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Both local and broadscale dynamic relationships were studied between catch per unit of effort (CPUE) 

for yellowfin and skipjack tunas in the Gulf of Guinea. and sea-surface temperatures (SST). and wind 
speed. The results suggested why a particular temperature during one time period will lead to high CPUE. 
while at another it will lead to IOH’ CPUE. Our analysis was not restricted to where fishing actually 
occurred. 

We used a recentiy developed algorithm to complete missing CPUE and environmental data. hlodels 
were developed for eleven separate sub-areas of the Gulf of Guinea. Details of the method are provided in 
an appendix. Results from these models suggested that the environmental variables under study reflected 
an occdiqraphic process involving upwelling and concentration of nutrients a month prior to good 
fishing. followed by arrival of relatively warmer waters two weeks prior to good fishing. 

We calculated dominant modes of variability for each parameter in  time and space by six week and on: 
year penods. The dominant mode for SST showed a space-time movement that was consistent with a 
recently developed theory of remote forcing in the equatorial Atlantic. 

The dominant modes for CPUE for both yellowfin and skipjack showed relatively little discernible 
pattern. Hoeever, when dominant modes were calculated between SST and CPUE for the same periods 
and species of fish. the CPUE exhibited the same movement in  space and time as SST. at about the same 
speed. This suggested the predictability of CPUE was largely due to a broadscale oceanographic process, 
which may have been associated with remote forcing in that region. 

R. Mt.NDEI.SSOHN 

On a etudie les relations de la dynamique locale et a grande echelle entre la prise par unite d‘effon 
(CPUE) de I’albacore et du listao dans le golfe de Guinte. les temwratures de surface (SST) et la vitessc 
du vent Les rerultats montrent pourquoi une temptrature deterinink durant une periode donne une CPUE 
&levee, alors qu’a une autre @ r i d e  elk entraine une CPUE faihle. Notre Ctude ne s’est pas Iinlitee aux 
lieux de Nche actuels. 

Pour obtenir les donnees de CPUE et de milieu manquantes. nous avonb utilise un algorithme recemment 
diveloppi Des modeles ont tablis dans le golfe de Guinee et ceci dans onze sous-zones separees. Les 
details de cette methodc indiquent que les variables de milieu sous etude refletaient un procede oceanogra- 
phique comportant un affleurement et une concentration d‘aliments u n  mois avant une Nche fructueuse, 
suivi de I’arrivi d’eaux relativemenf plus chaudes. deux semaines avant une bonne pEche. 

Nous a w n s  calcule les principaux modes de variabiliti de chaque parametrc dans le temps et dans 
l’espace sur des @nodes de six semaines et un an. Les modes dominants de SST montraient u n  dkplace- 
ment spatio-temporel compatible avec la theorie receniment elahoree de la pression de facteurs eloignes 
(“remote forcing”) dans I ‘  Atlantique equatorial 

Les modes dominants de la CPUE d‘albacore et de listao montrent un schema assez peu defini. 
Neanmoins. lorsque les modes dominants etaicnt calcules entre les SST et la CPUE pour les mimes 
pkriodes et les mimes espkces de poisson\. la CPUE signalait le m@me deplacement spatio-temporel que 
les SST, a peu pres a la meme vitesse Ceci indique que la previsibilite de la CPUE est surtout due a un 
procedi oceanographique a grand? Cchelle. qui pourrait &e associe a la pression de facteurs eloignes 
(“remote forcing“) dans cette region. 

Se estudiaron las relaciones dinarnicas locales y a gran escala entre captura por unidad de esfuerzo 
(CPUE). para rabil y listado en el Golfo de Guinea, temperaturds de la superficie del mar (SST) y 
velocidad del viento. Los resultados indican porque una determinada temperatura durante un periodo 
conduciria a una CPUE aka. mientras que en otro periodo conduciria a una CPUE baja. Nuestro anilisis no 
se limitoal lugar de pesca actual. 

Para obtener 105 datos de CPUE y de medio ambienfe que faltaban. hemos utilizado un algoritmo 
recientemente desmollado. Se establecieron modelos en el Golfo de Guinea para once sub-areas separa- 
das. Los detalles de este mitodo se facilitan en un apkndice. Los resultados obtenidos a partir de estos 
modelos indican que las variables del medio amhiente estudiadas reflejan un proceso oceanografico que 
comprende afloramientos y concentracion de materia nutritiva. con un me6 de anterioridad a una huena 
captura. seguida por la llegada de aguas relativamente calidas dos semanas antes de una pesca abundante. 

Se calcularon modos dominantes de vdriabilidad para cada parametro en tiempo y espacio durante 
periodos de seis semanas y de un aAo. El modo dominante para SST mostre un movimiento tiempo-area 
que guardaba coherencia con una teoria recientemente desarrollada de “forzamiento” por factores remotos 
en el Atlintico ecuatorial 

Los modos dominantes para la CPUE del rabil y listado mostraron modelos relativamente poco 
definidos. Sin embargo, cuando 10s modos dominantes se calculaban entre SST y CPUE para 10s mismos 
periodos y especies de peces. la CPUE indicaba el mismo movirniento en el espacio y en el tiempo que el 
SST, aproximadamente a la misma velocidad. Esto sugena que la capacidad de pron6stico de la CPUE se 
debia principalmente a un proceso oceanografico a &ran escala. que podria haher estado asociado al 
“forzamiento” por factores remotos en esa zona. 

1 Thm work was undenaken during a one-year sabarucal leave with the Pacific Environmental Group at Montemy. Californ:a 
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1. Introduction 

Environmental influences on fish population 
dynamics are being considered increasingly important 
as features to understand, and to integrate, into fisher- 
ies management models (see for example, Bakun and 
Parrish 1980; Sharp MS). One approach to develop- 
ing a basic understanding of environmental effects is 
to study the dynamic relations between oceanographic 
and meteorological patterns in time and space and 
those of Catch-Per-Unit-Effort (CPUE) in  a particular 
fishery. Any such analysis assumes that CPUE is an 
accurate reflection of relative abundance of the fish; 
this may not be the case. As we will show, a consid- 
erable part of the space-time variation in CPUE may 
be due to changes in where, when and how much the 
fleet fishes, and therefore CPUE may not be a good 
measure of relative abundance. 

Recent works on the dynamics of the eastern part 
of the tropical Atlantic Ocean have focused on the 
study of upwelling at the equator and along the north 
and east coasts of the Gulf of Guinea (O'Brien et al. 
1978; Voituriez 1981; Picaut 1982). Based on these 
results, and considering that upwelling areas are 
favorable to the concentration and capture of tuna, we 
thought that it would be worthwhile to investigate the 
dynamic relationships between the environment and 
the tuna fishery, not only at the particular time and 
place where the tuna are caught but also in  the larger 
space and time domains. 

2. The Data Used 

2.1 ENVIRONMENTAL DATA 

The National Climatic Center (U.S.)  routinely col- 
lects environmental data from merchant ships in the 
area of study. From these data files, Sea Surface Tem- 
perature (SST) and the east-west and north-south 
components of wind velocity were extracted and 
screened to eliminate bad data. The environmental 
data were extracted for the years 1969-1979, to coin- 
cide with available catch and effort data. As the 
fisheries data are available by one degree square, and 
by fortnight, comparable mean series were calculated 
for the SST data and the two wind component series. 
A check on the accuracy of the SST data was made by 
comparing the extracted series with the historical 
means given in the atlas by Hastenrath and Lamb 
(1977); when the observed value was more than three 
standard deviations from the mean value reported in 
the atlas, it was discarded from the calculations. To 
obtain more complete spatial coverage, SST from the 
historical Nansen, Mechanical Bathy Thermograph 
(MBT), and expendable Bathy Thermograph (XBT) 
data sets in the area were also extracted and combined 
with the merchant ship data. Nevertheless, the 

amount of data from merchant ships is greater than 
that in the oceanographic data file, so our spatial cov- 
erage is mostly determined by the merchant ship 
reports. 

2.2 FISHERIES DATA 

The fisheries data used in the study come from the 
French, Ivory Coast, Senegalese, and Moroccan 
(FISM) tuna fleets. These data, collected by the O f -  
ice de la Recherche Scientifique et Technique Outre- 
Mer (ORSTOM), are by one degree square and by 
fortnight since 1969, and when data are not missing 
the following information is available: 

-total catch of yellowfin, skipjack, and bigeye tuna 
and total effort by bait boats 

-total catch of yellowfin, skipjack, and bigeye tuna 
and total standardized effort by medium-size purse 
seiners 

-total catch of yellowfin, skipjack, and bigeye tuna 
and total standardized effort by large-size purse 
seiners. 

The catches are reported in units of 100 kg and the 
effort in hours fished. We extracted from this file the 
total catch and effort for yellowfin and skipjack tuna, 
combined over the classes of purse seiners, for which 
the effort had been previously standardized. 

3. The Spatial Grid 

The oceanographic features of the eastern part of 
the tropical Atlantic ocean are dominated by upwell- 
ing during the winter season in  each hemisphere. In 
the northeast part (north of YN),  which is influenced 
by the climatology of the boreal hemisphere, the cold 
upwelled waters occur along the coast from Decem- 
ber to May and are mainly driven by local winds and 
by advection. The occurrence of these cold upwelled 
waters is associated with a thermal front which shifts 
seasonally between I0"N and 20"N (Wooster et al. 
1976). The southern part (south of 5"N) is influenced 
by the climatology of the austral hemisphere. The 
cold season here occurs from May to September, and 
upwelling occurs during this period along the equator 
and along both the north coast (Ivory Coast, Ghana) 
and the east coast (Congo, Gabon) of the Gulf of 
Guinea. The coastal upwelling along the north coast 
is separated from the open-ocean upwelling by a zone 
of oceanic convergence north of the equator. In con- 
trast to the situation in the northern hemisphere, in the 
Gulf of Guinea the upwelling seems to be not only 
locally forced, but is also the result of remote forcing 
(Servain et al. 1982). A second upwelling of smaller 
amplitude occurs along the northern and eastern 
coasts of the Gulf of Guinea from December to Janu- 
ary. 
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Taking into account these main oceanographic fea- 
tures and the spatial extent of the FlSM tuna fleet, the 
eastern part of the tropical Atlantic ocean was divided 
into eleven large areas (Fig. 1). Dividing the region 
into smaller areas would have meant either too little 
catch and effort data in each area. or a very low 
density of data for the environmental parameters. 
After first using only eight areas in which we included 
large regions straddling the equator, we found we 
needed to have areas that were restricted t o  one side 
of the equator. (An exception is area 6. This area 
extends to I ”  south to include the northern side of the 
front off Cap Lopez which is associated with the 
dynamics of the waters of the Bay of Biafra which are 
relatively warm and have low salinity). This decision 
meant that some areas contained fewer fisherieh data 
than we would have preferred. 
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Mean environmental and lisheries time series were 
calculated for each area, by fortnight. from the one 
degree square data. Mean CPUE was calculated as the 
mean o f  each fortnight’s CPUE for each one degree 
square. Where there was fishing but no catch, the 
CPUE was defined to be zero. If  there was no fishing, 
the CPUE was defined as missing data. The three 
environmental data series are missing little or no data 
in each area; however, the ainount of inissing CPUE 
data varies considerably among the eleven areas. The 
areas close to the coast have much more complete 
CPLJE series than do the niore oceanic areah, since 
the fleet has extended to the more oceanic areas o n l y  
recently. 

4. Comparison Between the Observed Time Series 
and the Estimated Values from the Local Models 

In the appendix we give a complete technical 
description of our approach to examining environ- 
mental influences in time and space on fish population 
dynamics. Briefly, the analysis consists of three steps: 

( I )  estiniating local (i.e. area specific) models that are 
used to fill in missing data points. necessary for the 
next two steps of the analysis; (2) calculating the 
dominant mode of variability in space and time of 
each variable, at a given frequency; (3) calculating 
the dominant mode of variability in  space and time 
between two variables. In this section we examine the 
results of step ( I ) .  

A model of the form descrihed in equation 1 in the 
appendix is estimated for each area. The model 
includes as variables: CPUE for both skipjack and 
yellowfin tuna, SST, and the north-south and east- 
west components of wind speed. The model is a 
simultaneous model in that each variable is assumed 
to be a linear function of all the variables of the model 
lagged at one and two fortnights previous to the pres- 
ent time period. Thus there are five equations for each 
area. and as the dynamics are assumed to interact. the 
five equations (twenty-five parameters) are estimated 
simultaneously. The resulting estimated parameter 
values are interpreted i n  a similar manner to multiple 
regression parameters. 

As the results of our analyses are based on these 
conipleted time series, it is important as a tirst step t o  
check how well the local models have “filled in” the 
missing observations. This can be done by comparing 
estimated and observed data when they both exist 
and, when there are missing data, by seeing if the 
estimated values agree with our qualitative know- 
ledge of the fishery and of the environment. Further, 
the accuracy of the completed data was tested by 
artificially removing a segment of the CPUE data, 
treating the remaining series as the given data, then 
estimating the parameters of the local autoregressive 
models of order two (AR(2)) and the missing data 
points as above, and comparing the observed but 
artifically removed data with the corresponding esti- 
mated values produced by the model. (Only results 
for areas immediately relevant to the discussion are 
shown. Figures for all other areas are available upon 
request). 

4 .2  THE ENVIRONM~NTALDATA 

The environniental time series are relatively coin- 
plete except for areas 5 and 6 (not shown) where there 
is incomplete coverage from 1971-1972, and for area 
7 where the wind data are missing for all of 1969 
(Fig. 2) .  Where we have data, the values predicted by 
the model are very close to the observed values 
except at very high peaks in SST and wind, where the 
predicted values tend to be less than the observed 
values (an example of this can be seen in area 8, 
where SST in April 1971 (Fig. 3 )  was as high as 
30.S”’ while the predicted values only reach a value 
slightly below 30°C). Otherwise, the differences 
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between the observed and predicted values are barely 
discernible on the scale used in plotting the data. 

For areas where there are many consecutive time 
periods with missing data, such as areas 5,  6 ,  and 7. 
the predicted values again seem reasonable when we 
examine their qualitative properties. The predicted 
values during these periods of missing data are within 
the observed range of variation in the data, and have 
similar seasonal cycles as the observed part of the 
data (for example this is observed for area 6, from 
mid 1971 to early 1972). In area 7 (Fig. 2), where the 
wind data are missing for all of 1969, the fit seems 
reasonable except at the beginning of the year where 
there are unusually low values that are not consistent 
with observed values in surrounding areas. However, 
it is to be expected that the worst predictions would 

come at the beginning of the series if there are no data 
present, so this may partially explain the low pre- 
dicted values. 

4.3 THECPUE DATA 

In each of the eleven areas where data exist, there 
is very little difference between the predicted and 
observed values for CPUE of yellowfin and skipjack 
(e.g. Fig. 4). Again, the main difference appears to 
occur at maximum values of the peaks in CPUE. 
Even high frequency variations in CPUE, such as in 
area 5 (Fig. 4) are well predicted by the model. If 
there is some relationship between CPUE and the 
environment, this good fit is not surprising, because 
as the models used to complete the data were not 
designed to accurately forecast them, but rather to 
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distort as little as possible the statistical properties of 
existing data. 

When the numbers of observations of CPUE are 
very low, such as in areas I ,  2,  and 11 (Figs. 5, 6,  
and 7). it is doubtful that the predicted values are 
quantitatively accurate. However, the predicted data 
may capture known qualitative properties of the 
fishery that would give us some reason to believe that 
the models reflect the actual dynamics. In area 1 (Fig. 
5 ) ,  the model predicts a significantly positive CPUE 
for yellowfin, but not for skipjack, for the last four 
months of 1969, 1976, 1977 and for the last two 
months of 1974. Examining the environmental condi- 
tions during this period, we find values slightly lower 
than normal, but not out of line with conditions in 
which tuna can survive. In 1970, 1971, 1975 and 
1979 there is positive CPUE during the same part of 
the year and for similar environmental conditions. 
The data for 1980 and 198 1 ,  not used in estimating 
the model, show positive CPUE for both species start- 
ing in September of the year and ending around 

March the next year. Thus the predicted pattern of 
CPUE is consistent with the observed tolerances of 
the fish. 

In area 2 (Fig. 6) ,  the predicted values show posi- 
tive CPUE for both skipjack and yellowfin between 
June and the first three months of the next year, with 
the values for skipjack being more constant. The first 
three months of this period correspond to the main 
upwelling season, when the thermocline is relatively 
shallow and when high concentrations of nutrients are 
found near the surface. Later, water masses upwelling 
in the eastern part of the Gulf of Guinea are drawn 
into this area through advection by the South Equato- 
rial Current. Thus the environmental conditions in 
area 2 during this time of year do appear to be favor- 
able for tuna. The extension of the fleet into this area 
in 1980 and 1981 resulted in significant CPUE for 
skipjack in March and April, and again in the last two 
months of the year. Areas 1 and 2 are also considered 
to be reproductive areas for skipjack (Pianet 1983; 
Cayre and Farmgio this volume) where this fish 
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Figure 5 

migrates from the eastern part of the Gulf of Guinea 
and from the northeast region (Senegal and Mauri- 
tania) during the period from July to March of the 
following year. 

In area 11 the fleet fishes only during the last seven 
months of the year, while the model predicts that 
there should be positive CPUE for both yellowfin and 
skipjack during the first five months also (Fig. 7). 
However, for the first four months of the year the SST 
values are generally below 20°C. (i.e., at tempera- 
tures where tuna are not generally encountered in this 
region). When fishing occurs during the last seven 
months of the year, the SST is at higher values, 
between 20°C and 28°C. As the estimated models are 
linear models, they will linearly extrapolate the rela- 
tionship at the higher temperatures to the relationships 
at lower temperatures where fishing has not occurred. 
However, the relationship between CPUE and SST 
apears to have a threshold effect, and is therefore 
nonlinear. This is clearly a limit of our model, and 
cautions that the model will be most accurate when 

there has been at least some fishing over the entire 
range of the environmental variables. 

Another way to test the validity of the estimation of 
CPUE by the AR(2) model is to remove a part of the 
CPUE data, to estimate the AR(2) model on the new 
reduced series and then to compare the estimated 
CPUE with the observed data not used in the estima- 
tion. This was done for CPUE data for both species in 
area 5 .  We removed the data starting from the second 
fortnight of May 1974 to the first fortnight of Febm- 
ary 1975. For yellowfin the CPUE values estimated 
by the model were very close to the observed values 
(Fig. 8). showing the same three peaks as in the 
observed data. For skipjack, the estimated CPUE val- 
ues were higher than the observed values (Fig 8); 
however, if the predicted values are decreased by a 
constant amount the fit is quite good. This suggests 
that the local m o k l  is mispredicting the mean effect 
of the environment on CPUE for skipjack but describ- 
ing in a reasonable manner the relative fluctuations. 
This may be because the bulk of skipjack catch is by 
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the pole-and-line lishery. Catches of skipjack by the 
seiners probably depends on subsurface conditions 
that we only indirectly describe in our  models. How- 
ever, the estimated values for skipjack CPUE do 
appear to be qualitatively reasonable. 

Our ability t o  predict the artificially removed yel- 
lowfin CPUE data could be due t o  three factors: 
strong seasonality i n  the data ( i .e . ,  we are only 
estimating the seasonal cycle); the fact that fishing 
conditions tend to persist over a number of time peri- 
ods; or  a strong relationship between the yellowfin 
CPUE and the other data in  the model. that is the 
environmental data. 

The estimated spectrum for the yellowlin CPUE 
data in this area (not shown) essentially contains no 
seasonal cycle. Moreover. the ten month stretch of 
data have high frequency variations that are also well 
fitted by the data estimated by the model. Thus it 
seeiiis unlikely that we are only estimating the sea- 
sonal cycle. As ten months o f  data have been 

removed, again i t  follows that persistence is not the 
explanation for the close agreement. 

Thus, logically we conclude that the close agree- 
ment between the artificially removed yellowlin 
CPUE data and the corresponding estimated data is 
due to a strong relationship between the environmen- 
tal variables in the model (or more likely. between 
oceanographic processes they represent) and the yel- 
lowfin CPUE data. This fact is confirmed when we 
examine the formulas and parameter values used to 
estimate the missing data. 

5. Interpretation of the Local Models 

In this section, we examine the local models used 
to f i l l  i n  the missing data t o  see if we can discern a 
pattern that would suggest what oceanographic pro- 
cesses might be associated with buccessful lishing. 
This is done by examining the relative importance of 
ear!: o f  the five variables in predicting yello*fin and 

- -  - I  
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skipjack CPUE. The most accurate way to determine 
the relative importance of each of the model paralne- 
ters in predicting CPUE would be to standardize the 
coefficients by their standard errors. As discussed in 
the appendix, the computational burden involved pre- 
cluded calculation of the standard errors. Instead we 
estimated the relative importance of each variable for 
predicting CPUE by looking at its average contribu- 
tion to the predicted value, that is the relevant 
coefficient of Aij at time t-l  and of Bij at time t-2 
times the mean of the variable in  question. (For 
skipjack CPUE in area I ,  for example, the average 
value for SST is 240 and the parameter at time t-l  
has a value of .05 so the average contribution is .OS 
X 240 = 12: the north-south component of wind 
speed has an average value of 81 and the parameter at 
time t-l has a value o f  -.09 for an average contribu- 
tion of -.09 X 81 = -7.3. SST thus has a slightly 
larger average contribution.) 

The estimated values of CPUE, SST and wind tor 
all areas are given in Table I .  Figure 9 synthebixs 
reslilts from the model for yellowlin and \kip.jacl\ 
CPUE. The "SST" or "Wind" displayed in each 
area in the figures shows the variable(s) that were 
determined to be the most important. on average. lor 
predicting the CPUE in that area ( i t  should be noted. 
however, that at any particular time period a ditterent 
variable may have been the most important in deter- 
mining the level of CPUE f o r  that fortnight). A l w .  
Figure 9 show\ what relative values of SST would 
give the largest predicted CPUE in that area. Thu\. 
for yellowfin CPUE in  ;ireit X.  the ediniated value for 
SST one fortnight previous is 0.163 and for two IOrt- 
nights preview is -0.268 (Table I ). Therefore. the 
model predicts a relatively larger CPUE when SST is 
relatively warmer one fortnight ago (to magnify the 
effect of the positive paratneter value), a n d  relatively 
cooler two period\ ago (to minitni.ce the effect of the 
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negative parameter value). This is indicated for area 8 
in Figure 9 (yellowfin) by the letters SST, and 
W(warm) associated with t-1, and C(cold) with t-2. 

The most obvious aspect of these data is that for 
both species, SST on the whole is the most important 
variable for predicting CPUE (Fig. 9). This is not 
surprising as many other workers have noted the asso- 
ciation of tuna with particular water temperatures. 
However, having the desirable range of SST while 
fishing does not guarantee good catches. For yel- 
lowfin (Fig. 9), SST is the dominant or codominant 
factor in predicting CPUE everywhere except in areas 
1, 5 ,  and 7. Areas 5 and 7 are characterized by strong 
thermal fronts (at Cap Lopez and Cap Three Points) 
and area 1 is associated with the Guinea dome. Wind 
is codominant with SST in predicting CPUE in areas 
9 and 10, which also are characterized by the occur- 
rence of strong thermal fronts. For predicting skipjack 
CPUE (Fig. 9), wind is the dominant factor in two of 
the areas which are also characterized by thermal 
fronts (areas 6 and 8). 

Another striking feature is that CPUE for yellowfin 
and skipjack one fortnight (t-I) and two fortnights 
(t-2) prior to the period under consideration is not an 
important contributor to the predictions. As the esti- 
mated models are simultaneous models (section 4. I ) ,  
persistence of CPUE by itself is clearly not adequate 
to explain the observed pattern. 

Another interesting pattern is observed when one 
looks at the coefficients for SST for each area (Table 
1). The coefficients always change sign from period 
t-1 to period t-2, while the magnitude of the 
coefficients are similar at t-1 and t-2. One major 
grouping of ares (4, 8, 9, IO and 1 1 )  has a positive 
SST coefficient one fortnight earlier and a negative 
SST coefficient two fortnights earlier (Table I ) .  
According to this model, in these areas optimal condi- 
tions for high CPUE would occur if there are rela- 
tively cooler waters a month (two fortnights) ago fol- 
lowed by relatively wanner waters a fortnight ago. 
This is consistent with a physical process of colder 
waters richer in nutrients coming to the surface, fol- 
lowed and sustained by warmer waters at a sufficient 
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Figure 9. Summary of Table I for yellowfin (YFT) and skipjack (SKI). 
In the upper corner of each area is the environmental parame- 
ter which contributes most to the predictive power of the 
model in that area C (colder water) and W (relatively warmer 
water) in the lower comer indicate the time periods 1-1 and 
1-2 that yield optimum CPUE 
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a particular location. If these were known, there is 
some reason to believe accurate area by area forecasts 
of CPUE could be developed with lead times of two 
weeks to one month. 

time lag to allow the biological processes to develop, 
and for the occurrence of water temperatures more 
ftvorable to the immediate presence of tuna. Thus, as 
stated previously, the occurrence of favorable water 
temperatures is not sufficient to insure high abun- 
dance of tuna. The same pattern of relatively colder 
SST followed by relatively warmer SST is used in a 
model developed by Stretta and Slepoukha ( 1983) 
that determines fishing probabilities in the eastern part 
of the tropical Atlantic. While our models have not 
been tested as to their ability to forecast future levels The results of step 2 of the analysis is described in 
of CPUE, we feel they are close to achieving this this section. The data are analyzed using a technique 
goal. The most difficult part. surprisingly, would be called “Principal Components in the Frequency 
to forecast accurately the environmental conditions in Domain” (PCFD). The idea is to find at each fre- 

6. Space and Time Relationships 
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quency the dominant mode of variation in the data. 
That is, at each time period we fomi a one-dimen- 
sional time series by taking a linear (weighted) com- 
bination through time of the relevant data series for 
the eleven areas that have the property of containing 
the most spectral variance at all frequencies compared 
to any other such combination. Thus the new series at 
any time period t is a linear combination of the eleven 
areas at period t, plus another linear combination of 
the eleven areas at time t-I, and so forth. 

The new component series is an artifice, and acts as 
a reference point. As we calculate the relevant 
weights in the frequency domain, we can calculate the 
coherence (the spectral equivalence of correlation) 
and phase between any of the original series and the 
component series at any frequency. The coherence 
tells us how much of the spectral variance of any 
original series (at a given frequency) is contained in 
the component series, that is how well the component 
series reflects the dynamics of a given area. 

The phase tells us by how much any original series 
lags behind the component series (at a given fre- 
quency). As the component series is an artifice. we 
have in effect calculated the relative lags between all 
eleven areas (at a given frequency). As the eleven 
series are distributed in space, and the lags are in 
time, this gives us a description of the dominant 
space-time dynamics (at a given frequency). Thus, 
the results to be presented show the dominant space- 
time dynamics of a variable at a given frequency. At 
the annual frequency, this would be like showing the 
dominant “average” dynamic that takes one year to 
occur, rather than the dynamics of any particular 
year, just as a regresion line describes “expected” 
or “average” behavior. 

6.1 .I Annlysis ($the SST data 

In the tropical Atlantic ocean, the amplitude of the 
seasonal cycle of SST is several times greater than 
that of the interannual variability (Merle et al. 1980). 
A fourier decomposition of both the SST data and of 
thermal structure data has shown that the seasonal 
cycle is mainly composed of the first two harmonics, 
annual and semi-annual (Merle and Le Floch 1978). 

For this reason, we describe our results for frequen- 
cies centered at periods of twenty-two and eleven 
fortnights. These correspond to the annual and semi- 
annual frequencies in our data. Only the first, or dom- 
inant eigcwvrcror is discussed for each frequency, 
because at each frequency this component contains 
the predominance of the spectral variance (90%). As 
described in the appendix the phases are calculated by 
arbitrarily giving the dominant component a phase of  
zero with area 4. 

For a period of twenty-two fortnights (Fig. IO) ,  the 
coherence between the dominant principal component 
and each of the areas is very high except in area 9, off 
Sierra Leone. Area 9 is the meteorological equator (or 
atmospheric thermal frontier between the two hemis- 
pheres) and is affected by the bi-annual oscillations of 
the Inter-Tropical Convergence Zone, inducing a 
strong bi-annual oscillation in the SST data. When we 
look at the phase relations of the SST at this fre- 
quency, we see a decomposition of this part of the 
Atlantic into two parts; a northern part (area 10, 1 1 )  
separated from the southern part by area 9. The 
phases in these two areas differ by roughly eleven 
fortnights (six months), which corresponds to the 
delay between the seasonal cycles of the two hemis- 
pheres 
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The southern part shows an interesting spatial pat- 
tern in the phase relationships at this frequency. Our 
interpretation of this pattern is based on a theory of 
remote forcing in the Gulf of Guinea (O’Brien et al. 
1978). In this theory, the main upwelling in the Gulf 
of Guinea is believed to be caused by a Kelvin wave 
generated by an increase of the zonal wind stress in 
the western part of the Atlantic basin. This wave then 
propagates along the equator to the eastern part of the 
basin, and then poleward along the northern and 
southern coasts of west Africa, inducing a movement 
of the thermocline towards the surface. In Figure I O ,  
we see that the equatorial areas north of the equator 
are in phase. Along the Gulf coast, from areas 6 to 8, 
the phase lag between areas is relatively constant 
(approximately 0 .4  fortnight) and is consistent with 
the estimated speed of a Kelvin wave ( 1  %-2 misec 
compared to a theoretical 3 m/sec). The phase lag 
between area 5 and area 6,  however, shows move- 
ment from south to north that is not consistent with a 
Kelvin wave. To completely resolve this question. we 
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need to extend the study area farther south. However, 
a more detailed analysis of the SST data, to be 
described elsewhere, lends further support to the Kel- 
vin wave theory. The two oceanic areas south of the 
equator have phase lags which show a westward 
movement of water apparently related to advection by 
the South Equatorial Current. 

1-91 10 
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At the higher semi-annual frequency (Fig. 1 I )  all 
the areas are highly coherent with the dominant prin- 
cipal component, except for area 1 I .  The two equato- 
rial areas north of the equator are still approximately 
in phase. As for the annual frequency, we again find 
phase lags which suggest a movement of water from 
area 6 to 8, but at these frequencies the movement 
extends to area IO.  This extension at the semi-annual 
periods is consistent with our previous discussion 
about area 9 being the meteorological equator domi- 
nated by semi-annual frequencies. Also the oceanic 
areas south of the equator exhibit a westward move- 
ment of water similar to that at the annual frequency. 
Significant six month signals have been found in the 
subsurface thermal structure (Merle and Le Floch 
1978), in sea level data (Verstraete et al. 1980), and 
in the wind and coastal station data (Picaut et al. 
1978). Therefore, there is good reason to believe that 
the observed behavior at a period of six months is not 
just due to a simple harmonic of the annual cycle. The 
second upwelling event, which occurs south of the 
equator in December and north of the equator in  Janu- 
ary, also suggests that the semi-annual behavior is not 
simply a harmonic. The same kind of propagation of 
the SST signal has been demonstrated to occur along 
the northern and southern coasts during the main 
upwelling period by Picaut (1982), and along the 
coasts of Ghana and the Ivory Coast during the sec- 
ond upwelling period by Roy (1981). 
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Figure I I. Phax and coherence (in parenthew) of SST between the 
eleven area\ at eleven fortnight\ and for the fir\! companent 
of the rryriiano/?.~,s The phases are in unli\ of fortntghir 
The arrow\ represent our interpretation of the phax lag  pro^ 

gremon Area\ in pha\e are noted hy enurcled pair\ ofdot\ 

The dominant mode of variation displayed by the 
CPUE data for both yellowfin and skipjack at the 
periods of interest (eleven and twenty-two fortnights) 
does not present as clear a picture as does the SST 
data. At many frequencies it is not clear that the vari- 
ations in CPUE represent anything more than Heet 
dynamics. For example, at a period of twenty-two 
fortnights (Fig. 13) the dominant pattern of CPUE for 
yellowfin appears to be a movement in the CPUE 
from area 8 down to area I and 2, and from area I O  to 
area 1 1  and 9, which is consistent with fishing behav- 
ior of the fleet from one of the ports. Skipjack CPUE 
especially shows little pattern, with the highest coher- 
ences at most frequencies occurring in the areas adja- 
cent to the major ports. 
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Figure 12 Phase and coherence (In parenthew\) of CPUE for yelloulin 
between the elevcn areas at eleven fortnight, and lor thc fir\t 
cornpment of ihe eiymiino/~srs The pha\e\ are in unit, of 
fortnight\. The 8rri)ws repremi  our inierpretation of the 
phase lag progre*rion. 
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Figure 13. Phare and coherence (in parentheres) of CPUE for yelloufin 
between the eleven area, at twent)-two fortnight\ and lor the 
firs1 comprnent of the eiymmulysrs. The pha\er are in unit, 

of fortnights The arrow* repre\ent our mterpreraiwn of the 
phase lag progrewon 
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6.1 2.1 YP//OW$IZ CPUE: At a period of eleven fortnights 
(Fig. 12) the yellowfin CPUE shows a fairly regular 
propagation northward along the coast from area 5 to 
area 6 to area 7 to area 8. This is consistent with one 
part of the dominant pattern in the SST's, and sug- 
gests the association of the arrival of tuna with the 
proper water temperatures (a question to be explored 
more fully in the next section). Also, at a period of 
14.67 fortnights, there appears to be a steady progres- 
sion northward from area 9 to area I O  and to area 1 1 .  

6 / ?.? Skipjack CPUE: There appears to be little pattern 
in the skipjack CPUE except for close association 
with the major ports. Only at a period of eleven fort- 
nights (Fig. 14) is there any pattern. Here we see a 
fairly regular propagation from area 1 t o  area 9. from 
area 1 1 to area 10 and to area 9. and from area 4 to 6 ,  
to 5 and to 3. The last feature suggests that fishing 
occurs along entrained upwelling waters. as discussed 
previously. The southwest propagations from area I I 
to 9 could be related to the development of the ther- 
mal front associated with upwelling. 
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What is most notable is that there appears to be 
relatively little understandable pattern to the dominant 
modes of variation in the CPUE data. As we will see 
in the next section, the situation changes dramatically 
when CPUE is analyzed in conjunction with SST. 
Thus this lack of pattern in the CPUE data is 
significant for two reasons: it underscores the impor- 
tance of the environmental features, and it reinforces 
the need to look at each variable individually before 
examining a variable in conjunction with a second 
variable. 

6.2 ANALYSIS OFTWO VARIABLES OVER SPACE AND TIME 

In this section, we examine the results for step 3 of 
our analysis. As in step 2, we work in the frequency 

domain, and as in step 2 we will form a one-dinien- 
sional component series that is a linear combination 
through time of the relevant variable measured at each 
of the eleven areas. However, the criterion for select- 
ing the linear combinations is different. As we want 
to examine the influence in space and time of one 
variable on a second variable, we will be looking for 
the linear combinations through time of each variable 
that are the mosr cohererzr at all frequencies, rather 
than the linear combination that explains the most 
spectral variance at all frequencies 

In section 5 .  we presented evidence that CPUE for 
tuna in the Gulf of Guinea is strongly influenced by 
the presence or absence of particular environmental 
conditions. However, that analysis does not tell us if 
the relationship is mainly a local one, in which case 
there is little added predictive capability from know- 
ing what is happening i n  the entire Gulf, or if the 
strong relationship is due to a broadscale process, in 
which case spatial patterns will be as important as 
temporal patterns in making predictions. 

This analysis was performed for yellowfin and 
skipjack CPUE with SST as the second variable. The 
one-dimensional series formed by the analysis are 
called the curroriicnl series. .As before, we can calcu- 
late the phase and coherence between any original 
series and the corresponding canonical series (at a 
given frequency). 

The most obvious feature of this analysis is that the 
pattern of propagation shown by SST is very similar 
to the pattern when SST is analyzed alone (compare 
e .g .  Figs. 12 and 15). At periods o f  both eleven and 
twenty-two fortnights, we see the fairly regular prop- 
agation of SST along the coast (Figs. 15 and 16; 17 
and 18), as well as a westward propagation of SST in 
the oceanic areas south of the equator. At a period of 
twenty-two fortnights (Figs. 16 and 18), we again see 

AFRICA 

2u w 1uw w 1UE 

Figure I S  Phase and coherence ( In  parcnthcse\) of CPUE for yellowhn 
(upper corner) and SST (lower comer) between the eleven 
area, dt eleven fonrtightq and for the fixed components of the 
canonical a n a l y v ~  The pha\e* are SI, units of fonnight The 
a r row rcpre\ent our ~ntcrpretation of the phare lag progre\- 
sion fur yellowfin (coltd line) and for SST (da5hcJ line) The 
areas ~n phaw are denoted by encircled pair\ of dot\ 
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for the two species that the northern regions are 
roughly six months out of phase with the southeastern 
regions. The importance of this observation is that 
this is the part of the SST data at these frequencies 
that is most coherent (coherences are all 0 .9  or 
greater) with the CPUE data. This is very strong evi- 
dence that the evolution of CPUE for both skipjack 
and yellowfin in the Gulf' of Guinea is closely related 
to the evolution of SST at the sanie frequencies. If we 
examine the phase relationships at a period of twenty- 
two fortnightc in the yellowfin CPUE canonical series 
(Fig. 16), i t  is clear that except for area 7. where the 
coherence is low (0.04) the yellowfin CPUE data 
show the same spatial evolution in time along the 
eastern coast as does the SST canonical series. For the 
skipjack CPUE data (Fig. 18), the pattern is no t  as 
clear at this frequency 
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At a period of eleven fortnights, again yellowfin 
CPUE and SST have remarkably similar patterns and 
speed of movement (Fig. 15). Fnr skipjack CPUE and 
SST at this frequency, the coherence is low along the 
eastern coast and for the two oceanic areas north of 
the equator. Along the northern coast (area I 1, 10, 9) 
the CPUE shows a regular movement from area 11 to 
10 and to 9. 

Figure I X  Phare and coherence (in parenthem) of CPtiE for skspjack 
iilppc'r ciirnerl and SST i lowcr corner) hctween thc eleven 
area\ at 1uen t )~ two  lormght\ dnd lor thr fixed compmcni\  

of the C B I I O I I I C ~ I  ;indl)\i\ The phaiec are ~n unit\ of ton- 
night .I he a r r ~ a ' \  reprewnt our tnterprctation 01 the pha\e 

pi<igre\\ioti tor Aipi.sh ( \old h e )  and for SST lda\bcd 
1 I hu .ires\ m phaw arc denoted by encjrclcd pa~r ,  of 

dot, 

As mentioned in an earlier section, the phase rela- 
tionships only have meaning for a single variable 
across areas. A more precise discussion of these 
results would require calculating the phase lag 
between the two canonical series, so that we can bet- 
ter determine the timing between the propagation of 
SST and of CPUE. However, what is remarkable is 
that while the dominant modes of variation for CPUE 
alone show no consistent pattern, when analyzed 
simultaneously with SST data, the most predictable 
parts of the CPUE data exhibit very clear patterns of 
movement. The propagation of SST, coherent with 
the CPUE, appears to be related to the occurrence of 
upwelling along the coast in the Gulf of Guinea, and 
with advective processes in the oceanic and northern 
parts of the Gulf. Thus from a physical viewpoint, I t  
is not surprising that the CPUE data should show an 
evolution similar t o  [he SST propagation, as the 
regions with upwelling waters have an enrichment of 
food that is favorable for the aggregation of tuna. 

7. Summary and Conclusions 

In  this paper we have studied both the local and the 
broadscale dynamic relationships between CPUE for 
yellowfin and skipjack tuna in  the Gulf of Guinea 
with SST and with wind speed. It is not our purpose 
to review past work on environmental influences on 
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tuna catches. Good reviews can be found in  Black- 
burn (1965) and Sund et al. (1981). What separates 
our work from any of the papers referenced in those 
two works is that first, we truly analyze the dynamics 
of the relationships, rather than just the mean habitat 
where high levels of CPUE occur. This allows us. for 
example, to explain why a particular temperature dur- 
ing one time period will lead to high CPUE while the 
same temperature conditions will lead to low CPUE at 
other times. Moreover, our analysis is not restricted 
to where fishing has actually occurred; if we are ever 
to forecast where good fishing will occur the only 
information available will be present environmental 
conditions and past fishing success. The forecast must 
be able to distinguish, for example, fronts that will 
have tuna aggregated and fronts that won’t. bcfurr 
j ishing o c u u s .  To our knowledge our models are the 
first to directly tackle this problem. 

In more detail, an examination of our local models 
shows that CPUE for both species of tuna is primarily 
estimated by the evolution of the environmental con- 
ditions, rather than from either persistence o f  fishing 
conditions or by the present environmental condi- 
tions. The “scenario“ used by the models is consist- 
ent with known direct observations at sea. This 
“scenario” predicts higher concentrations of tuna 
when there has been upwelling one month previous to 
fishing followed by a relative warming o f  the waters 
two weeks previous to the fishing. This suggests that 
the predicted relationship is only a surrogate for a 
more complicated evolution of biological and physi- 
cal processes which results in areas favorable for the 
aggregation of tuna. 

The local models suggest that there are broad areas 
with similar behavior, and that these areas correspond 
to areas with similar oceanographic dynamics. To 
examine this further, we used a technique that allows 
us to study the dominant dynamics of one or two 
variables in both space and time and at a given fre- 
quency. This analysis reveals little pattern when 
CPUE is analysed by itself, but when CPUE is exa- 
mined with SST we find the two variables moving in 
a similar pattern with a similar speed of movement. 
The pattern found is identical to the pattern found for 
SST when it is analyzed by itself. and is consistent 
with a theory of remote forcing in  the region. This 
suggests that fishing conditions also are associated 
with the remote forcing, and that forecahting of CPUE 
could be enhanced by using both broadscale and local 
environmental conditions. The relationship to remote 
forcing is an entirely new result, and emphasizes the 

importance of not limiting studies of the relationships 
between CPUE and the environment to locations and 
times where fishing occurs. 

In this study, we only used surface environmental 
parameters. It would be interesting and instructive to 
introduce some properties of the vertical structure as 
well. For example, the depth of the thermocline 
would be an important parameter to consider, because 
the variation of the vertical habitat of the fish and the 
vulnerability of the fish to surface fishing gear is 
related to the vertical temperature structure. How- 
ever, subsurface data tends to be much sparser than 
surface data. 

This study examines the influence of the environ- 
ment only after the recruitment phaqe; at this stage of 
the life-history of pelagic fish environmental effects 
are not a dominant factor for the survival of the fish, 
but rather tend to affect the ability of the fish to aggre- 
gate and to be available to a surface fishery. Before 
the recruitment phase, :he environment could be the 
dominant factor for tl 2 survival of the stock. The 
success of reproduction and the survival of larvae 
may be controlled by advective or transport processes 
(Parrishet al. 1981). 

A curious feature of our results is the fact that none 
of our  models directly includes recruitment. This sug- 
gests that either we have somehow indirectly 
modelled recruitment (unlikely), or that recruitment 
during the period of study has been steady, perhaps 
fluctuating around a mean level, or else that the 
fishery during the period o f  study has n o t  been limited 
by the population size. Studies of the relationships 
between the environment and the larval and juvenile 
stages of the tuna would be necessary to help clarify 
these issues. 
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Appendix 

Methods and Assumptions of the Data Analysis 

A. I THE BASIC PROBLEMS 

There are three main problems to be dealt with 
when trying to analyze the tuna CPUE and environ- 
mental data from the Gulf of Guinea. These are: ( I )  
the sheer size of the problem, (2) missing data in the 
time series, and (3) resolving time and space relation- 
ships among several variables at once. We will briefly 
discuss each of these problems. First, as described in 
the preceding sections, we want to examine the 
interrelationships among five different variables at 
eleven locations. If each variable in each area is 
treated as a separate time series. then we would be 
directly modelling fifty-five time series. In this case, 
even a simple model of the form X, = AXl-, + e, 
would require estimating 3025 parameters in the 
coefficient matrix A,  which clearly is impractical. 

Second, only a few of the fifty-five time series have 
no missing data points. While the environmental data 
are fairly complete, the CPUE time series have many 
missing values. because there are no data for an area 
at any time during which there was no fishing in that 
area. This clearly is a problem if we consider CPUE 
as a measure of relative abundance. The absence of 
fishing does not necessarily mean the absence of fish, 
and when studying the space-time dynamics the most 
consistent estimate may well be that there were fish in 
the area and therefore. that a positive CPUE would 
have been possible. 

The third problem is to resolve behavior in both 
time and space among several variables. For the prob- 
lem at hand, there are good a priori reasons to helieve 
that standard assumptions such as isotropy are not 
valid; indeed it is not obvious that any of the variables 
even satisfy the weaker assumption of spatial sta- 
tionarity. Thus we must find a method of analysis that 
can deal with the large size of the problem without 
imposing on the data any assumptions of spatial sta- 
tionarity . 

A.2  ESTIMATING MISTING VALUES 

To "complete" the missing data. we elected to 
construct local multivariate time series models in each 
area, simultaneously modelling the five variables of 
interest. We will use the following notation: 

Y(t) = (Y,( t ) ,  Y?(t))l = column vector of yellowfin 
and skipjack CPUE in time period t .  

X(t) = (X,(t). X?(t), Xdt)) '  = column vector of 
SST, N-S, and E-W components of wind velocity. 

where denotes matrix transpose. The model esti- 
mated in each area is a second-order multivariate 
autoregressive model (AR(2)) of the form: 

where A and B are 5 X 5 matrices of parameters to be 
estimated, E, is a 5-vector of independent Gaussian 
random variables with mean mu and covariance 
matrix z, W, is the vector of observation noise, a 
random gaussian vector of mean zero and covariance 
matrix R. H(t) is a matrix of known parameters, and 
U(t) and W(t) are the noisily observed data series. 
The matrix H(t) can be used to signify that a series 
has a missing data point in time period t. 

There are several reasons for choosing a model of 
the form ( I ) .  First, as most of our analysis will con- 
sist of spectral methods, the major goal in completing 
the time series is to cause minimal distortion of the 
covariance structure of the observed data. AR(2) 
models offer a flexible class of models that can 
closely approximate many different types of spectra. 
Typical AR(2) spectrums exhibit a small peak in the 
low frequency band. As most of our data are domi- 
nated by a seasonal cycle with a period of twenty-four 
fortnights, we would expect the actual spectrum to 
have a similar peak. Thus the data estimated from the 
AR(2) models should provide reasonable spectral 
estimates, but somewhat smoother (particularly at 
higher frequencies) than if the real data were avail- 
able. 

Ideally. both for more accurate estimates and for 
better forecasting models, some rigorous order deter- 
mination method would be used to select the "best" 
AR model for each area, and all nonsignificant 
parameters would be set to zero. This approach was 
precluded by the already considerable computational 
burden (fifty iterations of the estimation routine 
require one hour of CPU time on a CDC 6500) and 
the fact that the information matrix. necessary for 
assessing the precision of the parameter estimates, 
can only be estimated numerically and requires sub- 
stantially more computational time. Thus the AR(2) 
models would seem to give a reasonable tradeoff 
between computational burden and distortion of the 
covariance structure of the data. 

Major reasons for choosing AR models are: ( I )  
they are biologically reasonable, (2) they can be inter- 
preted easily, and (3) there exists an algorithm 
(Shumway and Stoffer 1982) for exact maximum 
likelihood estimation of AR models when there are 
missing data. using Kalman filtering and the E-M 
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algorithm (Dempster et al. 1977). This is an iterative 
algorithm that starts with initial guesses for the 
parameters, calculates minimum mean square error 
estimates of the missing data, and then calculates 
maximum likelihood estimates of the parameters 
using the completed data set. The next iteration then 
begins by computing new minimum mean square 
error estimates for the missing data, using the latest 
parameter estimates. The algorithm converges when 
the completed data set produces maximum likelihood 
estimates of the parameters sufficiently close to those 
found in the previous iteration. Thus at convergence, 
the completed data sets yield maximum likelihood 
estimates of the particular parameters, and the esti- 
mated parameters give minimum mean square error of 
the missing data. Details of the algorithm can be 
found in the paper by Shumway and Stoffer (1982). 

Models that also include information from neigh- 
boring areas probably would produce more accurate 
estimates of the missing data. We did not choose to 
do this for two reasons. First, the resulting models 
would have a large number of parameters to estimate 
compared with the number of time periods in our  
data. Second, including neighboring areas in the fill- 
in models could bias our findings on space-time 
behavior. By restricting ourselves to local models to 
fill-in the missing data, we feel more confident that 
any spatial relationships found are not artifacts. A 
posteriori, this appears to have been a wise decision, 
as the local models have many desirable properties 
and capture many known qualitative features of the 
eleven areas. Hence, it is doubtful that there was 
much to be gained from estimating the missing data 
using much 1arger.models 

Spectral density matrices were calculated for the 
completed time series for frequency bands centered at 
intervals of 0.02273 cycles per fortnight. The spectral 
densities were estimated by Fourier transformation of 
the completed data series and by direct smoothing of 
the periodogram, as in Brillinger (1981, chapter 7). A 
bandwidth of 0.02273 gives thirteen degrees of free- 
dom. While a larger bandwidth would give more 
precise estimates, it would no longer be possible to 
resolve interannual frequencies. Also, graphs of some 
of the series suggest there may be cyclic behavior at 
2% to 3 years. However, smaller bandwidths were 
not used to resolve these frequencies because the 
resulting degrees of freedom were too few. The spec- 
tral density matrix for the CPUE at frequency will be 
denoted by fyy(h) (or fyy where the frequency is 
either obvious or irrelevant) and the spectral density 
for the environmental series by fxx(A) (or) (fxx).  The 
cross-spectral densities are denoted by fyx(h) (or) 
(fyx) and fxy(X) (or) (fxy) where fyx = fxy* and * 
denotes conjugate transpose. 

A.3 ANALYZING A SINGLE VARIABLE I N  TIME A N D  SPACE 

In order to be able to understand and interpret the 
space-time variations of two variables together, it is 
necessary to understand the dominant mode of varia- 
tion in each series separately. This gives us a clearer 
picture of the dynamics in each variable, and how 
they change when analyzed simultaneously with a 
second variable. 

Suppose we have an r-vectored valued second- 
order stationary series X(t) with mean zero and covar- 
iance function Cxx(p). Further, suppose we wish to 
find a q-vector valued series Y(t) with q<r such that: 

i.e., Y(t) is a filtered version of X(t) such that Y(t) is 
close to X(t) in the sense that we minimize: 

It is proven in Brillinger (1981, chapter 9) that the 
solution to this problem is given by the filter: 

b(u) = 27r -nTT B(a) exp(iau)da 

c(u) = 2 ~ r  -nn D(a) exp(iau)da 
(4) 

S 
S 

where, 

Lv,* J 

and the vector Vk(h) is the k-th eigenvector of the 
matrix fxx(X) associated with the eigenvalue mk(A). 
In  practical terms, the solution to (3) is found by 
calculating the principal components of the complex 
matrices fxx(A) at all frequencies. I t  is not necessary 
to calculate the inverse transforms (4), as it is possi- 
ble to calculate the gain, coherence, and phase 
between the original series and each principal compo- 
nent series (Brillinger 1981; Michaelson 1982a). At 
any given frequency, the coherence tells us how much 
of the spectral variance of the original series at this 
frequency is contained in the component series, and 
as the component series can be arbitrarily set to have 
zero phase with any area, they act as fixed reference 
points to determine the time relationships between the 
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part of each original series contained in the compo- 
nent. Principal components in the frequency domain 
have been used extensively by Michaelson (1982a, 
1982b) and earlier by Wallace (1972) and Wallace 
and Dickinson (1972). 

Principal component analysis has been used exten- 
sively in oceanography under the name “Empirical 
Orthogonal Function” (EOF) analysis. The difference 
between EOF’s and the present analysis is that, in 
comparison to (2), EOF’s are restricted to a transform 
of the form boX(t). Equivalently, if we were to 
smooth our spectral estimates over all frequencies, 
then the two analyses would be equivalent (Brillinger 
1981, chapter 9). Also, principal components analy- 
sis in the frequency domain produces q series that are 
independent at all frequencies, and hence at all lags, 
which is not true of EOF’s. Further, the phase rela- 
tionships at each frequency are readily available from 
this method, while EOF’s would require extensive 
further calculations to obtain any kind of comparable 
results. 

A.4 ANALYZING Two VARIABLES I N  TIME A N D  SPACE 

At first glance, a method for dealing with two sets 
of variables would be to extend the previous analysis 
to the matrix 

[;::::I 
However, this is not appropriate for several reasons. 
First, principal component analysis is scale sensitive, 
and the two sets of variables may be measured in 
units that greatly differ in magnitude. Second, if we 
were to look at the linear combination of the first set 
of variables on the dominant component and the lin- 
ear combination of the second set of variables also on 
the dominant component, even though this compo- 
nent contains the greatest total variance, it is not nec- 
essarily true that these two linear combinations will 
be very coherent. Since in dealing with two sets of  
variables we are interested in discovering related 
dynamics, rather than pulling out the pieces that con- 
tain the most variance, we would rather pull out the 
pieces that are the most coherent. 

More formally, suppose we want to find the series 

(,(I) = J?,” AJm) exp(iat)dZ,(a) 

and, 

(with the standardizations 

that have maximum coherence compared to any other 
such series that are independent at all frequencies to 

. the series Ck, and q k ,  with k<j. This problem is the 
standard canonical correlation problem, but now in 
the frequency domain. The solution to this problem 
(Brillinger 1981, chapter 10) is found by solving, at 
each frequency, the pair of eigenvalue problems: 

The resulting series, Q(t) and W ( t ) ,  are called the jth 
canonical series, and their coherence, u,(A) is called 
the jth canonical coherence. 

It is computationally more stable to solve: 

Then B,(A) is proportional to f y y i h  V,(A) and A,(A) is 
proportional to fxx-’(A) fxy(A) fyy-”’(A)V,(A). It fol- 
lows from Brillinger (1981, chapter IO) that the jth 
canonical aeries has a spectral density at frequency: 

and the cross-spectrum between the jth canonical 
series and the original series given by: 

f&) A,(A) and f,,CA) B,(A) 

From these relationships we can calculate the gain, 
coherence, and phase between the original series and 
each of the canonical series. The phase relationships 
are calculated so that the jth canonical series for each 
variable has phase zero in area 4.  Thus the phases as 
presented have meaning only in terms of the same 
variable at a different location. For example, because 
in area 9 yellowfin CPUE may have a phase of 7.84 
fortnights and SST a phase of -8.5 fortnights, it does 
not mean that SST has preceded CPUE by 16.34 fort- 
nights. Rather, for example, if the CPUE canonical 
series has a phase of -8.00 with the SST canonical 
series, then SST would precede CPUE by only 8 . 3  
fortnights. Thus, results from the canonical analysis 
must be interpreted with care. 

When actually calculating the canonical analysis. 
we found that the matrix: 

[ ;: :::I 
was never of full  rank (1.e. 22); in fdCt i t  usually had 
rank of only 10 or 11. As the analysis is based only 
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on the submatrices of this matrix, we overcame this 
problem by calculating the singular value decomposi- 
tions of fxx and fyy: 

where the Q’a are orthogonal matrices and the D’s are 
diagonal matrices. Then the six smallest diagonal ele- 
ments of Dx and Dy were forced to zero, and the 
matrices fxx and fyy were reconstructed. This 
removed the singularity in each case by eliminating 
from each set of variables the six linear combinations 
of the area spectral density at that frequency. Usually 

only 5 9  or less of the total spectral power was 
removed, so that very little information was lost by 
this process. 

The bulk of our analysis depends on spectral and 
other least squares techniques. These techniques gen- 
erally “smooth” or average over different occur- 
rences, so that the results display the ”normal” pat- 
tern of relationships. However. for many fisheries 
problem>. particularly in relation to the environment, 
the abnormal happening may be of equal interest 
(such as El Nino in the Pacific). Further refinements 
of our techniques are needed t o  examine this type of 
situation. 




