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ABSTRACT 

Due to unpredictable future environmental changes, population growth is more realistically viewed as a 
stochastic than a deterministic process. Environmental variablity is modeled by allowing the population's 
survival and fecundity rates to be correlated random variahles. The expected future population vector and 
its variance-covariance matrix are computed. The projected total future population size is approximately log- 
normally distributed, but confidence limits for future population size can be more accurately computed from 
the distribution of the realized factor of increase. Numerical examples illustrate how the calculation of con- 
fidence limits for future population size and of the probability that the population will increase in size can be 
applied to the management of living resources. 

The predicted size of an age-structured population 
can be projected if its initial size, age distribution, 
and vital rates are known (e.g., Leslie 1945; Keyfitz 
1968). Such population projections are commonly 
used in fisheries and wildlife management when age- 
specific fecundity and mortality rates are available. 
However, there is uncertainty in such projections. 
First, we rarely know vital rates exactly; rather, we 
have estimates of the true rates, and these estimates 
are subject to sampling and other types of errors. 
Second, the true rates themselves are not constant 
with time. Environmental conditions are always 
changing, and the vital rates would be expected to 
change in response. To an extent, the changes of con- 
ditions may themselves be forecast and incorporated 
into a population model. Some changes, however, are 
unpredictable, and these changes give rise to fluctua- 
tions in the vital rates which make our estimates of 
population size for some future time less certain. 
Nevertheless, it may still be possible to make proba- 
bilistic predictions about future population size given 
some statistical knowledge about the fluctuating 
vital rates. 

In this paper we limit ourselves to consideration of 
the second of these problems, projecting age- 
structured populations when mortality and fecundity 
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rates vary randomly with time. Recently this topic 
has been of interest and controversy in a more 
theoretical context (Boyce 1977; Cohen 1979a, b; 
Daley 1979; Tuljapurkar and Orzack 1980; Tuljapur- 
kar 1982; Slade and Levenson 1982). In spite of 
earlier results to the contrary (Boyce 1977), analyses 
(Sykes 1969; Cohen 1977), and simulations (Slade 
and Levenson 1982) have shown that when vital 
rates fluctuate randomly with no serial correlation, 
the expectation of population size at a future time 
will be exactly equal to the population size projected 
using the mean vital rates in a deterministic projec- 
tion. For application in fisheries and wildlife manage- 
ment, the problem is that the distribution of future 
population sizes will often be strongly skewed. This 
skew means that the mean and variance of future 
population size, even if known, are not sufficient to 
characterize the distribution and, in particular, not 
sufficient to compute confidence limits for total 
population size. In this paper we examine two trans- 
formations of this skewed distribution which approx- 
imate a normal distribution, and evaluate the ac- 
curacy of confidence limits computed from these 
transformations. 

As pointed out by several of the authors cited 
above and earlier by Lewontin and Cohen (1969) for 
a non-age-structured population, stochastic effects 
can cause the modal or most likely population trajec- 
tory to decline to extinction, even though the ex- 
pected or mean population size is growing at a 
geometric rate. Clearly, if we are to use population 
projections in fisheries and wildlife management, we 
should be concerned about the effects of natural 
variability on the results of our projections. In 
response to this concern, we have written two com- 
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puter programs for stochastic population projections 
which can serve as research and management tools. 
Here we illustrate the utility of these programs with 
numerical examples, compare our results with recent 
theoretical analyses, and discuss the implications of 
these results to the management of living resources. 

METHODS 

Sykes (1969) presented three models for incor- 
porating stochasticity into population projections. He 
concluded that the observed variability in human 
demographic projections was best described by his 
third model, in which the elements of the Leslie 
matrix (the effective fecundity rates and the survival 
rates) are random variables, each with a specified 
mean and variance, and with specified covariances 
between them. The model does not allow for serial 
covariance in vital rates between successive time 
periods. 

Let nt be a population vector of w age classes at 
time t. The stochastic projection model is 

nt+,  = (A  + A t )  nt, t = 0, 1, 2, 

where A is a constant projection matrix of mean vital 
rates and A, is a matrix of random deviations whose 
elements have a specified covariance structure 
(Cov(Ai,Aj)} but which are uncorrelated in time. Let 

Nt = ntl. be the total population size at time t. I t  

is convenient to normalize the projected population 
to the initial population size and consider the distri- 
bution of the ratio NJN,. The mean and variance of 
this ratio are given by 

2 =  1 

w 

= t E(n,JN, 
2 =  1 

and 

w w  

= t I: Cov(n,,,n,,)/N;. 
2 = 1  J = 1  

From Sykes (1969, equations 19 and ZO), the mean 
and variance of the population vector are given by 

t - 1  

= 1 
k = O  

A j t - 1 - k  I [cov ( n k o p n k p )  + E(nko)E(nkfi)l 

where A’ is the transpose of A and where the curly 
brackets indicate that the expression inside them is 
the ith element of the vector or the ijth element of 
the matrix considered. 

Tuljapurkar and Orzack (1980) predict that for 
large t ,  N,/No will be lognormally distributed. The 
mean and variance of the normally distributed 
variable log (Nt/No) are calculated from the mean 
and variance of the lognormally distributed variable 
NJNo by 

and 

(Aitchison and Brown 1957). We have found in simu- 
lations that the distribution of the realized factor of 
increase (N,/N,)”‘ is approximately normal. Based 
on the assumption that the realized factor of increase 
is normally distributed, the mean and variance of 
(Nt/No)l’t are computed from the mean variance of 
NJN, by methods given in Appendices 1 and 2. 

Using the formulae of Sykes (1969), the mean and 
variance of each age class in the future population 
can be computed analytically. Confidence intervals 
for the total population size and for the realized fac- 
tor of increase, and an estimate of the probability 
that the future population will be larger than the 
starting population, are computed based on the 
assumption that either log (NJN,) or (Nt/No)”t is nor- 
mally distributed. 

We can also simulate the growth of an age-struc- 
tured population under fluctuating environmental 
conditions. At each time period, a new set of fecun- 
dity and survival rates, the elements of the Leslie 
matrix, are chosen and used to project the popula- 
tion. Each fecundity and survival rate is a normally 
distributed random variable with specified mean, 
variance, and covariance with every other fecundity 
and survival rate. The projection, starting from the 
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same initial population vector, may be replicated a 
given number of times. From these replicated projec- 
tions, the mean, variance, and covariances of the 
population vector are computed, together with 
statistics on a variety of other demographic para- 
meters. The distributions of the final population size 
and the realized factor of increase are tabulated. 

The computer programs to accomplish these 
stochastic projections are called, respectively, SPP 
(Stochastic Population Projection) and SLT ( S t e  
chastic Life Table simulation). Program listings and 
guides to the use of both programs are given in Ger- 

dynamics of the population are given in Table 2 
(taken from Goodman 1981: table 1) and confer a 
population growth rate of about 8% per year. The 
initial age vector in this case was chosen to be the 
stable age distribution with a total of 100,000 
females. Values for the .standard deviations in vital 
rates in Table 2 were selected by choosing reason- 
able values for their coefficients of variation. Corre- 
lations in vital rates were assumed to be 0.9 between 
fecundities at different ages, 0.9 between survival 
rates at dlfferent ages, and 0.5 between all fecun- 
dities and survival rates. 

TABLE 1.-Initial population vector, mean vital rates, and covariance matrix of vital rates for a 
three age-class population projection. In the covariance matrix, F refers to fecundity rate, P to 
survival rate, and numbers to age classes. ___ ____ 

Initial Mean Mean 
Covariance matrix Age population fecundity survival ~- 

class size rate rate F1 F2 F3 P1 P2 P3 
~ 

1 100 0.1 0.7 F1 0.0010 0.0020 0.0020 0.0005 0.0005 0.0 
2 80 1 .o 0.9 F2 0.0050 0.0045 0.0010 0.0010 0.0 
3 - 50 0.4 0.0 F3 0.0050 0.0010 0.0010 0.0 

P1 0.0050 0.0045 0.0 
0.0050 0.0 P2 

P3 0.0 

230 

rodette et  al. (1983). Although lengthy, these pro- 
grams are suitable for use on many microcompu- 
ters. 

Numerical Examples 

Two numerical examples are presented to verify 
various analytic results and to illustrate the use of 
programs SPP and SLT in a management context. 

The first example is a simple artificial life table 
with three age classes. The mean vital rates and the 
covariance matrix for the vital rates are given in 
Table 1. This example was used to compare the 
predicted mean and variance in projected population 
size based on Sykes' (1969) formulae with the actual 
mean and variance from the simulation. The example 
was also used to test the assumption that ultimate 
population sizes will be lognormally distributed, and 
in particular whether accurate confidence limits for 
the tails of the distribution can be made based on this 
assumption. 

The second example is based on a real population. 
A northern fur seal, Callorhinus ursinus, population 
is projected using vital rates consistent with a phase 
of rapid growth which occurred earlier in this cen- 
tury. The mean vital rates which govern the 

TABLE 2.-lnitial population vector, means, and standard 
deviations (S.D.) of vital rates for a fur seal population projec- 
tion used as a numerical example in the text. Mean rates are 
taken from Goodman (1981: table 1). Each age class repre- 
sents 1 yr, and only the female portion of the population is 
tabulated. The initial population vector is in the stable age 
distribution with a total of 100,000 females. 

class size 

1 17,618 
2 14,312 
3 11,627 
4 9,500 
5 7,807 
6 6,525 
7 5,545 
8 4,789 
9 4,182 

10 3,671 
11 3,205 
12 2,753 
13 2,301 
14 1,869 
15 1,466 
16 1,089 
17 757 

19 280 
20 141 
21 59 
22 18 
23 2 

Total 100,000 

18 484 

Initial Mean 
Age population fecundity 

- rate 

0.0000 
0.0000 
0.0050 
0.0151 
0.2631 
0.3693 
0.4250 
0.4604 
0.4756 
0.4705 
0.4655 
0.4554 
0.4402 
0.4250 
0.4048 
0.3794 
0.3542 

0.2833 
0.2479 
0.2024 
0.1467 
0.0657 

0.3187 

Mean 
survival 

S.D. rate S.D. 

0.0000 0.8786 
0.0000 0.8786 
0.0003 0.8837 
0.0008 0.8888 
0.0132 0.9039 
0.0185 0.9191 
0.021 3 0.9342 
0.0230 0.9443 
0.0238 0.9494 
0.0235 0.9443 
0.0233 0.9292 
0.0228 0.9039 
0.0220 0.8786 
0.0213 0.8484 
0.0202 0.8029 
0.0190 0.7524 
0.0177 0.6918 
0.0159 0.6262 
0.0142 0.5454 
0.0124 0.4494 
0.0101 0.3282 
0.0073 0.1009 
0.0033 0.0000 

0.0439 
0.0439 
0.0442 
0.0444 
0.0090 
0.0092 
0.0093 
0.0094 
0.0095 
0.0094 
0.0093 
0.0090 
0.0088 
0.0085 
0.0080 
0.0075 
0.0069 
0.0063 
0.0055 
0.0045 
0.0033 
0.0010 
0.0000 
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the results of the Monte Carlo simulation of a ste 
chastic population projection, taking the entries of 
the life table as time-varying random variables (p re  
gram SLT). In Tables 4 and 5 the results of the simu- 
lation are presented. The means and covariances of 
the vital rates actually achieved on this particular 
run of program SLT are shown in Table 4 and are 
close to the specified rates given in Table 1. By com- 
paring the results in Table 5 with those of time step 6 
in Table 3, we see that the results of the simulation 
(SLT) and the analytic solution (SPP) agree closely. 

The distribution of the ratio of the final population 
size to the initial population size is shown as a histe 
gram in Figure 1A. The curve is skewed to the right, 

RESULTS 

Example 1.  

The results of the stochastic projection by program 
SPP are presented in Table 3. The second column 
shows the expected (mean) population vector for 
each time step. The mean population vector is obtain- 
ed by projecting with the mean vital rates. The c e  
variance matrix for the population vector gives, on 
the diagonal, the variances of each age class and, 
above the diagonal, the covariances between age 
classes. 

The calculations using Sykes' formulae concur with 

TABLE 3.--Results of the stochastic projection of the population, given in Table 1 ,  through 6 time steps 
(program SPP). The columns labeled "95% C.L." give the lower and upper 95% confidence limits for total 
population size and for the realized factor of increase relative to the initial population. The last column 
gives the probability P that the final population size will be greater than the initial population size. 

Time 
step 

0 

1 

2 

3 

4 

5 

6 

Expected 
population 

vector 

100 
80 
50 

110 
70 
72 

110 
77 
63 

113 
77 
69 

116 
79 
69 

119 
81 
71 

121 
83 
73 

~ ~~~ 

Covariance matrix 
~~~~ ~~~~ 

142.5 18.0 14.4 
50.0 36.0 

32.0 
261.5 48.4 73.5 

131.0 46.1 
65.3 

365.3 94.4 154.1 
189.7 68.7 

136.4 
485.5 158.2 219.9 

244.9 99.0 
184.2 

559.6 230.8 287.1 
307.5 141.7 

231 .O 
736.2 309.8 366.2 

367.0 189.7 
283 5 

Total p o p u ! a t l o n  Factor of increase 

Lower 95% C L Lower 95% C L 
Mean UDoer 95% C L Mean Umer 95% C L. P 

~ 

. .  
~~~~ - 

230 

252 

250 

259 

264 

271 

277 

215 
289 1.096 

197 
307 1.041 

193 
335 1.039 

187 
356 1.033 

184 
378 1.031 

182 
400 1.029 

0.934 
1.258 0.8764 

0.925 
1.156 0.7545 

0.934 
1.134 0.7856 

0.950 
1.1 16 0.7808 

0.957 
1.105 0.7910 

0.961 
1.096 0.7990 

TABLE 4.-Means, variances, and covariances of vital rates achieved 
during a Monte Carlo projection of the population given in Table 1 (pro- 
gram SLT). Values were computed on the basis of 30,000 vectors of 
vital rates. F refers to fecundity rate, P to survival rate, and numbers 
to age classes. Values in this table should be compared with the 
"target" values in Table 1. 

Covariance matrix 
Mean F1 F2 F3 P1 P2 P3 

F1 0.10016 0.00101 0.00202 0.00201 0.00049 0.00045 0.0000 
F2 1.00027 0.00505 0.00453 0.00100 0.00092 0.0000 
F3 0.39998 0.00502 0.00099 0.00091 O.OOO0 
P1 0.69992 0.00501 0.00414 O.OOO0 
P2 0.89744 0.00435 0.0000 
P3 0.00000 0.0000 
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- . 
20 - C - 

- 
- 

2 - - 

TABLE 5.-Results o f  the Monte Carlo simulation of the 6 time- 
step projection of the population whose age structure and vital 
rates are given in Table 1 (program SLT). Sample size for the 
simulation was 5,000 trials. Results in this table should be com- 
pared with the “predicted” values in the last row of Table 3. 
Here P is the proportion o f  final population sizes greater than 
the initial population size. 

99.9 0 
99.0 
90.0 

50.0 

Mean Mean Mean 
popula- total factor 

Time tion popula- of 
step vector Covariance matrix tion increase P 

121 741.3 314.7 369.8 

10 
FIGURE 1.-Distributions of future total population size under 
variable conditions. Histograms show the percentage frequency, 

6 83 371.7 187.6 277 1.029 0.7954 
73 281 5 

1 
- 10.0 - 

as anticipated. Both the logarithmic transformation 
(Fig. 1B) and the root transformation (Fig. IC) 
appear to normalize the distribution. When the 
cumulative frequency distributions are plotted on 
normal probability scales (dots in Fig. l), however, 
the root transformation appears superior to the 
logarithmic. The dots in Figure 1C are nearly linear, 
indicating that the distribution is close to normal. 

In Table 6 the accuracy of the 95% confidence 
limits for the total population size computed by the 
logarithmic and root transformations is compared 
for projections of 2, 5, and 10 time steps, using the 
same numerical example. Program SLT calculates 
the proportion of final populations which fall above 
and below the computed upper and lower confidence 
limits. We expect that 2.5% of the cases should fall 
above the upper limit and 2.5% below the lower limit 
if the 95% confidence interval has been correctly 
estimated. Table 6 shows that both the logarithmic 
and the root transformations do a fair job of esti- 
mating the 95% confidence limits. The root transfor- 
mation, however, appears more accurate in this 
example, as well as in other examples we have tried, 
when the number of time steps is small. When the 
number of time steps is large (50-loo), both transfor- 
mations produce normally distributed variables. 

Since the root transformation gave the most accu- 
rate results for short projections, we used this trans- 
formation in program SPP to compute a confidence 
interval on total population size. More details of the 

r 
A 

0.5 1.0 1.5 2.0 
N6/N0 

99.9 
99.0 
90.0 

50.0 

10.0 
1 .o 
0.1 >. 

0 z w 2.5 

s w 
99.9 E 
90.0 2 

10.0 2 
1.0 a 
0.1 9 

99.0 w 

50.0 $ I- 

W I - 
-0.5 0.0 0.5 1.0 !j 

LOG, (N6/No) 2 
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TABLE 6.-Accuracy of the 95% confidence limits (C.L.) on popula- 
tion size estimated by the logarithmic and root transformations of 
the distribution of total population size. For each transformation, 
the estimated lower and upper confidence limits are shown for pro- 
jections of the population given in Table 1 for 2,5, and 10 time steps. 
The columns labeled "Proportion beyond C.L." give the actual pro- 
portion of 10,000 stochastic projections using program SLT which 
fall below the estimated lower limit and above the estimated upper 
limit for each transformation. Each set of projections was replicated 
3 times. The root transformation estimates the 95% confidence in- 
terval on population size more accurately, especially for short pro- 
jections. 

Transformation 
Logarithmic Root No. of 

time steps Proportion Proportion 
to Estimated beyond Estimated beyond 

Lower 199 0.031 1 197 0.0256 
0.0317 0.0255 

2 0.0295 0.0231 
Upper 309 0.0160 307 0.0204 

0.0181 0.0214 
0.0199 0.0228 

Lower 187 0.0290 184 0.0251 
0.0285 0.0242 

5 0.0318 0.0260 
Upper 380 0.0227 378 0.0245 

0.0219 0.0235 
0.0215 0.0235 

Lower 178 0.0266 175 0.0238 
0.0280 0.0252 

10 0.0286 0.0257 

projection 95%c.L.  C.L. 95%c.L. C.L. 

Upper 489 0.0226 486 0.0234 
0.021 1 0.0221 
0.0217 0.0226 

example projection are shown in the columns on the 
right side of Table 3. The mean and the 95% con- 
fidence interval for the total population size and for 
the realized factor of increase are given for each time 
step. As the population vector approaches the stable 
age distribution, the ratio between successive mean 
total population sizes approaches the asymptotic 
value 1.0240. The mean realized factor of increase 
shown in Table 3, which is computed relative to the 
initial population, does not converge on this asymp 
totic value; nor can the mean realized factor of in- 
crease be computed from the ratio of the mean final 
population size to the initial population size. Instead, 
the mean and variance of the realized factor of in- 
crease are computed by methods described above. 

The probability that the total population size will 
have increased over its initial value is also shown for 
each time step in the last column of Table 3. In this 
particular example, since we did not begin with the 
stable age distribution, this probability decreases at 
first and then increases. As a further check, program 
SLT computes the proportion of cases in which the 
final population was greater than the initial popula- 

tion, and this answer (0.7954, Table 5) is close to the 
probability computed analytically by program SPP 
assuming that the realized factor of increase is nor- 
mally distributed (0.7990, Table 3). Given a popula- 
tion whose age structure and dynamics conform to 
the values given in Table 1, therefore, we can make 
the statement that there is an 80% chance that the 
population will be larger 6 time steps from now and a 
20% chance that it will be smaller. 

Example 2. 

The results of the stochastic projection of the 
northern fur seal population by program SPP are 
given in Table 7 and Figure 2. Table 7 shows that 
after 5 yr, the expected (mean) number of 9-yr-olds, 
for example, is 6,188 with a standard deviation of 
333. The expected total population size is 147,982 
with a standard deviation of 8,832. The mean and 
standard deviation of the realized factor of increase 
are 1.0812 and 0.0129, respectively; from these 
values we compute the 99% confidence interval on 
population size to be from 126,410 to 171,930. Note 
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TABLE 7.--Results of the 5 y r  stochastic p r e  
jection of the northern fur seal population, bas- 
ed on the age structure and vital rates given in 
Table 2. Probability that the final population 
> initial population = 0.999 + . 

Age 
class 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Total 

Lower 99% C.L. 
Expected value (mean) 
UDoer 9 9 %  C.L. 

Expected 
population Standard 

size deviation 

26,071 1,672 
21,179 1,619 
17,205 1,519 
14,058 1,402 
11,553 1,280 
9,655 972 
8,205 720 
7,007 516 
6,188 333 
5,432 121 
4,743 106 
4,075 92 
3,406 76 
2,767 62 
2,170 49 
1.61 1 36 
1;121 25 

717 16 
415 9 
209 5 

87 2 
26 1 

2 0.05 
147,982 

Total Factor of 
population increase 

126.410 1.0480 
147.982 1.0812 
171.930 1.1145 

that, as will generally be the case, the confidence in- 
terval for total population size is not symmetric 
about the mean value. 

In the last line of Table 7 ,  the probability of an in- 
creased population is shown to be very close to 1.0. 
In other words, it is virtually certain that the popula- 
tion will have increased in size after 5 yr. Figure 2 
presents the results for total population size graph- 
ically. The 95% and 99% confidence limits computed 
by program SPP are shown for each time step. The 
confidence limits grow nearly geometrically. 

DISCUSSION 

Fishery and wildlife management often involves 
predictions of population size, and, owing to im- 
perfect knowledge of the world, these predictions are 
uncertain. Accordingly, a practical analysis attaches 
estimates of confidence intervals for any given 
prediction. The programs described in this paper 
carry out the computation of confidence intervals for 
projections of age-structured populations, if we can 

specify the statistics of the variation in the age- 
specific vital rates. Realistically, we do not expect 
there to be be many examples where the statistics of 
the variation in vital rates are genuinely known with 
substantial precision, for these rates are difficult to 
measure in natural populations. Nevertheless, in an 
imperfect world, management decisions must be 
made with imperfect data. A considerable compo- 
nent of the uncertainty in a population prediction will 
be owing to the phenomena treated in this paper. 
Thus, even the use of very rough guesses at the sta- 
tistics of the variation in the age-specific vital rates, 
in order to estimate confidence intervals in a popula- 
tion projection, is preferable to neglecting this 
source of variation entirely. At the very least, incor- 
poration of speculative estimates in this applied con- 
text will allow the exploration of “what if” questions 
in a fashion that can indicate priorities for future 
data gathering. 

In many fiih and aquatic invertebrate species, 
there is an enormous variation in the success of year 
classes. In such cases the population dynamics may 
be dominated by the overwhelming abundance of one 
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FIGURE 2. -Confidence limits for future total female population size 
for the northern fur seal, based on the schedule of vital rates in 
Table 2. The solid line plots the mean population trajectory. 
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and Tuljapurkar (1982) address the more general 
question of serial correlation in vital rates. 

All of the work cited above has been concerned 
with the state of the population at a time in the 
future much greater than will generally be useful in 
management. In this paper we have examined the 
stochastic behavior of the population at  a shorter 
time in the future. Example 1 has verified that the 
distribution of ultimate population sizes from 
stochastic population projections is approximately 
lognormal (Tuljapurkar and Orzack 1980). From the 
perspective of fitting the tails of this distribution for 
a small number of time steps t, however, it appears 
better to assume that the lltth power of the distribu- 
tion is normally distributed. In either case the distri- 
bution of ultimate population sizes is skewed (with 
long tails at the higher values), and the skew 
becomes more pronounced as t increases. An impor- 
tant property of such a distribution is that the most 
likely or modal population value will always be 
smaller than the mean. How much smaller depends 
on the number of time steps t ,  and on the variances 
and covariances among the survival and fecundity 
rates. 

An interesting theoretical and practical problem is 
to find a descriptor of population growth under 
stochastic conditions which characterizes the skewed 
distribution of ultimate population size. Cohen 
(1979a) has proposed two measures of long-run popu- 
lation growth A, the ensemble average of realized 
factors of increase; and p, the factor of increase need- 
ed to realize the ensemble average of final population 
sizes. The first is a measure based on growth rates, 
while the second is based on population sizes (Cohen 
1979b). The average realized factor of increase calcu- 
lated here is analogous to A. If the Leslie matrix of 
mean vital rates is known, p is easily calculated as 
the dominant eigenvalue of that matrix. The prob 
lem, as we have seen, is that under stochastic condi- 
tions the mean of the population sizes is not very in- 
formative and may, in fact, be misleading. Tul- 
japurkar (1982) has proposed a growth measure (I 
which leads to the approximate median population 
size. The two measures proposed here-namely, E 
[(N,/NO)”t] and E [log (N,/N,)]-are close approxima- 
tions to the rate of growth leading to the modal 
population size. As such, they may loosely be said to 
describe the most probable trajectory of the popula- 
tion under stochastic conditions. 

or two cohorts. The environmental factors which 
lead to such huge variations in recruitment are as yet 
imperfectly understood for most species. In order to 
predict future population sizes, the year-teyear 
variation could be incorporated into the variances of 
the effective fecundity terms in the first row of the 
Leslie matrix. This will lead to enormous (but 
realistic) confidence limits for predicted future 
population sizes of such stocks. A more fruitful use of 
the results of this paper, however, would be to 
separate recruitment uncertainty from survival 
uncertainty and to calculate a confidence interval on 
future population size given recruitment success for 
a particular cohort. Among harvested species such a 
conditional forecast could be used to incorporate 
environmental variation into management recom- 
mendations. 

In keeping with the fact that applied management 
may often depend on very elementary quantities, we 
also calculate a particularly important special 
statistic of the distribution of projections- the prob 
ability that the population will increase under the 
specified conditions. In the first example, the prob- 
ability of an increased population was found to be 
about 0.8. In the second example, the fur seal popula- 
tion projection, there is a higher probability that the 
population will increase. Starting with the female 
population of 100,000, the calculations indicate 99% 
certainty that the population will have increased to 
between 126,410 and 171,930 in 5 yr. 

Our simulations of stochastic population growth 
differ from previous efforts by Boyce (1977) and 
Slade and Levenson (1982) by allowing all vital rates 
to vary simultaneously, rather than only one at a 
time, and by permitting correlations among the vital 
rates to be specified. In the stochastic growth models 
of Cohen (1977, 1979a) and Tuljapurkar and O m c k  
(1980), at each time step the population finds itself in 
one of several possible environments. Within each 
environment vital rates are fixed. By contrast, here 
we model a single variable environment whose condi- 
tions, as reflected in the population’s vital rates a t  
any point in time, are never precisely duplicated. The 
results of Example 1 verify the results for the mean 
and variance of future population vectors and show 
that the mean and variance for total ultimate popula- 
tion size can be computed from Sykes’ formulae. Our 
results confirm the conclusions of Cohen (1977), Tul- 
japurkar and Orzack (1980), and Slade and Levenson 
(1982) that the expected mean value of a stochastic 
population projection with no serial correlation in 
vital rates is equivalent to the value projected deter- 
ministically from mean vital rates. Cohen (1979a, b) 
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APPENDIX 1. 

Calculation of the mean and variance of the realized factor 
of increase, assuming it is normally distributed. 

Let A,  the realized factor of increase, be defined as the tth root of the ratio of the 
population size at time t to the initial population size: 

or 

Let p be the mean and u the variance of A. The mean and variance of At are given by 
formulae in the Methods section. The problem is to find the mean and variance of A. 

Let F (p ,u)  be a function which gives the tth moment of A: 

Similarly let G ( p , v )  be a function which gives the variance of 1' in terms of the tth 
and 2tth moments of A: 

G(p,u)  = E(A2') - [E(At)I2. 

Now assume that A is normally distributed. Appendix 2 gives a recursive algorithm 
which allows any moment of a normally distributed variate to be calculated. From 
the tth and Ztth moments of A, the functions F and G can be computed from the 
equations above. Generally, F and G will be tth and 2tth order polynomials in p and 
U. Then, with F and G known, we have a system of two equations 

F ( ~ , u )  - E(At) = 0 
G(p,w) - Var(At) = 0 

in two unknowns. Given initial estimates of p and u ,  a twevariable version of 
Newton's method, or any similar iterative technique, can be used to converge on a 
simultaneous solution. 
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APPENDIX 2. 

A recursive algorithm for computing the higher order 
moments of the normal distribution. 

The moment generating function for the normal distribution is 

where p is the mean and u is the variance of the normal variate x. The nth moment of x is found by 
evaluating, at t = 0, the nth derivative of M, ( t )  with respect to t. The nth differentiation with respect to t 
leads to the series 

( p  + ut)"M,(t) + . . . + A(p + u t ) " u p M , ( t )  + B(p + ut)"- 'up+'M,( t )  + . . ., 

which, evaluated at t = 0, gives 

p n  + . . . + A p o u p  + Bp"-' up+ '  + . . ., 

where A and B are coefficients and a and /3 are exponents such that a + 28 = n. The next [(n + l)th] dif- 
ferentiation of the middle terms gives 

A(p + ut)"+' u p  M, ( t )  + Aa(p  + ut)"-' u P + l  M, ( t )  

+ B(p + ut)o-' up+'  M, ( t )  + B(a - 2) ( p  + ut)"-3 up+' M,(t) 
e 

= . . . + (Aa + B) ( p  + ut)"-' up+' M, ( t )  + . . . 

which, evaluated at t = 0, gives 

. . . + (Aa + l 3 ) p O - l  u p + '  + . . . 

Thus the coefficient of each term of the series of the (n + 1)th moment can be computed from the two 
terms in the series of the nth moment "before" and ''after" it. The exponents of p and u follow the regular 
pattern shown. 
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