chapman to determine the first age-class to be included, mean 
estimates of survival rates were 0.353, 0.532, and 0.715, 
respectively, for s = 0.3, 0.5, and 0.7, indicating an appreci- 
able positive bias. Ironically, tests that are intended to avoid 
biases may introduce new biases. 

A different problem exists if survival rates change with age: 
the C-R method is not valid. Most techniques for estimating 
age-varying survival rates depend on the slope of an age- 
frequency curve (Caughley 1966; Siler 1979; Barlow 1982, 
Chap. 2). Because errors in aging typically affect the shape of 
the observed age-frequency distributions (hence, their slopes), 
these methods will be biased even if all age-classes are included. 

Bias in survival rate estimation resulting from aging errors is 
thus a complex problem. A general solution for all methods of 
survival rate estimation does not exist. For the C-R method, a 
simple approach can be used to estimate expected bias. This 
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approach can be visualized in Fig. 1. For a given error matrix, 
P, the true survival rate can be interpolated from this figure if the 
apparent survival rate and initial age-class are specified. 

A similar, but more rigorous approach would be to calculate 
expected age-frequency distributions for a range of true 
survival rate values. These true-age distributions are then 
transformed by P to give estimated-age distributions. The 
probabilities that the observed age distribution could have been 
drawn from each of these estimated-age distributions are 
calculated, and s  ̂ is estimated as the value corresponding to the 
transformed age distribution that maximizes this probability. 
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