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A POWER ANALYSIS FOR DETECTING TRENDS1 
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Abstract. A power analysis allows estimation of the probability of detecting upward 
or downward trends in abundance using linear regression, given number of samples and 
estimates of sample variability and rate of change. Alternatively, the minimum number 
or precision of samples required to detect trends with a given degree of confidence can be 
computed. The results are applicable to an experimental situation in which samples are 
taken at regular intervals in time or space. The effects of linear and exponential change 
and of having sample variability be a function of abundance are investigated. Results are 
summarized graphically and, as an example, applied to the monitoring of the California 
sea otter population with aerial surveys. 
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INTRODUCTION 
A common proximate goal in ecological research is 

to determine whether the magnitude of some quantity 
is tending to increase or decrease. The quantity of in- 
terest might be population size, productivity, diversity, 
or mortality rate, for example. A linear regression of 
estimated abundance of the quantity against time or 
distance is commonly used to evaluate such a trend. 
When designing a program to detect trends, several 
related questions often arise. What is a sufficient num- 
ber of samples? How precise must the samples be? 
What is the probability of detecting a trend if it is 
present? 

This paper provides answers to these questions in 
terms which, it is hoped, are applicable to a wide range 
of ecological studies. The effects of several different 
factors are investigated, including the precision of the 
estimates of abundance, the dependence of precision 
on changes in abundance, the nature and magnitude 
of the actual rate of change in abundance, the asym- 
metry between upward and downward trends, and the 
levels of Type 1 and Type 2 statistical errors. Results 
are presented in both numerical and graphical form. 

The ability of a statistical procedure to distinguish 
a situation different from the null hypothesis is called 
the power of that procedure. The estimation of statis- 
tical power is important for several reasons. Episte- 
mologically, power analysis is important for the inter- 
pretation of results when the null hypothesis is not 
rejected (Toft and Shea 1983). Operationally, power 
analysis is important during the planning of experi- 
ments to avoid wasted time and effort on a program 
that is unlikely to yield useful information. Peterman 
and Routledge (1983), for example, showed that a pro- 
posed 48 million smolt/yr release would be insufficient 
to gain new information about the smolt-adult salmon 
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relationship, while an alternative 88 million smolt ex- 
periment had a good chance of succeeding. Holt et al. 
(1987) used a power analysis to optimize the design of 
a large-scale program to detect changes in dolphin stocks 
over vast areas of the eastern tropical Pacific Ocean. 

METHODS 
By definition, a trend is detected when the regression 

has a slope significantly different from zero. The con- 
clusion that a trend in abundance is occumng, when 
in fact it is not, is termed a Type 1 error, while the 
conclusion that no trend is occumng, when in fact it 
is, is a Type 2 error. The probabilities of making Type 
1 and 2 errors are labelled a and 0, respectively. Power 
is defined as 1 - p. 

I consider two simple models of change. linear and 
exponential. Let A, represent abundance as a function 
of i. an index of time or distance. The linear model is 

A, = A,[1 + r(i - I)]. (1) 

For each increment in i, abundance increases by a con- 
stant absolute amount rA , .  The parameter r thus ex- 
presses this constant increment of change as a fraction 
of the initial abundance A ,. The exponential model is 

A, = A , ( 1  + ry-1, (2) 

where r is the finite fractional rate of change per time 
or distance unit. A plot of A, against i is an exponen- 
tially increasing (or decreasing) set of points; a plot of 
In A, against i is a straight line with slope In (1 + r ) ,  
the instantaneous rate of change. 

Each abundance A, is estimated by the sample abun- 
dance estimate A,. For the linear model (Eq. I), 

A, = A ,  + e , ,  

while for the exponential model (Eq. 2), 

In A, = In A, + e,, 

where the e, are normal, independent random variables 
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TABLE 1. Theoretical dependence of the precision of an abundance estimate, as measured by the coefficient of variation 
(cv), on abundance (A), for some common methods of estimating abundance. 

Method Assumptions Dependence Reference 
Quadratdstrip transects random cv x U f l  Seber (1982:22) 

clumped cv a l / f l  Seber (1982:25) 
Line transects random or clumped cv I l / f l  Burnham et al. (1980) 
Distance sampling random cv constant' Moore (1954) 

clumped cv constant Eberhardt (1967) 
Catch per unit effort (CPUE) random cv a l / f l  de la Mare (1984) 
Sinale mark-recapture Petersen method assumptions c v a f l  Seber (1982:60) 
'"cv constant" means the coefficient of variation does not depend on abundance, although it does depend on other 

parameters. 

with mean zero. For the exponential model, note that 
this implies that the A, are lognormally distributed. I 
consider three different assumptions about how the 
variance of the abundance estimate could be related 
to abundance: Var(A,) is proportional to A,, to A,2, or 
to A,'. These relations can also be expressed in terms 
of the coefficient of variation, the ratio of the standard 
deviation to the mean: cv(A,) is proportional to l / f i ,  
is constant with respect to A,, or is proportional to @,, 
respectively. The nature of the dependence of cv(A, )  
on A, will depend on the species, on the quantity whose 
abundance is of interest, and on the method used to 
estimate that quantity. The three assumptions made 
above span a range of functional relationships,- and 
correspond to the theoretical dependences of cv(A,) on 
A, for common methods of estimating abundance (Ta- 
ble l). 

Let n be the number of points used in the regression 
(the number of samples or estimates of abundance). In 
the case of linear change, the regression line is fitted 
to the points {y , )  = { A l ,  A?, . . . , A n } ,  whereas for 
exponeptial change it is fitted to the points { y , }  = {In 
A , ,  In A 2 ,  . . . , In A,}. Let 

2 (x, - m y ,  - 9) 
b̂  = 

(x, - 3' 
t- I 

be the usua! estimator of the slope of the regression 
line. Then b is normally distributed with mean & = b 
and variance uz6 = aL,/nof, where b is the true slope 
of the regression, a& is the variance of the residuals 
and at is the variance in the independent variable .r 
(Freund 1962:3 16). To reduce statistical errors to the 
specified levels a and p, we must have 

] f i b \  - zp6b 5 zd26b 

or 

b2nof 2 (z,,~ + ~ , ) ~ a f ,  (3) 
where z. is the value of a standardized random normal 
variable such that the area under one tail of the prob- 

ability density function beyond z, is a. If the null hy- 
pothesis is one-tailed, inequality 3 is modified to 

(4) 

To relate these equations to the problem of detecting 
trends, we need to express b, u:, and in terms of r ,  
cv, and n. 

For the linear model (Eq. I), the slope of the regres- 
sion line is 

b2not 2 (z, + z,)'a;es. 

If the estimates of abundance are taken at regular in- 
tervals in time or space, the independent variable x 
can, without loss ofgenerality, be renumbered 1, 2, 3, 
. . . , n. Then 

(6) 
, ( n  + l ) (n  - 1) 

12 

The variance of the resjduals about the regression 
line depends on how c v ( A , )  changes with A,. Let cv, 
be the coefficient of variation at the initial abundance 
A ] .  If CV(A,) is proportional to ~/v'.X,, an estimate of 
the residual variance is 

6- = 

. n  

1 
= - 5 cv:A,A, 

Substituting Eqs. 5 ,  6, and 7 into Eq. 3, 

rzn(n - l ) (n  + 1) 5 I~CV:(Z,,~ + zJZ 

(7) 

If -(A,) is constant over the sampled range of& write 
cv without the subscript. Then 
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the normal distribution. If Cv(A,) is proportional to 
WZ,, 

CV'A: 
n 

-- - 2 [I  + r( i  - I)]' 

= (CVA,)2 j 1 + rfn - 1) = - - z l n [ ~ +  1 "  cv ' 
( 1  + ry-' I 

(9) Substituting Eqs. 6, 13, and 14 into inequality 3 gives 

Substituting Eqs. 5,  6, and 9 into Eq. 3, 

r'n(n - l)(n + 1) 2 12CV'(Z,,, + i#)2 

- 1) . (10) If cv(k,) is constant with respect to A,, we write cv 
without the subscript as before. and 

. "  
I) 

If cv(A,) is proportional to a, 

cv:,4: " - -- E [I + r(i - 1)13 
3r 

= (cvtAt)2/l + T(" - 1) 

1 
= - Var(ln A,) 
= In(cv2 + 1) (16) 

Note that this is the only case in which abundance 
estimates are truly homoscedastic. Substituting Eqs. 6, 
13, and 16 into inequality 3. 

[In(l + r)]'n(n - l ) (n  + I )  
2 12(ztv + zJ2[ln(cv2 + I)]. (17) 

Finally, if cv(/i,) is proportional to a, 
1 "  

1 "  

c- = - 2 Var(1n A,) I1 r2 
6 

- 1) + -n(n - 1) . (11) 

Substituting Eqs. 5, 6, and 1 1  into Eq. 3, 

r2n(n - I)(n + 1) 2 12CV:(i,,, + i,)Z = - 2 In[cv:(l + ry- l  + 11. (18) 

Substituting Eqs. 6, 13, and 18 into inequality 3 gives 

Next consider the exponential model (Eq. 2). The 
slope of the regression line is 

,{!-i ln[cvf(l + r)'-I + I]). (19) 

d In A RFSULTS b=-----1= In(1 + r), (13) 
In this analysis, the detection of a trend has five 

parameters: n. the number Of Samples; r, the rate of 
change of the quantity being measured CV, the coef- 
ficient of variation, a measure of precision; and a and 
S ,  the probabilities of Type 1 and 2 errors. Eqs. 8, 10, 
12, 15. 17, and 19 relate these five parameters under 
different assumed models of change (linear or expo- 
nential) and different models of dependence of sample 
precision on abundance (cv constant, proportional to 
VZ or proportional to I/a). Given any four of the 
parameters. the fifth can be found. If we are interested 

di 

while the variance o f x  remains as before. Since the 
abundance estimates are log-transformed, we make 
of the identity 

Var(Y) 1 Var(1n y )  = In 7 + 11, 

where y is lognormally distributed, which identit). can 
be derived from the moment generating function of 

[[EWI 
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FIG. 1. Power of linear regression as a function of r, n. 
and the dependence of -(A,) on A,. Curves shown use the 
linear model with cv, = 0.2 and a = 0.05. 

in the power of a certain procedure, for example, we 
solve for z,, find 8, and then compute power as 1 - 8. 

In most cases, explicit solutions for r, n, or cv are 
not possible; iterative solutions on a computer are re- 
quired. However, approximate solutions can be camed 
out on a hand calculator. For example, using the ap- 
proximations 

n(n - l ) (n  + 1) f n3 

for moderately large integer n, and 

In(1 + a )  f a 

for small a, Eq. 17 becomes 

tJn3 z 12cvyz,, + zJ2, (20) 

which can easily be explicitly solved for any  of the five 
parameters. In fact, for small to moderate values of r, 
n, and cv, Eq. 20 serves as a useful approximation for 
any of the equations. For the common case where a = 
j3 = .05, (z,,, + zJ2 = (1.960 + 1.645), = 13.0, and 
an even simpler form useful for quickly relating r, n, 
and cv is 

tJn3 2 1 5 6 ~ ~ ' .  

Figs. 1-3 present some of the detailed results graph- 
ically. In general, the figures show that power increases 
as r increases in absolute value (a stronger trend), as n 
increases (more samples), and as cv decreases (greater 
precision). 

Fig. 1 shows how power is affected by the dependence 
of estimate precision on abundance. There are three 
sets of curves, for n = 5, 10, and 20. Power increases 
as n. the number of points used in the regression, in- 
creases. Within each set are three curves corresponding 
to the three assumptions of dependence of variability 
on abundance. There can be substantial differences in 
power among the different models, and these differ- 

ences increase with cv (here set at 0.2). Within each 
set, power is highest-a trend is easiest to detect- when 
cv(A,) is proportional to l / \ q ,  but this order is re- 
versed when r < 0, that is, when detecting a declining 
trend. Fig. 1 suggests that. at least for some combi- 
nations of parameters, it is important to know how 
precision will change as a function of abundance if 
power is to be correctly calculated. The three models 
explored here certainly do not exhaust possible func- 
tions, but they do span a range of possibilities. The 
choice of the most appropriate model of dependence 
may be made on theoretical (e.g., Table 1) or on em- 
pirical (e&, Holt et al. 1987) grounds. 

Fig. 2 contrasts linear and exponential models of 
change and the asymmetry between detecting increas- 
ing and decreasing trends. As in Fig. 1. there are three 
sets of curves corresponding to n = 5, 10, and 20. 
Within each set are four curves representing linear and 
exponential models, for increasing and decreasing 
trends. The power curves for exponential trends lie 
between the power curves for linear trends. In other 
words, between two trends that begin with the same 
amount of change, it is easier to detect an increasing 
trend in a quantity changing by constant proportional 
amounts than in one changing by constant absolute 
amounts. but the opposite holds for decreasing trends. 
Regardless of whether change is linear or exponential, 
decreasing trends are easier to detect than increasing 
ones, and the difference is particularly marked for lin- 
ear change. For a linear decrease, note that abundance 
A ,  becomes 0 for i 2 1 + l / ( - r ) .  A trend will not 
necessarily be detected before A ,  becomes 0 if the coef- 
ficient of variation is high. 

Fig. 3 shows the effects of estimate precision on pow- 
er, and contrasts one- and two-tailed tests of signifi- 
cance. The five pairs of curves, one for each value of 
CV, show that power decreases rapidly as the coefficient 

1 

0 O h 5  011 o.is 012 

FIG. 2 .  Power of linear regression as a function of n. r 
(either >O or io) ,  and linear vs. exponential models ofchange. 
Curves shown use the cv constant model with cv = 0.2 and 
a = .05. 
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FIG. 3.  Power of linear regression as a function of r, cv, 
and I -  vs. 2-tailed tests. Curves shown use the linear model 
with cv constant, n = 10, and a = .OS. 

of variation increases; thus, the ability to detect a trend 
depends greatly on how precisely the quantity of in- 
terest can be measured. The solid lines show the in- 
crease in power if the null hypothesis is one-sided-in 
this case, that the trend is not increasing. Of course, 
this calculation of power applies only to trends that do 
in fact differ in the direction of the one-sided alter- 
native hypothesis. A one-tailed test has no power to 
detect differences in the opposite direction. More con- 
cretely, if the one-sided null hypothesis H,: “the trend 
is not increasing” is tested against the alternative HI : 
“the trend is increasing,” it is not possible to conclude 
that the trend is decreasing. 

With minor reparameterization the results can be 
applied to some related problems of detecting tren,i,. 
For example, the trend may be stated as an overall 
change in abundance of a given magnitude rather than 
as a rate of change per interval. That is, our question 
may be something like “What are the chances of de- 
tecting a trend if there is an 80% change in abundance 
between the first and last samples?” The results of this 
paper can be used if the 80°/o change is occurring uni- 
formly between the first and last samples. Let R be the 
overall fractional change in abundance, and n the num- 
ber of samples, as before. Then calculate r as 

R 
n -  1 

r = -  

for linear change, and as 

(22) r = (R + [ ) l / (o -O - 1 

for exponential change. This is the rate of change r, 
per unit time or distance, that will lead to the specified 
overall change. Another related problem is a null hy- 
pothesis that the rate of change is some nonzero P. 
The equations and figures above still apply if r is re- 
placed by ( r  - r*). The lOO(1 - a) percent confidence 
limits for an observed trend may be calculated as r C 
z,,* SE,, where the standard error is estimated by 

12L?$$ 
SE, = r n(n + l ) (n  - 1) ’ 

and C:es is calculated from Eq. 7, 9, 1 I ,  14, 16, or 18, 
depending on choice of model. 

If there is more than one sample taken per time or 
distance interval, the variance of the mean will be re- 
duced. The coefficient of variation of the mean of m 
independent replicate estimates is c v l f i ,  where cv 
is, as above, the coefficient of variation of a single 
estimate. If estimates are taken close together in time 
or space, however, they may not be independent, and 
c v / f i  may be an underestimate. Correction for au- 
tocorrelation can in many cases be made by assuming 
the first-order autoregressive model 

C d  = P L l  -t 6,, 

where I p J  < 1 and the 6, are independent random 
normal variables with mean zero and constant variance 
u2. Under this model, the observed variance ofthe error 
terms is 

and estimation of cv may require a corresponding ad- 
justment. Analysis of autocorrelated data requires 
modified regression techniques not discussed in this 
paper (see. for example, Neter et al. 1983). 

NUMERICAL EXAMPLE 
After being reduced to near extinction at the begin- 

ning of this century, the sea otter (Enh-vdru lutns) pop- 
ulation in central California has gradually recovered. 
As the otter population has grown, so has pressure to 
manage the species. Otters strongly influence the com- 
position ofthe nearshore community (Estes et al. 1978, 
VanBlaricom and Estes 1987) and, more particularly, 
greatly reduce the abundance of species highly valued 
by humans (lobster, crab, and abalone). There is con- 
siderable controversy about how to manage these ma- 
rine mammals, but an important factor to consider in 
any management scheme is whether the population is 
currently increasing, decreasing, or remaining stable. 

In order to judge the feasibility of monitoring sea 
otter population trends using aircraft, the United States 
Fish and Wildlife Service conducted a series of seven 
replicated strip transects during the winter of 198 1- 
1982 to determine the precision of aerial counts. On 
the basis of these replicates, the coefficient of variation 
of a single count is estimated to be 0.13 (J. A. Estes, 
personal communication). The coefficient of variation 
of strip transects is proportional to the inverse of the 
square root of abundance (Table I), and population 
growth is likely to be exponential. For these reasons, 
Eq. 15 is selected as the most appropriate equation to 
analyze the power of detecting future changes in pop- 
ulation size. It is assumed that the data will be analyzed 
at the a = .05 significance level (two-tailed). 
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FIG. 4. Power curves for detecting various rates of annual 

increase in population size of sea otters in central California 
using five annual aerial surveys. More flights per year permit 
more precise estimates ofpopulation size, hence greater power 
to detect a given rate of increase. 

Suppose a 5-yr monitoring program is contemplated. 
Fig. 4 shows power curves for detecting various rates 
of annual increase with different numbers of flights per 
year, under the assumption that the variance of the 
mean count is reduced in proportion to the number of 
flights. If a single flight is made each year, for example, 
the probability of detecting a lO%/yr increase in pop- 
ulation size is 0.72. With 2 flightslyr, the coefficient of 
variation of the mean count is 0.13/* = 0.092, and 
the power increases to 0.95. Suppose we wish to know 
the probability of detecting a 30% increase in popu- 
lation size at  the end of 5 yr. From Eq. 22, with R = 
0.3 and n = 5, we calculate r = 0.068. With 1 flight/ 
yr, the probability is only 0.4 of detecting the 30% 
increase, assuming the increase occurred smoothly over 
5 yr. The probability of detecting a decrease of the 
same size is only slightly higher (cf. Fig. 2). 

Let us ask how precise our samples must be to detect 
this 6.8%/yr increase in population size. To reduce 
Type 2 error to 0.05 or less (that is, to detect the trend 
in abundance with 95% confidence if it is occurring), 
we calculate that c v  must be 0.06 1 or less. To achieve 
this precision by replication alone would require (0.131 
0.061)* = 4.5, or 5 flights/yr. Precision might also be 
increased in other ways, such as careful training of 
observers, flying only under optimal sighting condi- 
tions, etc. 

Next suppose that the time period is not fixed, but 
that we wish to know how many years will be required 
to detect a trend. Fig. 5 summarizes the situation if we 
again assume that Type 2 error must be reduced to 
0.05 or less. For example, with 1 flight/yr and an annual 
rate of increase of 6.8%, the graph shows that n = 7.9. 
Thus, eight annual surveys (over a period of 7 yr) are 

required to detect the trend under the conditions given. 
Note that. because the number of annual surveys can 
only be a whole number. the ordinate in Fig. 5 should 
be read as the next largest integer. The number of an- 
nual surveys required to detect a trend rises sharply as 
the annual rate of change becomes small. Annual rates 
of increase in the otter population of <2%/yr would 
be very difficult to detect using aerial surveys. 

We might also consider whether annual estimates 
are the optimal frequency of sampling. If population 
size is changing slowly. it might be better to conduct 
surveys only every 2nd or 3rd yr. As the interval be- 
tween surveys increases, the effective rate of change 
per interval increases. and the number of surveys there- 
fore decreases. Table 2 shows the number of surveys 
required for different intervals between surveys. as- 
suming a 5%/yr increase in population size and 2 flights/ 
yr. The number of surveys required, and therefore the 
number and cost of flights, could be reduced to half by 
conducting surveys once every 3 yr instead of annually 
in this example. But Table 2 also shows that the num- 
ber of years which will have elapsed by the time the 
trend is detected increases from 7 to 9 years if surveys 
are conducted only once every 3 yr. Moreover, the total 
increase in population size which will have occurred 
by the time the trend is detected changes from 41% to 
55%. How these less tangible costs. including the cost 
of ignorance of population size two years out of three, 
are weighed against the savings in actual flight costs 
depends on the research goals. For example, Allen 
(1980) pointed out that, when dealing with possible 
declines in populations of species which are already 
rare or endangered. the total percentage change which 

= I  
/ . . . . I . . . . , . . . . ,  

0 5 10 15 
Rate of Increase (%/yr) 

FIG. 5 .  Minimum number of annual surveys required to 
detect various rates of annual increase in population size of 
California sea otters. More flights permit more precise esti- 
mates of population size during each survey, hence fewer 
annual surveys required. 
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TABLE 2. Effects of different survey intervals on number of 
surveys required to detect a 59/o/yr increase in sea otter 
population size. Also shown are several other quantities 
relevant to deciding on an optimal frequency of sampling 
this population. 

No. yr No. Effective No. yr 
between surveys %change/ to Total % 
surveys required’ interval detectiont change* 

(I) (n) (1.05‘ - 1) [ t(n - l)] [1.05“-” - 11 
1 8 5.0 7 41 
2 5 10.3 8 48 
3 4 15.8 9 55 
4 4 21.6 12 80 
5 3 27.6 10 6 3  

* The required number of surveys is calculated from Eq. 

t The number of years that will have elapsed by the time 

$ The total percentage change that will have occurred by 

15, assuming 2 flights/yr. 

the trend is detected. 

the time the trend is detected. 

will have occurred by the time a significant trend is 
detected may be the most critical factor to consider. 

DISCUSSION 
Statistical power is the probability that an analysis 

will reject a null hypothesis which is, indeed, false. 
Thus power is calculated as 1 - @, where @ is the 
probability of Type 2 error. In general, for any statis- 
tical test, power is a function of sample size (n), the 
probability of Type 1 error (a), and the magnitude of 
the difference between the null hypothesis and reality 
(the “effect size,” Cohen 1977). Here effect size is quan- 
tified by the rate of change parameter r. In addition, 
we must consider that, in many ecological applications, 
measurement error is not trivial. This means that a 
practical power analysis must consider the uncertainty 
or variability associated with each estimate of abun- 
dance. That variability is parameterized by CV, the 
coefficient of variation of the estimate of abundance. 
These five parameters (cv, n, r, a, and @) are related 
by the equations derived in the Methods section. Which 
of the five parameters is of primary interest depends 
on the application. 

There are two general situations in which a power 
analysis is useful: in experimental design, and in in- 
terpretation of results. When an experiment or sam- 
pling program is being designed, the questions most 
likely to be asked are: How many samples will be need- 
ed? How precise must the samples be? What is the 
probability of detecting a trend? These questions are 
answered by solving for n. cv, and /3, respectively. Allen 
and Kirkwood (1976) analyzed the feasibility of de- 
tecting the results of expenmental manipulations of 
whale stocks; they derive an equation similar to Eq. 
17 and conclude that such a program is not practicable. 
When power analysis is used to aid in the interpretation 
of results, particularly when the null hypothesis is not 
rejected, the questions most likely to be of interest are: 
How large a trend could have been detected? What was 

the probability of detecting it? In this case, we solve 
for rand @. 

The relations among these five parameters depend 
on assumptions made about the ecological process pro- 
ducing the trend and the techniques used to detect it. 
Models investigated explicitly in this paper include the 
assumptions that changes in abundance take place in 
constant increments (the linear model) or at a constant 
rate (the exponential model), and that the coefficient 
ofvariation is either constant, proportional to the square 
root of abundance, or proportional to the inverse of 
the square root of abundance. To apply the results of 
this paper one must decide which model most closely 
describes the situation at hand. 

In general, the results show that the detection of 
trends depends strongly on the number and precision 
of the samples. Given a reasonable number of samples 
(say 10-1 5), cv must be sufficiently low, or r must be 
sufficiently high, to detect trends with controlled Type 
2 error. We cannot control r, except indirectly by sam- 
plingat greater intervals, but we can control cv, at least 
the portion of it due to measurement error. cv can be 
reduced by expending greater sampling effort- more 
traps or greater areal coverage, for example. It can also 
be reduced by taking replicate measurements, since the 
mean of several independent measurements will have 
a lower variance than the measurements themselves, 
as illustrated by the sea otter example. It is difficult to 
generalize about what to expect the coefficient of vari- 
ation to be, because that depends on the particular 
species involved, on what the quantity of interest is, 
and on what technique is used to estimate its abun- 
dance. Eberhardt (1978) discusses variability in a va- 
riety of techniques used in population studies. 

A more subtle issue concerns balancing Type 1 and 
Type 2 errors. Other things being equal, there is a trade- 
off between the levels of these two kinds of error. What 
error levels are acceptable depends on the research 
goals (Rotenberry and Wens 1985). It is common prac- 
tice to adopt .05 as the largest significance (a) level at 
which the null hypothesis is rejected, but there is no 
such common practice with regard to p ,  which is, by 
analogy, the level at which the null hypothesis is ac- 
cepted. All too often, the null hypothesis is implicitly 
accepted without any consideration of power. If one is 
attempting to decide between a null hypothesis and a 
definite alternative, symmetry would dictate that a and 
@ should be equal. The problem is that @, and its com- 
plement, power, is often not easily estimated. This pa- 
per allows @ to be estimated for one commonly used 
statistical procedure, linear regression. 

Some assumptions of this analysis may limit appli- 
cation of the results. The most restrictive assumption 
is that points are equally spaced along the x axis. This 
means that samples are assumed to be taken at regular 
intervals of time (daily. monthly, annually) or distance 
(every metre, lulometre. etc.). The results are robust 
to mild violations of this assumption, but if samples 
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are clustered near either end of the x axis, quite dif- 
ferent calculations of power could result. It is also as- 
sumed that the estimates of abundance are taken sim- 
ilarly each time, so that a single coefficient of variation 
suffices to describe all samples, and that, as a corollary, 
all samples are given equal weights in the regression. 
In some applications weighted regressions will be more 
appropriate, or will give lower estimates of variance 
(de la Mare 1984). 

Another important assumption is that estimates of 
abundance are independent. This is a particular con- 
cern for time series, where estimates temporally close 
to each other may tend to be more similar than esti- 
mates far apart in time. Such positive autocorrelation 
means that residual variance may be seriously under- 
estimated. This has important consequences. If studies 
are designed based on an underestimated variance, the 
power of detecting a trend will be less than planned 
(inflated Type 2 error). And if data with positive au- 
tocorrelation are analyzed by ordinary least squares. a 
trend may appear to exist when in fact it does not 
(inflated Type 1 error). Hams (1986) reported simu- 
lations that violated the assumption of independence, 
as well as other assumptions of detecting trends. He 
emphasized that for data collected under typical field 
conditions, analytical calculations will tend to under- 
estimate the standard error of the regression line. The 
prudent investigator, therefore, should consider that 
the equations of this paper give minimum estimates 
of the number of samples n required, minimum esti- 
mates of the magnitude of the trend r which could be 
detected, and maximum estimates of the coefficient of 
variation cv which would permit it to be detected. 

The a priori specification of variability of the sam- 
ples is one of the most difficult problems when power 
analysis is used in experimental design. There are two 
general sources of variability: measurement error, and 
real variation in the parameter. In an ecological con- 
text, real variation means that, even if we could mea- 
sure without error, points would never lie precisely 
along a straight line, either because of natural envi- 
ronmental variability in time or space, or because the 
processes that produce the trend do not act in an exactly 
linear or exponential manner. Although these two 
sources of variability are distinct conceptually, they 
are often difficult to separate in practice. Fortunately, 
it is not necessary to separate them for this analysis; 
both types of variability can be combined in the pa- 
rameter cv. The problem lies in specifying cv correctly 
to reflect both types. If replicate measurements are 
taken, the resulting variance is an estimate of mea- 
surement error, and is a minimum estimate ofthe vari- 
ability to be expected about the regression line because 
it does not include real variation. If cv is estimated 
from residual variance about the regression line, this 
will include real variability as well as measurement 
error, but of course such information will be available 
only after data have been collected. This is important 

for interpreting results, but for planning purposes, we 
would like to have an estimate of expected precision 
before the sampling program is begun. To make plan- 
ning more realistic, some additional variability due to 
the environment should be included. If separate esti- 
mates of variance due to measurement error and to 
real variation are available, they can be combined. Let 
cv, be the coefficient orvariation of measurement error 
and cv, the coefficient of variation due to real vari- 
ability in the rate of change parameter r. Then the 
combined cv that would be appropriate to use in the 
equations above is 

cv = VCV,' + CV,? + CV,LCV,'. 

To make the discussion less abstract, consider the 
detection of a trend in population size over time. The 
population dynamics of many insects, birds, small 
mammals, and marine animals with pelagic larvae are 
very sensitive to environmental conditions. The re- 
cruitment or production of new individuals can fluc- 
tuate substantially from one year to the next, depending 
on how favorable the environment is; in other words, 
there is real variation in r. If we wish to use the power 
analysis of this paper to detect a mean trend in pop- 
ulation size, it will be important that the estimate of 
cv include this real variation. which may well be more 
important than measurement error. If we are unable 
to estimate the real variation in r, application of the 
results will be limited for such species. On the other 
hand, the population dynamics of large-bodied mam- 
mals and birds. certain fish, and some other organisms 
are characterized by damped variation in the popula- 
tion growth rate because reproduction is spread over 
many age classes. Such species approximate more 
closely the assumption of a constant growth rate. cv 
will mainly reflect measurement error, and since mea- 
surement error will usually be easier to estimate than 
future environmental variability, the results of this pa- 
per will be more readily applied to such species. 

The use of linear regression analysis to detect a trend 
assumes that the change in abundance is linear, or has 
been made linear by suitable transformation of the 
axes. Frequently, however, the processes underlying 
the trend are but dimly perceived. The two simple 
models of change considered here, linear and expo- 
nential, are two ways in which abundance ofa quantity 
could change regularly over time and space. In the 
absence of more detailed information to the contrary, 
the linear model is usually assumed in practice. The 
exponential model is frequently used for growth or 
decay processes. If another model is known to be more 
appropriate for a particular situation, a power analysis 
similar to the one presented here could be camed out 
for such another model. The usual situation, however. 
is that little is known about how the quantity ofinterest 
is changing over time or space-indeed, this is the 
motivation of the sampling. 
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