Assessment of Pacific Skipjack Tuna (*Katsuwonus pelamis*) Resources by Estimating Standing Stock and Components of Population Turnover from Tagging Data

P. Kleiber

Southwest Fisheries Center, P.O. Box 271. La Iolla, CA 92038, USA

A. W. Argue

Pacific Coast Bio-Resources, 3-3142 Cedar Hill Rd., Victoria, B.C. V8T 316

and R. E. Kearney

Fisheries Research Institute, P.O. Box 21, Cronulla NSW 2230, Australia

Kleiber, P., A. W. Argue, and R. E. Kearney. 1987. Assessment of Pacific skipjack tuna (Katsuwonus pelamis) resources by estimating standing stock and components of population turnover from tagging data. Can. J. Fish. Aquat. Sci. 44: 1122-1134.

More than 140 000 tagged skipjack tuna (*Katsuwonus pelamis*) were released during 3 yr over a large portion of the central and western Pacific. Tag returns exceeded 6000. We developed a set of tag attrition models to analyze tag release and return data and catch and effort statistics for the study area. We used these models to assess the status of the skipjack resource in the whole study area and within subdivisions thereof. Total standing stock was estimated at 3 million metric tons (Mt), (95% confidence range 2.5–3.7 Mt). Overall attrition rate (including losses to natural mortality, fishing mortality and emigration) was $0.17 \cdot mo^{-1} (0.15-0.20 \cdot mo^{-1})$. Total throughput was estimated at 6.2 Mt · yr⁻¹ (5.5–7.1 Mt · yr⁻¹) compared with catch of <0.3 Mt · yr⁻¹. Overall harvest ratio was 0.04. Harvest ratios for seven subareas for which detailed catch and effort statistics were available ranged from 0.02 to 0.46; only one exceeded 0.17. Low harvest ratios over most of the study area and in the whole study area.

Plus de 140 000 bonites à ventre rayé (*Katsuwonus pelamis*) marquées ont été relâchées dans une zone couvrant une grande partie du centre et de l'ouest du Pacifique au cours d'une période de 3 ans. On a pu récupérer plus de 6 000 étiquettes. Les auteurs ont élaboré une série de modèles d'attrition des étiquettes pour l'analyse des données sur l'étiquetage et le retour des étiquettes et des statistiques de prises et d'effort de pêche dans la zone étudiée. Les modèles ont servi à évaluer l'état de la ressource en bonites dans l'ensemble et les subdivisions de la zone d'étude. Le stock présent a été estimé à 3 millions de tonnes métriques (Mt) (niveau de confiance à 95 % de 2,5–3,7 Mt). Le taux d'attrition total (comprenant les pertes par mortalité naturelle, pêche et émigration) a été estimé à 0,17 · mo⁻¹ (0,15–0,20 · mo⁻¹). La productivité totale a été estimée à 6,2 Mt · an⁻¹ (5,5–7,1 Mt · an⁻¹) pour des prises intérieures à 0,3 Mt · an⁻¹. Le rapport de récolte total était de 0,04. Les rapports de récolte de sept sous-zones pour lesquelles on disposait de statistiques détaillées sur les prises et l'effort de pêche se situaient entre 0,02 et 0,46 et un seul était supérieur à 0,17. Les faibles rapports de récolte pour la plus grande partie de la zone étudiée au cours de la période pendant laquelle les poissons marqués étaient en haute mer supposent une possibilité d'accroître les prises de bonites dans bon nombre de sous-zones de même que dans l'ensemble de la zone d'étude.

Received January 8, 1986 Accepted February 17, 1987 (J8645) Reçu le 8 janvier 1986 Accepté le 17 février 1987

Annual skipjack tuna (*Katsuwonus pelamis*) catches from the area of the South Pacific Commission increased rapidly from less than 5000 metric tons (t) in the early 1960's to approximately 220 000 t in the early 1980's. Skipjack are a short-lived, fast growing, highly fecund species distributed throughout all tropical and subtropical ocean waters. Their lifestyle is apparently quite suitable for supporting a high harvest rate. Nevertheless, with increased catches, many countries in the region became concerned that interactions among surface fisheries might be sizeable and that

increased vields might not be sustainable. The Skipjack Survey and Assessment Programme was undertaken by the Commission to assess the status of the skipjack resource and its ability to support this increased fishing pressure. Tagging was adopted as the principal stock assessment technique (Anonymous 1975). Between October 1977 and August 1980 the Skipjack Programme tagged and released approximately 140 000 skipjack throughout and beyond the area of the South Pacific Commission (Fig. 1). Over 6000 of these tagged fish were recaptured and reported to the Commission.

Can. J. Fish. Aquat. Sci., Vol. 44, 1987

FIG. 1. Distribution of tag releases (circles) and boundaries of the South Pacific Commission Region (dotted line). The circles are centered on each subarea in which tags were released. The areas of the circles are proportional to the number of tagged skipjack released.

We present an analysis of tag release and recovery data for the purposes of assessing the standing stock of skipjack, rate of renewal (turnover) of the skipjack resource, and current levels of fishing pressure on the skipjack resource in the region as a whole and in the waters of individual countries and territories for which detailed catch and fishing effort data were available. For this purpose we developed a set of closely related analytical models which, using tagging data and catch and effort statistics, gives estimates and confidence limits for various parameters useful in defining the status of a population that is supporting a fishery. Some of these parameters are familiar: standing stock, natural mortality, and fishing mortality. Others are not so familiar but are useful in the context of this widely distributed and mobile species. We define these as follows.

Attrition: rate of loss of standing stock expressed as proportion of standing stock. It encompasses all loss factors including natural mortality, fishing mortality, emigration, and growth out of vulnerability to the fishery.

Throughput: product of attrition and standing stock; a measure of the passage of biomass through the stock. It encompasses death, emigration, and growth out of the vulnerable size class. Under steady-state conditions, it is also the in situ productivity plus immigration of vulnerable-sized individuals.

Harvest ratio: ratio of catch rate to throughput (equivalent to the ratio of fishing mortality to attrition). If fishing mortality is small relative to the population turnover, i.e. the harvest ratio is low, it is likely that fishing is having little impact on the population.

Tagging and Tag Recovery Methods

Tagging was carried out over a period of 3 yr in three 10-mo

Can. J. Fish. Aquat. Sci., Vol. 44. 1987

cruises each using one chartered Japanese pole-and-line vessel. The itinerary of the tagging cruises covered the whole study area, which includes the area of the South Pacific Commission and some adjacent waters where skipjack were known to be abundant (Kearney 1982b). The number of tags released in each area was not uniform (Fig. 1) because tagging success depended on fishing conditions, which were quite variable in space and time.

Skipjack were captured by pole-and-line fishing. The fish were poled onto tagging cradles where they were measured and tagged with plastic dart tags according to the technique described by Kearney and Gillett (1982). Fishermen on local and foreign-based vessels and workers at processing facilities were the primary sources of returned tags. Locally based fisheries within the study area were the pole-and-line operations in Papua New Guinea, Solomon Islands, Fiji and Palau, the alia fishery in Western Samoa, the bonitier fishery in the Society Islands of French Polynesia, and the purse-seine fishery in New Zealand. Information on local fisheries is contained in the final reports to the individual countries by the Skipjack Programme (e.g. Kearney 1982a; Argue and Kearney 1982, 1983; Gillett and Kearney 1983; Kleiber and Kearney 1983). Foreign fleets taking significant quantities of skipjack at the time most tags were at large were the long-range Japanese pole-and-line fleet and steadily increasing Japanese and United States purse-seine fleets.

Rewards were given and lotteries conducted to encourage return of tags (Kearney 1982b). It was possible to check efficiency of part of the tag return system with a tag-plant experiment in which 131 fish from the holds of purse-seiners were tagged and replaced in the holds by New Zealand Ministry of Agriculture and Fisheries personnel during the 1980-81 New Zealand fishing season.

To investigate tag shedding and mortality due to tagging, a double tagging experiment was carried out in the waters of Fiji in 1980, during which 5399 double tagged skipjack were released, interspersed with 5626 single tagged fish (Skipjack Programme 1981). A further experiment was conducted with skipjack held at a research facility of the United States National Marine Fisheries Service at Kewalo Basin, Honolulu. Sixteen captive skipjack were tagged with Skipjack Programme tags and were observed for 7 wk along with 14 untagged controls (R. E. Kearney, unpubl.).

Analytical Methods

We assessed population parameters by analyzing plots of tag return rate (number of tags returned per unit time) against time at large. The tag return rate is expected to decrease with time because tag density in the fished populations should decline due to a variety of factors (e.g. mortality, emigration, tag shedding). The analyses described in this report were performed with a set of models in which tag return rates are predicted as a function of time from release and in which variations in exploitation are taken into account. The choice of model depends on which parameters are to be estimated and on whether catch data or effort data are used.

Derivation of Models

Immediate mortality and shedding have been defined as type 1 losses (Beverton and Holt 1957, p. 201; Bayliff and Mobrand 1972). These losses reduce the effective number of tagged fish at large at time zero. Thus if N_0 fish are tagged and if α is type 1 survival, then the effective number of tagged fish at the start is αN_0 .

Following type 1 losses, a number of other factors reduce the population of tagged fish. Factors that affect all fish include natural mortality, emigration, fishing mortality, and growth out of vulnerability to the fishery. In addition, the population of tagged fish can undergo what is called type 2 or long-term loss by tag shedding and extra mortality due to carrying a tag. If, following type 1 losses, all attrition factors operate such that the tagged population decreases exponentially, then the number of tagged fish at large as a function of time, t, following tagging is

$$(1) \quad N = \alpha N_0 e^{-(Z+\psi)/2}$$

where Z = total attrition rate for a group of untagged fish (time⁻¹) and ψ = additional attrition for tagged fish (time⁻¹). The rate at which usable tags are returned is given by

(2)
$$\frac{\partial r}{\partial t} = \beta F N = \alpha N_0 e^{-(Z+\psi)t}$$

where r = cumulative number of usable tag returns, F =fishing mortality (time⁻¹), and β = proportion of recaptured tags that are actually returned with usable recapture information. (Not all tag returns could be used in the analysis because some had unknown or imprecisely known times of recapture.)

We assume that ψ and β are constant during the time that tags are recovered. We also assume that Z is constant even though F, which is a component of Z, is likely to vary considerably with changes in effort expended by the fishery. For $Z \gg F$, this assumption in not bad, and later we will relax this assumption.

Defining F_i to be the average fishing mortality during the *i*th

time unit following tagging and integrating Equation 2 under the assumption of constant attrition gives

(3)
$$r_i = \frac{\alpha \beta N_0 F_i}{(Z + \psi)} e^{-i(Z + \psi)} [e^{(Z + \psi)} - 1]$$

where r_i is the number of usable tag returns in time unit *i*. Equation 3 is a general model from which particular models were derived based on the following considerations.

The unknown fishing mortalities, F_i , can be approximated bv

$$(4) \quad F_i \simeq q f_i \simeq \frac{c_i}{P}$$

where c_i = catch in biomass units in time unit *i*, P = standing stock in biomass units (assumed constant in time), q = catchability coefficient, or fraction of the standing stock harvested by one unit of fishing effort, and measured in inverse units of fishing effort (assumed constant in time), and f_i = units of fishing effort in time unit *i*.

Thus, either catch data or effort data can be used depending on which term in Equation 4 is substituted for F_i in Equation 3. Whether catch data or effort data are used influences the parameter estimates. Therefore, parameters that were estimated both ways are differentiated by a subscript, c, for parameters in models using catch data and a subscript, f, for parameters in models using effort data.

To complete the derivation of particular models, the following equations were substituted into the general model. The throughput (biomass per unit time) is given by

$$(5) \quad T = Z_c P.$$

Fishing mortality is not treated as constant over all time intervals, but a measure of the average fishing mortality can be obtained. If we have an average catch rate, \bar{c} , or an average effort rate, f, then the average fishing mortality is given by

(6)
$$F_c = \frac{c}{P}; F_f = q\bar{f}.$$

The harvest ratio (unitless) is then given by

(7)
$$H_c = \frac{F_c}{Z_c}; H_f = \frac{F_f}{Z_f}.$$

The resulting set of models is detailed in Table 1 wherein each equation, except for the last, has two parameters relevant to stock assessment which are confounded with α , β , and ψ , which we will call nuisance parameters.

The last model in Table 1 is an exception. All others allow the fishing mortality to vary with time, but contain the paradoxical assumption that the attrition rate is constant. When catch is used, this inconsistency is difficult to correct because standing stock should vary if the attrition varies. The model would therefore need to incorporate input and output of untagged fish with an attendant list of further assumptions.

However, when effort is used, it is logically consistent to allow to varying attrition rate and still assume a constant catchability. Defining M = attrition rate of untagged fish exclusive of fishing mortality (time⁻¹), we can substitute $M + F + \psi$ for Z in Equation 2. Then substituting qf_i for F and integrating leads to the last equation in Table 1. In this model the quantity $\alpha\beta$ is no longer confounded with other parameters. Therefore in theory this model could be used to estimate $\alpha\beta$. Note that the effort must vary for this to work because if f_i is constant, this

Can. J. Fish. Aquat. Sci., Vol. 44, 1987

TABLE 1. Set of models used for estimating population parameters.

Parameters	Model		
	$r_{i} = \frac{\alpha \beta N_{0} c_{i}}{P(Z_{i} + \psi)} e^{-i(Z_{i} + \psi)} \left[e^{(Z_{i} + \psi)} - 1 \right]$		Desired parameters
		Р	standing stock
Zf	$r_{i} = \frac{\alpha \beta N_{0} q f_{i}}{2} e^{-i(Z_{i} + \psi)} e^{(Z_{i} + \psi)} - 1$	Т	throughput
9	$(Z_f + \psi)$	q	catchability
7	$\alpha \beta N_{\rm e} 7 c$ []	L_c, L_f	fishing mostality
	$r_{i} = \frac{\alpha p(v_{0}z_{c}, v_{i})}{T(T_{c} + w_{i})} e^{-i(Z_{c} + w_{i})} \left e^{(Z_{c} + w_{i})} - 1 \right $	Γ_c, Γ_f M	natural attrition
I	$I(\mathbf{Z}_{c} + \mathbf{\Psi})$ []	н н.	harvest ratio
7	$\alpha \beta N_0 F_c c_i$ $[\sigma_i + \sigma_i - \sigma_i]$		
\tilde{F}_{c}	$r_i = \frac{1}{\overline{c}(Z_c + \psi)} e^{-i(Z_c + \psi)} \left[e^{i(Z_c + \psi)} - 1 \right]$		Nuisance parameters
Z	$\alpha\beta N_0 F_f f_i = \frac{1}{-i(Z_i + \Psi)} \begin{bmatrix} (Z_i + \Psi) & 1 \end{bmatrix}$	α	type 1 tag retention
F'r	$r_i = \frac{1}{\bar{f}(Z_i + \psi)} e^{-i\omega_i + \omega_i} \left[e^{-i\omega_i - 1} \right]$		and survivorship
,		β	proportion of recaptured tags
Zc	$r_{i} = \frac{\alpha\beta N_{0}Z_{c}H_{c}C_{i}}{e^{-i(Z_{c}+\psi)}} \left[e^{(Z_{c}+\psi)} - 1 \right]$		that are reported and useful
H _c	$\tilde{c}(Z_c + \psi)$	ψ	type 2 tag slippage and mortality
Z _f H.	$r_i \approx \frac{\alpha \beta N_0 Z_f H_f f_i}{\epsilon (Z_f + i)} e^{-i(Z_f + \psi)} \left[e^{(Z_f + \psi)} - 1 \right]$		Input data
,	$f(\mathbf{Z}_f + \mathbf{\Psi})$	r_i	tag returns in time period i
αβ		c,	catch in time period i
Ń	$= \frac{\alpha\beta N_0 qf_i}{\alpha} \left[\frac{(M+q)^2}{(M+q)^2} \int_{0}^{1} \frac{(M+qf_i+\psi)}{(M+qf_i+\psi)} \right]$	f_i	effort in time period i
q	$r_i = \frac{1}{(M + qf_i + \psi)} e \left[\frac{1}{(M + qf_i + \psi)} e \right] e^{-1}$	ē	average catch per time period
		$ar{f}$	average effort per time period
		N_0	number of tags released

model reverts to a two-parameter form.

Fitting the Models

Parameters were estimated by fitting the models given in Table 1 to the tag return results, with input of catch or effort data and input of independent estimates of $\alpha\beta N_0$ and ψ . Fitting was conducted iteratively with either the generalized Marquardt algorithm (Conway et al. 1970) or the simplex algorithm of Nelder and Mead (1965). The varying attrition model could be fitted with all three parameters being adjusted or with one or two of the parameters fixed.

Because finding a tagged fish among many untagged fish is a rare event, we presumed that the statistical distribution of tag counts is approximately the Poisson distribution. We therefore used a square root transformation (Sokal and Rohlf 1969, p. 384).

Goodness-of-fit, G, was measured by the proportion of the total variance in the observed data accounted for by the model, i.e.

(8)
$$G = 1 - \frac{S_{\min}}{(n-k)\sigma_T^2}$$

where S_{\min} is the minimum residual sum of squares, *n* is the number of data points used in the analysis, *k* is the number of parameters estimated, and σ_T^2 is the variance of the transformed input data.

Confidence Limits

When fitting two-parameter models, the boundary of the joint confidence region of the two parameters corresponds to a contour line on the sum-of-squares surface at which the residual sum of squares is equal to a critical value defined by

Can. J. Fish. Aquat. Sci., Vol. 44, 1987

(9)
$$S_{crit} = S_{min} \left[1 + \frac{k}{(n-k)} F_{0.05(k,n-k)} \right]$$

where $F_{0.05(k,n-k)}$ is the critical value of the *F*-distribution at probability level 0.05 with *k* and n - k degrees of freedom and where *k* is the number of data points used in the analysis (Conway et al. 1970). A numerical searching algorithm was devised to trace the contour on the sum-of-squares surface. With the varying attrition model, when three parameters were fitted, it was necessary to trace a critical sum-of-squares shell in three dimensions with the critical sum-of-squares given by Equation 9 with k = 3. Confidence intervals for individual parameters were obtained from the extremes of the joint 95% confidence region.

Note that except for the actual observed tag return data, uncertainties in input data are ignored in this method of calculating confidence intervals.

Determining Values for β

Estimating β is complicated by the fact that tagged fish can be found in a variety of ways. For the purpose of this analysis we assumed two discovery modes: by fishermen and by personnel of shore-based processing facilities. Recaptured tags can be broken into usable returns from fishermen, unusable returned, from fishermen, tags found by fishermen but not returned, and tags missed by fishermen. The latter category can be further broken into usable returns from shore, unusable returns from shore, tags found ashore but not returned, and tags not found at all. An expression β can be derived as follows. Let u_f , $u_s =$ number of usable returns from fishermen and from shore, v_f , v_s = number of unusable returns from fishermen and from shore, v_f , v_s = number of unusable returns from fishermen and from shore, ζ_f = tags returned as a proportion of tags missed by fishermen,

ermen (i.e. as proportion of all tags that came ashore, whether found or not). The β factor is the ratio of the number of usable returns to the total number of recaptures and is given by

(10)
$$\beta = \frac{u_f + u_s}{\frac{u_f + v_f}{\zeta_f} + \frac{u_s + v_s}{\zeta_s}}$$

Assumptions of the Models

In addition to the usual assumptions that tagged and untagged fish are equally vulnerable to fishing gear, a series of assumptions was made in deriving the set of analytical models. Simulations were conducted to investigate the consequences to the parameter estimates of violating some of these assumptions (P. Kleiber, A. W. Argue, J. R. Sibert, and R. Farman, unpubl.).

Temporal distribution of tag releases

One assumption is that all tags are released at time zero rather than throughout the first time interval. This is correct for the aggregate data set but not so for most subarea data. The simulation results showed that the models are insensitive to this problem as long as tag returns are available for more than a few time intervals.

Constant parameter values

A principal assumption is that there is little variation in parameter values during the tagging experiment. To use the catch-based models, the population and the attrition rate should be constant; to use the effort-based models, the catchability and the attrition rate should be constant. A subsidiary assumption, for all but the variable attrition model, is that variations in fishing mortality are small relative to the total attrition rate. Simulation showed that the models are robust to large cyclical variations from steady state. In this case the estimates are close to the average values of the varying parameters. If there are large one-way trends, the models are less robust, and the standing stock and catchability estimates tend to reflect the starting values more than the averages.

A result detrimental to effective fishery management would occur if the harvest ratio was so underestimated that the fishery appeared capable of sustaining increased fishing pressure when in fact it could not. In the simulation exercise, the scenarios under which this could happen involved a drastic downward trend in the population, particularly when this was in response to a sharp decrease in recruitment or a sharp increase in mortality. A sharp decrease in recruitment or increase in mortality by a factor of 2 caused underestimation of the harvest ratio by less than a factor of 1.4. Thus, large departures from steady state cause smaller underestimates of the harvest ratio.

Parameters that apply to individual fish, such as attrition rate, are also assumed to be the same for all fish, though we might expect that such parameters would vary as a function of size or age. In a preliminary analysis we found little evidence for an effect of fish size on total attrition rate (see below).

Territory covered by tagging experiment

An implicit assumption in the derivation of the models is that the stock, of which P is a measure, is a clearly defined entity. However, the effective boundary of the stock which the tagged fish represent is not so clearly defined when the area of operation of a fishery is surrounded by unfished areas and when the fish in the fished area can exchange with fish in the unfished area. In such a case, the territory occupied by a cohort of tagged fish can be expected to expand with time. However, the number of tagged fish simultaneously diminishes due to attrition, which thereby limits the duration of the experiment. The effective size of the territory covered by the tagging experiment therefore depends on the relative rates of migratory expansion and attrition. A simulation of this situation resulted in an estimated stock size corresponding to the population occupying a zone approximately twice the area of the fished zone.

Data Used in Analyses

Table 2 gives the tag return data and other input data used in the analyses. Two data sets were organized differently from the others. These are the data for the whole study area, i.e. aggregate data, and for the Trust Territory and Guam subarea. For these we combined the returns from many tag release episodes according to time at large (elapsed time between release and recapture) without regard to the actual dates of release and recapture. Thus the returns in any months-at-large category were not necessarily all contemporaneous. We did this because detailed catch and effort statistics were not available for all of the release episodes which occurrred at many times throughout the 3 yr of the release phase of the tagging experiment and at many places throughout these large areas. This lack of fishery statistics precluded analyzing the release episodes separately. No fundamental change to the models was necessary except that a constant average catch rate had to be assumed because of lack of better data and because the tags, being noncontemporaneous, could not all be associated with the same historical series of catch rates.

The tag data for all subareas other than the Trust Territory and Guam refer to releases and recaptures during specific date spans, 10-d periods for New Zealand and months for other areas.

In Table 2, the *t* columns identify either the months-at-large category or the specific date span of recapture. The r_i columns give the number of usable recaptures in the territory in question. The few recaptures by the tagging vessel were excluded for all data sets because the fishing effort of this vessel was, for the most part, identical to the places and times of tag release. Returns with unknown dates of recapture were also excluded. If an imperfectly known recapture date could be ascertained to fall within a range of dates such that the extent of the range was less than half the time from release to the midpoint of the recapture range, then the return was accepted and the recapture date taken to be the midpoint of the range. Otherwise the return was rejected. For some individual subareas, the returns were additionally filtered (see below).

The c_i columns in Table 2 give the tons of skipjack caught, and the f_i columns, if present, give the effort in boat days, or purse-seine sets in the case of New Zealand. Except for the Trust Territory and Guam, catch and effort for the first recapture period in each subarea data set were prorated to adjust for timing of tag release during the initial period.

Average monthly catch, \vec{c} , and effort, \vec{f} , were used in some models. The averages were calculated over the period of time included in the data set. Months with zero catch and effort were included in the average. Catch and effort in individual months could be considerably different from the average, particularly for the highly seasonal New Zealand fishery. Catch and effort were averaged for December-March in New Zealand.

In several cases, the first one or two recapture periods in a

Can. J. Fish. Aquat. Sci., Vol. 44, 1987

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ate ate		LT and	d Gua	itory un	z	rB ≡ Ce ⊥B ≡ C	aland .37		-	Ncw Gt	u uinca 0.68		ž	olomon (19. αβ =	15 15 15 15 15 15 15 15 15 15 15 15 15 1			ili≡ ≊gg	0.80		Socie Po Po	french lyncsia	sp	Gilb A ⁶	in Grou iribati = 0 83	<u>م</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{dp}{c} = 4900$	$\vec{c} = 4900$	= 4900	. e				20	1		. : 	670			- # -'~	340			- II - I	29 159		3	= 100		∃ '⊂	202	
$N_{-} = 201$ $N_{-} = 100$ $N_{-} = 1100$ $N_{-} = 1100$ $N_{-} = 100$ $N_{-} = 00$	$N_{-} = 208$ $N_{-} = 109$ $N_{-} = 109$ $N_{-} = 109$ $N_{-} = 106$ $N_{-} = 203$ $N_{-} = 106$ $N_{-} = 106$ $N_{-} = 203$ $N_{-} = 203$ $N_{-} = 203$ $N_{-} = 203$ $N_{-} = 106$ $N_{-} $	c, I r, c,	I r, c,	r, c,	ť.		-	5	5	<i>J.</i>	-	ς.	с,	<i>J.</i>	ł	τ,	с,	f.	1	r,	с,	J.	-	۲.	u,	-	c	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.000 N_{\mu} = 8887$	$N_{,.} = 8887$	= 8887	18			۲, از ۲, از	678			N. #	6009			≂ "×	1709			= "N	11 646		Ν.	= 823		ν.	= 440	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19 000 1 45 4900	1 45 4900	45 4900	4900		790221	2	336	37	a7905	20	379	114	1111	17	754	317	a8004	594	185	76	7812	0	8	7087	26	22.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	700311 7 143 18 18 70031 7 14 15 31 7003 4 91 7003 4 91 7003 4 91 7003 4 91 7003 4 91 7003 4 91 7003 4 91 7003 4 91 7003 4 91 7003 4 91 7003 4 91 7003 4 91 7003 6 71 7003	19 000 2 14 4900	2 14 4900	14 4900	4900		106067	223	2396	120	a7906	160	2153	598	7712	2	365	397	a8005	183	65	86 86	1062		S S	7808	159	49.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19 000 3 10 4900	3 10 4900	10 4900	4 <u>9</u> 00		790311		1	≌ ;	1061	208	2972	1035	7801	0	2	5	9008	: م	8	43	7902	4	33	6082	22 6	61.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19 000 4 43 4900	4 43 4900 5 35 4900	43 4900	4900		790321	₹.	215	- 24	8062	8	2492	913 600	7803	0,0	2 3	£ 9	2008	= 9	9	£ 9	6062	4 -	F	7810	x -	10.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19,000 5 35 49,00	4900	4900			10406/	- <	∽ ¥			85	1840	668 619	409/	n v	146	400	2002	<u>, v</u>	88	6 ¢	406/			2041	• •	0 0 5 ~
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19,000 7 14 4900	7 14 4900	14 4900	4000		10/16/		3 2		1162	5.5	118	502	7806		900 1576	515	8010	10	£ 2	32	9062		22	4062		9.4
		19000 8 16 4900	8 16 4900	16 4900	4900		791221	ç	5	o	7912	~	286	212	7807	ŝ	1973	551	8011	- 14	901	45	1907	• •	2	7905	• •	.8
		19000 9 5 4900	9 5 4900	5 4900	4900		800101	S	1319	8	8003	_	S	440	7808	ŝ	1587	512	8012	=	229	4	7908	•	68	9062	0	26.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19 000 10 2 4900	10 2 4900	2 4900	4900		800111	0	2100	87	8004	s	1956	802	7809	4	2304	517	8101	27	737	861	7909	0	48	7 0 07	9	8.8
		19 000 11 0 4900	11 0 4900	0 4900	4900		800121	-	1186	86	8005	-	2243	985	7810	٢	2317	497	8102	4	862	161	7910	•	62	7908	0	12.1
60021 1 1 142 18 8007 3 5318 1005 5312 5112 5 5317 1007 9011 100 9011 100 9011 100 9011 100 9011 100 9011 100 9011 100 9011 100 9011 100 9011 100 100 100 110 9011 100 110 100	600211 1 142 18 8007 3 2733 100 701 1 605 130 3 8007 3 5514 100 701 1 110 701 3 701 101 701 71 3 700 2 71 3 700 2 71 3 700 2 71 3 700 2 71 3 700 2 71 3 700 2 71 3 700 2 71 3 700 2 71 3 700 2 71 3 700 2 71 3 700 2 71 3 700 2 71 3 700 101 71 3 700 101 71 3 71 3 71 3 71 3 71 3 71 3 71 3 71 3 71 3 71 3 71 <td>19 000 12 4 4900</td> <td>12 4 4900</td> <td>4 4900</td> <td>4900</td> <td></td> <td>800201</td> <td>~</td> <td>1986</td> <td>135</td> <td>8006</td> <td>7</td> <td>2860</td> <td>1005</td> <td>118/</td> <td>s</td> <td>2915</td> <td>514</td> <td>8103</td> <td>35</td> <td>953</td> <td>193</td> <td>1162</td> <td>0</td> <td><u>0</u></td> <td>6062</td> <td>0</td> <td>6.8</td>	19 000 12 4 4900	12 4 4900	4 4900	4900		800201	~	1986	135	8006	7	2860	1005	118/	s	2915	514	8103	35	953	193	1162	0	<u>0</u>	6062	0	6.8
60021 0 219 33 8008 7 534 1106 235 138 $N_{\rm a}$ 6806 $N_{\rm a}$ 6.298 801 0 367 53 8107 5 387 140 27901 0 7 53 7901 0 7 5 387 140 27901 0 7 5 387 140 27901 0 7 5 387 140 7 7901 0 7 5 387 140 7 7901 0 7 33 7901 0 110 7 3 7901 0 110 7 3 7901 0 110 7 3 7001 1	60021 0 219 33 800 7 531 1106 233 8105 113 M_{\star} = 896 N_{\star} = 6238 8010 0 3987 901 1005 53 3929 8107 5 387 413 3791 0 7 3 7931 1 413 76 3 7931 0 1 1 7 3 7931 1 414 7 3 7931 1 41 1 1 1 1 1 1 1 1 3 731 1	19 000 13 0 4900	13 0 4900	0 4900	4900		800211	-	142	8	8007	e	2878	1068	7812	s	2723	518	8104	30	605	120						
$N_{*} = 6.29$ 800 3.98 700 1.43 100 3.902 398 701 1.91 1.91 79301 28 191 3.933 8107 3.94 1.91 3.903 1.91 79301 28 191 1.8164 8107 3.94 1.91 3.903 1.91 79301 28 18 8101 0.255 3.903 1.91 1.91 2.993 3.903 1.91 1.91 79301 23 3 0.181 4.47 0.65 3.910 0.11 3.77 3.793 1.91 9.92 79401 0.133 0.181 4.47 0.65 3.910 0.110 7.7 7.905 0.170 79121 0.330 0.3310 0.7 7.7 0.802 0.777 0.902 0.777 79121 0.3310 0.3310 0.330 0.331 0.777 0.902 $0.$	$N_{\rm c} = 6298$ 000 3 903 2 133 100 3 303 132 7903 2 64 790301 20 911 9 911 0 911 91 7903 2 64 790301 20 911 9 911 9 7903 2 64 790301 20 911 0 055 810 0 930 0 1980 790311 8 18 8103 0 8111 1 143 26 790 191 790311 8 18 8103 0 8113 0 8113 790 191 79121 0 5 7 8103 7341 97 7905 17 930 17 930 17 930 17 930 17 930 17 930 17 930 17 930 17 930 17	19000 14 0 4900	14 0 4900	0 4900	4900		800221	•	219	33	8008	~ '	5514	001	1062		90 11 08	223	8105	2	536	80	-	80 = ">	8			
$N_{-} = 6.293$ 8010 0 567 830 703 531 7003 587 443 581 793	$N_{a} = 6238$ 8010 0 5071 587 40 57 33 7031 5 703 1 911 71 33 703 1 911 </td <td>19 000 15 3 4900</td> <td>15 3 4900</td> <td>3 4900</td> <td>4900</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8008</td> <td>'n</td> <td>3982</td> <td>86 50</td> <td>46</td> <td>2</td> <td>1438</td> <td>6</td> <td>8100</td> <td>2</td> <td>418</td> <td>132</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	19 000 15 3 4900	15 3 4900	3 4900	4900						8008	'n	3982	86 50	46	2	1438	6	8100	2	418	132						
79030 280 917 36 5000 533 Solomon Islands 8100 3 77 35 7033 1 97 3 7033 1 97 3 7033 1 97 3 7033 1 97 3 7033 1 97 3 7033 1 97 3 7033 1 97 3 7033 1 97 3 7033 1 97 3 7033 1 97 3 7033 1 97 3 7033 1 97 3 7033 1 97 1 97 1 97 1 97 1 97 1 97 1 97 1 97 97 1 97	79030 280 917 96 917 96 917 96 917 96 917 96 917 96 917 96 917 96 917 96 917 96 917 96 917 96 911 1 131 1 310 7 35 793 1 90 101 700311 8 148 18 10 0 132 99 0 100 110 111 1 143 82 794 0 110 111 1 143 82 794 0 100 100 110 1	19 000 16 3 4900 19 000 17 1 4000	15 3 4900	. 4900 4900	664 0064		-	۸" = 6	298		8010	0 0	3697	22 22 22	2061	•	1788	485	1018	~ ~	185	4 5	106/a	• •	- 73			
79001 m_{1} m_{2} <th< td=""><td>79010 5 9 000000000000000000000000000000000000</td><td></td><td>1006</td><td></td><td></td><td></td><td>100000</td><td>000</td><td>1017</td><td>8</td><td></td><td>• •</td><td></td><td>5</td><td>00</td><td>action</td><td>lolande</td><td></td><td>0110</td><td></td><td>5 5</td><td>ា ដ</td><td>10.02</td><td>- -</td><td>5 a</td><td></td><td></td><td></td></th<>	79010 5 9 000000000000000000000000000000000000		1006				100000	000	1017	8		• •		5	00	action	lolande		0110		5 5	ា ដ	10.02	- -	5 a			
79031 48 215 24 810 0 181 47 7905 0 17 79031 48 215 24 8103 0 86 57 7905 0 10 79121 0 3 7 8103 0 465 918 $\vec{e} = 2200$ 2801 1 7905 0 10 79121 0 5 7 8103 0 203 913 $\vec{e} = 2200$ 2801 0 93 93 10 0 93 701 0 94 801 10 0 94 803 11 0 10 94 10 10 94 10 10 94 10 10 93 10 10 10 94 10<	79021 48 215 24 8103 0 1814 447 $\alpha\beta=0.34$ 8112 2 298 147 7905 0 170 79101 0 3 1 8104 0 667 918 $c = 2200$ 8201 1 965 0 170 791201 0 5 7 8105 0 3053 918 $c = 2200$ 8201 1 965 0 170 791201 0 13 5 6 107 r r r r r 8701 0 87 791201 5 13 9 8107 1 r <t< td=""><td>19,000 19 7 49,00</td><td>19 2 4900</td><td>7 4900</td><td>4900</td><td></td><td>10006/</td><td>8 ×</td><td>148</td><td>¢ ≊</td><td>7100</td><td>• =</td><td>222</td><td>ñ 8</td><td>20</td><td>100001</td><td></td><td></td><td></td><td>n —</td><td>143</td><td>3</td><td>4062</td><td>- c</td><td>9</td><td></td><td></td><td></td></t<>	19,000 19 7 49,00	19 2 4900	7 4900	4900		10006/	8 ×	148	¢ ≊	7100	• =	222	ñ 8	20	100001				n —	143	3	4062	- c	9			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 000 20 2 4900	20 2 4900	2 4900	4900	_	790321	48	215	54	8103	0	1814	447	J	aß = (0.54		8112	7	298	147	7905	0	170			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 000 21 0 4900	21 0 4900	0 4900	4900		104062	0	m	-	8104	0	4675	918		ال ال	2200		8201	0	909	224	2906	¢	130			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19000 22 0 4900	22 0 4900	0 4900	1 90	_	791121	•	25	٢	8105	•	3085	779		ۍ ۲	1 50		8202	-	686	226	1061	•	3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19 000 23 0 4900	23 0 4900	0 4900	4900		791201	•	2;	۲,	8106	o -	3340	<u>8</u>				•	8203	- 4	969 969	241	8062	•	5			
80011 3 100 7 8109 0.450 803 $M_{-1} = 2012$ 8206 0 235 157 791 0 100	800111 3 100 7 8100 0 1600 813 $N_{\rm s}$ 2012 8206 0 255 163 7911 0 100 800111 5 1186 65 810 0 1435 616 774 25 67 0 148 81 791 0 100 800211 1 142 13 8112 0 713 53 8207 0 18 81 7912 1 29 800311 1 192 31 200 3 253 553 553 553 553 563 7912 1 90 90 800311 1 193 9 8314 554 554 8003 9 313 564 8003 0 9 90 9 9 90 9 9 90 9 9 90 9 9 90 9 9 90	19,000 24 0 4900	24 U 4940	0 4940	430	_	17716/	. .	מיני	° 3	8106		1242	10	-	c	ď	· ·	8008		1022	25	0102	• •	ç			
800121 6 118 81 7912 7 42 80021 6 186 6 1135 67 0 133 67 0 133 67 0 133 67 0 133 67 0 133 67 0 133 67 0 133 67 0 133 67 0 133 67 0 133 600 0 354 179 8208 0 130 0	80021 6 118 8 10 0 135 6.7 20 21 21 21 80021 6 186 6 8110 0 135 6.7 42 18 8207 0 13 8001 1 13 800211 6 186 6 8110 0 77 42 8207 0 13 8001 0 19 800321 0 219 33 8112 0 77 42 806 8001 9 2770 74 8003 0 19 800321 0 1191 76 8003 9 2770 574 566 8003 0 13 8003 0 10 80 800321 1 1191 76 8111 0 74 566 8003 0 13 8003 0 10 10 800321 1 113 19 8003 2 274 566 8003 1 731 8003 1 73 800321 0 18 5 8011 2 210 23 8003 1 73 800321 0 </td <td>0006</td> <td></td> <td></td> <td></td> <td></td> <td>800111</td> <td></td> <td>1010</td> <td>5</td> <td>8100</td> <td>- c</td> <td>1991</td> <td>Şĝ</td> <td></td> <td>i N</td> <td>2012</td> <td></td> <td>8206</td> <td>• •</td> <td>282 282</td> <td>168</td> <td>1162</td> <td>~ c</td> <td>8</td> <td></td> <td></td> <td></td>	0006					800111		1010	5	8100	- c	1991	Şĝ		i N	2012		8206	• •	282 282	168	1162	~ c	8			
80021 6 1936 135 8111 0 420 185 8006 9 354 179 8208 0 42 19 800221 1 1 1 1 8 8112 0 77 42 8807 53 8007 9 3770 574 53 8003 0 190 8003 181 0 190 8003 190 190 8003 190 190 190 <t< td=""><td>800211 6 1936 135 8111 0 420 185 8006 9 354 179 8208 0 219 8001 0 190 800211 1 142 18 8112 0 77 42 8007 9 2770 554 8002 9 2770 534 8003 0 19 800301 1 1191 76 8112 0 77 42 8003 9 2770 534 8003 0 19 8003 0 19 800301 1 1191 76 8112 0 77 53 536 8003 0 19 8003 0 19 8003 0 19 8003 0 19 8003 0 13 8003 0 13 8003 0 13 8003 17 8003 10 13 8003 17 8013 16 8003 17 8003 17 8003 17 13 8003 19 8003 13</td><td>0000</td><td></td><td></td><td></td><td></td><td>800121</td><td>. .</td><td>1186</td><td>8</td><td>8110</td><td></td><td>1435</td><td>626</td><td></td><td></td><td>101</td><td></td><td>8207</td><td></td><td>811</td><td>~</td><td>2197</td><td>, <u>-</u></td><td>4</td><td></td><td></td><td></td></t<>	800211 6 1936 135 8111 0 420 185 8006 9 354 179 8208 0 219 8001 0 190 800211 1 142 18 8112 0 77 42 8007 9 2770 554 8002 9 2770 534 8003 0 19 800301 1 1191 76 8112 0 77 42 8003 9 2770 534 8003 0 19 8003 0 19 800301 1 1191 76 8112 0 77 53 536 8003 0 19 8003 0 19 8003 0 19 8003 0 19 8003 0 13 8003 0 13 8003 0 13 8003 17 8003 10 13 8003 17 8013 16 8003 17 8003 17 8003 17 13 8003 19 8003 13	0000					800121	. .	1186	8	8110		1435	626			101		8207		811	~	2197	, <u>-</u>	4			
800211 1 142 18 8112 0 71 42 8007 28 2550 558 8002 0 130 800301 1 1191 76 8003 5 778 554 8003 0 80 800301 1 1191 76 8003 9 5770 574 8003 0 83 800301 1 1191 76 8010 8 313 566 8003 0 17 800301 0 18 5 774 566 8001 0 27 800301 0 18 19 8011 16 313 566 8003 0 32 800301 0 18 153 463 8011 16 37 8003 0 32 80051 0 12 2 8101 18 1531 463 8003 0 32 800611 0 12 2 8104 5 1393 560 8003 0 30 800611 0 12 234 560 8001 0 30 8003 0 30 80061	800211 1 42 18 8112 0 71 42 8007 28 2550 58 8002 0 10 800301 1 1191 5 8007 5 2778 554 8003 0 10 800301 1 1191 5 8009 5 2776 554 8003 0 10 800311 0 493 36 8010 8 3744 566 8003 0 17 800301 0 18 5 8010 8 3744 566 8003 1 73 800512 0 13 566 8010 8 151 463 8003 1 73 80061 0 12 33 566 8013 6 32 8003 1 73 80061 0 12 234 643 8151 463 8003 1 73	00061					800201	• •	1986	135	8111	0	426	185	8006	6	354	179	8208	0	42	5	8001	0	<u>8</u>			
800221 0 219 33 8008 25 2778 554 8003 0 83 800311 1 1191 76 8003 9 2770 574 560 83 800311 0 433 560 8313 566 8003 0 73 800311 0 13 19 56 8013 0 81 803 0 70 800311 0 18 5 8012 16 2774 566 8003 0 97 800321 0 49 5 8101 18 511 258 8003 0 55 800601 0 12 2 8101 18 50 8003 0 55 800601 0 12 2 18 56 8003 0 50 800601 0 12 2 244 56 8003 0 55	800221 0 219 33 8003 25 2778 554 8003 0 83 800311 1 1191 76 8003 9 2770 574 560 81 0 10 83 800311 1 1191 76 8003 9 2770 544 566 8003 0 10 83 800311 1 113 19 8011 20 3113 566 8003 0 173 8003 0 10 83 800321 0 49 5 8101 18 1313 566 8003 0 53 8003 1 78 800321 0 49 5 1210 258 8009 0 53 8003 1 73 800501 0 12 2 8101 4<13	00061					800211	-	142	18	8112	¢	77	42	8007	28	2550	558					8002	0	130			
800301 1 11.91 76 8004 0 270 271 271 8044 0 82 800311 1 11.91 76 8010 8 2344 566 8010 0 80 800311 1 1.13 56 8011 28 3244 566 8005 0 10 800311 0 18 5 8011 16 2774 566 8007 1 78 800261 0 49 5 11.20 311 560 8007 1 78 800501 0 43 54 543 8007 1 78 800611 0 12 2 8104 5 1210 58 8009 0 53 800611 0 12 2 324 640 8011 0 130 800611 0 12 234 640 8011 0 <td< td=""><td>800301 1 1191 76 8004 0 270 574 504 0 82 80031 1 1191 76 8010 8 2344 566 8010 0 82 80031 1 113 36 8011 28 3244 566 8005 0 60 80031 0 18 5 8012 16 2774 594 8007 1 78 80051 0 18 5 8012 16 2774 594 8007 1 78 80051 0 49 5 8101 18 1531 463 8007 1 78 80061 0 12 2 8101 1 17934 643 8011 0 130 80061 0 12 2 3474 640 8012 0 130 80061 0 12 2/94 640<td>000 61</td><td></td><td></td><td></td><td></td><td>800221</td><td>•</td><td>219</td><td>33</td><td></td><td></td><td></td><td></td><td>8008</td><td>25</td><td>2778</td><td>554</td><td></td><td></td><td></td><td></td><td>8003</td><td>c</td><td>3</td><td></td><td></td><td></td></td></td<>	800301 1 1191 76 8004 0 270 574 504 0 82 80031 1 1191 76 8010 8 2344 566 8010 0 82 80031 1 113 36 8011 28 3244 566 8005 0 60 80031 0 18 5 8012 16 2774 594 8007 1 78 80051 0 18 5 8012 16 2774 594 8007 1 78 80051 0 49 5 8101 18 1531 463 8007 1 78 80061 0 12 2 8101 1 17934 643 8011 0 130 80061 0 12 2 3474 640 8012 0 130 80061 0 12 2/94 640 <td>000 61</td> <td></td> <td></td> <td></td> <td></td> <td>800221</td> <td>•</td> <td>219</td> <td>33</td> <td></td> <td></td> <td></td> <td></td> <td>8008</td> <td>25</td> <td>2778</td> <td>554</td> <td></td> <td></td> <td></td> <td></td> <td>8003</td> <td>c</td> <td>3</td> <td></td> <td></td> <td></td>	000 61					800221	•	219	33					8008	25	2778	554					8003	c	3			
800111 0 493 36 8010 8 3244 566 8015 0 160 800511 1 13 19 8011 20 3313 566 8015 0 97 800501 0 18 5 8011 12 3313 566 8005 0 97 800521 0 49 5 8010 18 1531 463 8003 0 32 800611 0 12 2 8101 18 1531 463 8003 0 55 800611 0 12 2 8104 12 2934 614 8001 0 10 800611 0 12 2 8105 51 293 610 8012 0 150 8107 4 2.94 63 8104 0 130 8012 0 130 8107 4 2.94 64	800311 0 493 36 8010 8 3244 566 8003 0 160 80031 1 113 9 8010 8 3244 566 8003 0 97 800301 0 18 5 8012 16 3713 566 8005 0 97 800501 0 18 5 8012 16 313 566 8006 0 97 80061 0 13 551 463 8003 0 326 8008 0 326 80061 0 12 2 8103 8 151 453 8008 0 356 80061 0 12 2 8105 1 294 614 8012 0 150 80061 0 12 2 3474 640 8012 0 130 8106 1 294 614 8012	000.61					800301	-	1611	76					8009	6	2770	574					8004	0	82			
800121 1 13 19 8011 20 3113 566 8016 0 97 80021 0 18 5 8012 16 2774 594 8007 1 78 80021 0 49 5 8101 16 2774 594 8007 1 78 80021 0 49 5 1210 258 8104 5 1210 58 800611 0 12 2 8104 5 1210 258 8003 0 55 800611 0 12 2 8104 6 374 640 8011 0 150 800611 0 12 2 8105 6 374 640 8012 0 150 800611 0 12 2 234 640 8012 0 150 8107 4 239 531 540 8012	800121 1 13 19 8011 20 313 566 8006 97 80021 0 18 5 8012 16 2774 594 8007 1 78 80021 0 49 5 8104 5 1210 258 8007 1 78 800201 0 18 5 1210 258 8008 0 55 800611 0 12 2 8104 5 1210 538 8009 0 55 800611 0 12 2 8104 5 1210 538 8009 0 55 800611 0 12 2 8105 6.43 8011 0 190 8105 6 3474 640 8011 0 190 8106 2 351 659 8016 120 8012 0 100 8107 4	00061					800311	÷	493	36					8010	8	3244	566					8005	0	<u>9</u>			
800261 0 18 5 8012 16 2774 594 8007 1 78 800251 0 49 5 8101 18 1531 463 8007 1 78 800601 0 49 5 8101 8 1531 463 8009 0 32 800611 0 12 2 8105 5 1881 560 8010 0 150 800611 0 12 2 8105 5 1881 560 8010 0 150 8105 12 2 8107 4 2796 6.28 8012 0 190 8108 13 2.474 6.40 8012 0 190 8012 0 180 8108 6 3.474 6.40 8012 0 180 10 130 8108 6 3.474 6.40 8012 0 <	800501 0 18 5 8012 16 2774 594 8007 1 78 800021 0 49 5 8101 18 1531 463 8007 1 78 800051 0 49 5 8101 18 1531 463 8008 0 32 800061 0 12 2 8105 5 1881 560 8010 0 150 800611 0 12 2 8105 5 1881 560 8010 0 150 8105 1 2.94 640 8111 0 130 8107 1 2.94 640 8012 0 130 8108 6 3.474 640 8012 0 180 130 8109 0 2.363 639 8012 0 180 8109 0 2.363 639 8012 <t< td=""><td>000.61</td><td></td><td></td><td></td><td></td><td>800321</td><td>-</td><td>=</td><td>5</td><td></td><td></td><td></td><td></td><td>1108</td><td>20</td><td>3313</td><td>566</td><td></td><td></td><td></td><td></td><td>8006</td><td>•</td><td>76</td><td></td><td></td><td></td></t<>	000.61					800321	-	=	5					1108	20	3313	566					8006	•	76			
800521 0 49 5 8101 18 1531 463 8008 0 32 800601 2 35 9 8104 5 1210 258 8009 0 55 800611 0 12 2 8105 5 181 560 8010 0 150 8106 11 2934 614 8011 0 130 8106 11 2934 614 8012 0 180 8109 2 251 630 8109 2 251 630	800521 0 49 5 8101 18 1531 463 8008 0 32 800601 2 35 9 8101 15 1531 463 8008 0 35 800611 0 12 2 8105 5 181 560 8000 0 150 8105 1 2934 614 8011 0 130 8107 4 2956 538 8012 0 180 8108 6 3474 640 8012 0 180 8109 2 2631 639 8110 0 2 2031 639 8111 0 2131 652	00061					800501	0	81	Ś					8012	91	2774	594					8007	-	78			
800601 2 35 9 8104 5 1210 258 8009 0 55 800611 0 12 2 8105 5 1881 560 8010 0 150 8107 4 2796 628 8012 0 150 8107 4 2796 628 8012 0 180 8108 6 3474 640 8109 2 2031 630	800601 2 35 9 8104 5 1210 258 8009 0 55 800611 0 12 2 8105 5 1881 560 8010 0 150 8107 4 2796 628 8012 0 150 8107 4 2796 628 8012 0 180 8108 6 3474 640 8110 0 2087 630 8110 0 2087 630 8111 0 2131 652	000.61					800521	¢	49	Š					8101	8	1531	463					8008	•	32			
800611 0 12 2 8105 5 1881 560 8010 0 150 8106 11 2934 614 8011 0 130 8107 1 2796 628 8011 0 130 8108 6 3747 640 8109 2 2631 639 8110 0 2087 630	800611 0 12 2 8105 5 1881 560 8010 0 150 8106 11 2934 614 8011 0 130 8106 11 2934 614 8011 0 130 8107 4 2796 630 8012 0 180 8108 6 3473 640 8110 0 2007 630 8110 0 2131 632 8111 0 2131 632	00061					800601	7	35	6					8104	ŝ	1210	258					6008	0	55			
8106 11 2934 614 8011 0 130 8107 4 2796 628 8012 0 180 8109 2 2631 639 8110 0 2087 630 911 0 1204 630	8106 11 2934 614 8011 0 130 8107 4 2796 628 8012 0 180 8109 2 2087 630 8110 0 2087 630 8111 0 2131 632 8112 1 0 2131 632	000.61					800611	0	12	7					8105	Ś	1881	<u> 2</u> 60					8010	0	150			
8107 4 2796 628 8012 0 180 8108 6 3474 640 8109 2 2087 630 9110 0 2087 630	8107 4 2796 628 8012 0 180 8108 6 3474 640 8110 2 2087 630 8110 0 2087 630 8111 0 2131 632 8112 1 0 2131 632	000 61													8106	=	2934	614					1108	0	130			
8108 6 3474 640 8109 2 2631 639 8110 0 2087 630	8108 6 3474 640 8108 2 201 639 8110 0 2007 630 8112 1 0 2131 632 8112 1 0 2131 632	00061													8107	4	2796	628					8012	•	180			
8109 2 2631 0.09 8110 0 2087 6.30 9111 0 3112 232	8109 2 2031 0.99 8110 0 2087 630 8113 1 0 2131 632 8113 1 1 121 415	000.61													8108	ہ م	34/4	38										
	0110 0 2000 8110 0 2131 632 8112 1 1 1214 415	19 UKU													618	N 6	1002	650										
															210	> 0	1007	35										

Can. J. Fish. Aquat. Sci., Vol. 44, 1987

data set were disregarded in the analysis. In Table 2 the rows corresponding to these are preceded by an "a." The early returns in any tagging experiment can easily be anomalous because of inadequate mixing of tagged fish in the tagged population. In the present analysis, early returns were disregarded if there was good reason to assume a problem with mixing in the first recapture period(s), and if doing so significantly improved the ability of the model to fit the data.

For each subarea other than the Trust Territory and Guam, releases and recoveries were selected to make the analysis relevant to a local fishery. Releases made outside the area of the local fishery were eliminated as was one release of fish of a substantially different size range than were caught in the local fishery. Tags recovered outside the subarea of release were not considered. Details of tag selection are presented in individual reports prepared for each subarea (Kearney 1982a; Argue and Kearney 1982, 1983; Gillett and Kearney 1983; Kleiber and Kearney 1983; Tuna Programme 1984a, 1984b).

Results and Discussion

Estimation of Nuisance Parameters

Considerable effort was expended to maintain high standards in the tagging procedure (Kearney and Gillett 1982) to maximize α , in the tag return system (Kearney 1982b) to maximize β , and in the quality of the tags themselves to minimize ψ . To analyze the results, however, it was necessary to estimate values for these nuisance parameters.

Estimates of $\alpha\beta$ with the variable attrition model

The variable attrition model (last equation in Table 1) was fitted to the five data sets containing effort in Table 2. N_o was set to the values given in Table 2, and the parameters M, q, and $\alpha\beta$ were adjusted by the fitting procedure. In three cases the process converged to impossible values (negative M or $\alpha\beta$ greater than 1), and in two cases possible values resulted. Investigation of the three-dimensional confidence regions for the latter two cases (Fig. 2 and 3) revealed that $\alpha\beta$ was very ill-defined by the analysis. The 95% confidence range (approximately 0.05-1.0) covers most of the possible range (0-1).

Estimation of β

Estimation of β using Equation 10 requires the factors ζ_f and ζ_s . A range of values for ζ_f can be obtained from the double tagging results in Fiji. Using the approach of Bayliff and Mobrand (1972), an estimate of 0.997 (95% confidence range 0.82–1.0) was obtained for the quantity $\rho d_f \zeta_f$, where ρ is the short-term (type 1) tag retention (1 minus tag shedding rate) and where d_f is the proportion of recaptured tags that are discovered by fishermen (Tuna Programme, unpubl. analyses). This range also applies to ρ , d_f , and ζ_f individually because all three quantities can only be in the range (0–1).

In a tag-plant experiment designed to measure ζ_i , 25% of the planted tags were returned, all from shore-based processing facilities, principally in Pago Pago. This experiment was conducted more than 1 yr after most of the recoveries from the regular tagging program were obtained from shore facilities. Thus, it is possible that the low recovery of planted tags reflects a more recent problem in the tag recovery system, or a problem specific to seine-caught fish from New Zealand processed in Pago Pago. Unfortunately, tag-plant experiments were not done on pole-and-line caught fish or on fish destined for other processing facilities. It is also possible that tags placed in dead

FIG. 2. Confidence regions for estimates of the three parameters of the variable attrition model using the Papua New Guinea data set. In the upper plot, slices through the confidence region at various levels of $\alpha\beta$ are shown. The $\alpha\beta$ axis extends downward from the plane of the page. In the lower plot the figure is rotated forward about the *M*-axis so that the *q*-axis rises upward from the plane of the page. Slices at various levels of *q* are shown. In the upper plot, the crosses give the best-fitting *q* and *M* values with $\alpha\beta$ fixed at each level, and in the lower plot the crosses give the best-fitting $\alpha\beta$ and *M* values with *q* fixed at each level. The star in each plot gives the best-fitting point for the three-parameter fit.

fish are more easily lost than tags placed in live fish. Taking the tag-plant results at face value, ζ_s could have been as low as 0.25. However, ζ_s might very well have been higher for Pago Pago and other processing facilities during the time that tagged fish from live releases were passing through these facilities. Worst and best case values of 0.25 and 1.0 were assumed for ζ_s .

Assuming the ranges given above for ζ_f and ζ_s , worst and best case values of β were calculated by Equation 10 and are given in Table 3.

Estimation of α

The parameter α depends on type 1 mortality and type 1 tag shedding. As shown above, the type 1 tag shedding rate, $1 - \rho$, must be low. Type 1 tagging mortality is more difficult to determine. However, high tag return rates (>50%) have been observed in the eastern Pacific (Anonymous 1978). This strongly suggests that the combination of type 1 tagging mortality and tag shedding was low. This conclusion is further

Can. J. Fish. Aquat. Sci., Vol. 44, 1987

FIG. 3. Confidence regions for estimates of the three parameters of the variable attrition model using the 1980 Solomon Islands data set. In other respects, this figure is similar to Fig. 2.

supported by an experiment with captive skipjack in which no significant difference in mortality between tagged and untagged fish was observed (R. E. Kearney unpubl.).

In the absence of further quantitative information, a figure of 10% has been assumed here for the type 1 losses, i.e. a value of 0.9 for α .

Values of $\alpha\beta$ used in subsequent analyses

The values of $\alpha\beta$ used as input to the analytical model are given at the head of each data set in Table 2. These were derived from an assumed value of 0.9 for α and a value for β midway between the worst and best case values given in Table 3.

Type 2 tag loss, ψ

The parameter Ψ can include type 2 shedding and also type 2 mortality. Type 2 shedding estimated from double tagging was 0.0073 · mo⁻¹ (Skipjack Programme 1981). Type 2 mortality is not so readily estimated, but the double tagging results suggest that it is a minor factor. Except for fish smaller than 45 cm, the proportion returned of the double-tagged skipjack was not significantly less than that of single-tagged skipjack released at the same time (Skipjack Programme 1981). The difference noted for small fish could have resulted from type 1 (affecting α) or type 2 (affecting ψ) losses. We looked for and did not find any influence of size on total attrition, $Z + \psi$ (see next section), as would be expected if there was significant,

Can. J. Fish. Aquat. Sci., Vol. 44, 1987

TABLE 3. Worst and best case values of β are calculated from Equation 10 using worst and best case assumptions about ζ (0.82 and 1.0 for ζ_f ; 0.25 and 1.0 for ζ_s).

		Tag re	turns	β	3
Data set	Where found	Useable 4	Reject v	Worst case	Best case
Aggregate	Fishermen Shore	4641 711	125 706	0.47	0.87
Trust Territory and Guam	Fishermen Shore	190 26	9 6	0.58	0.94
New Zealand	Fishermen Shore	231 403	12 352	0.19	0.64
Papua New Guinea	Fishermen Shore	838 0	7 82	0.62	0.90
Solomon Islands (1977)	Fishermen Shore	65 3	1 8	0.55	0.88
Solomon Islands (1980)	Fishermen Shore	167 0	6 45	0.43	0.77
Fiji	Fishermen Shore	977 1	23 0	0.80	0.98
Society Islands	Fishermen Shore	20 0	0 0	0.82	1.0
Gilbert Group	Fishermen Shore	346 0	0 0	0.82	1.0

TABLE 4. Distribution of tag returns among subareas for three classes of size at release. The total returns are not necessarily the same as the totals of returns in Table 2 because in this case, tags were selected with regard to the existence of accurate length measurement at release and accurate time of recapture, but without regard to other selection criteria involved in assembling the data sets in Table 2.

		Fork length		Total tag
Data set	<45 cm	45-55 cm	>55 cm	returns
Aggregate	634	3536	630	4800
Fiji	139	1380	114	1633
Solomon Islands	157	290	55	502
Papua New Guinea	14	573	311	898
Palau	204	52	51	307
Ponape	1	95	44	140
New Zealand	100	536	8	644
Wallis and Futuna	3	67	6	76
Tuvalu	1	21	6	28
Gilbert Group	3	354	8	365

size-dependent, type 2 mortality. This suggests that the reduction in returns for the small double-tagged fish was predominantly a type 1 phenomenon. In any case, these small fish accounted for less than 15% of the returns considered in this report. Type 2 mortality was therefore assumed to be zero, and the value of ψ for all data sets was taken to be the estimate of type 2 tag shedding.

Effect of Size at Release on Attrition

To test for the effect of size at release on attrition rates, the

TABLE 5. Estimates of tag attrition (mo^{-1}) with 95% confidence intervals for three classes of size at release. Results are given for the aggregate data set and for subareas with 20 or more returns in more than one size class. One data set, WTG, is the sum of returns for Wallis and Futuna, Tuvalu, and the Gilbert Group.

		Fork length	
Data set	<45 cm	45-55 cm	>55 cm
Aggregate	0.17(0.15-0.20)	0.17 (0.14-0.20)	0.27 (0.22-0.33)
Fiii	0.18(0.10-0.32)	0.57 (0.09-0.24)	0.12 (0-0.33)
Solomon Islands	0.17(0.11 - 0.26)	0.18(0.12 - 0.25)	0.27 (0.17-0.42)
Papua New Guinea		0.34(0.21 - 0.58)	0.63(0.42 - 0.92)
Palau	0.21(0.17 - 0.27)	0.15(0.08 - 0.25)	0.37 (0.19-0.69)
Ponape		0.20(0.13 - 0.29)	0.22 (0.06-0.48)
New Zealand	1.1 (0.9 - 10.4)	1.2 (0.9 - 10.5)	
WTG		0.24 (0.14-0.46)	0.30 (0.07-0.69)

aggregate tagging data and seven subsets of the data were broken into three categories of size at release, <45, 45-55, and >55 cm (Table 4). Six subsets consisted of subarea data with 20 or more returns in at least two of the size categories. One additional subset was made up of returns from three subareas which in combination gave 20 or more returns in two size classes.

The aggregate and six of the subsets were put into monthsat-large classes in the same way as the aggregate data in Table 2. The New Zealand subset was broken into 10-d periods. Total attrition was estimated by fitting the first model in Table 1 to the data, using a constant catch rate for subarea as well as aggregate data under the assumption that the effects of changing catch rate on attrition estimates would be roughly equivalent for the different size classes.

The resulting attrition estimates (Table 5) can be used to compare size classes within a subarea or the aggregate data set, but they should not be used to compare attrition rates between countries. The only significant result is a higher attrition rate for large fish in the aggregate case. However, a large portion of the large fish were released in Papua New Guinea (Table 4) where, as we shall see (Table 6), the attrition rate was particularly high. Therefore the result for aggregate data could be a Papua New Guinea effect instead of a size effect, a conclusion that is supported by the lack of significant effect of size for individual subarea data.

Tag Attrition Curves

The decline in tag return rate with time is shown for the aggregate data set in Fig. 4. As indicated in Table 2, the value for the first month was not included in the fitting. The bump in the observed data at approximately 1 yr could be the result of seasonality in the fisheries. Most fisheries in the region have a period of higher fishing effort each year lasting from a little over 1 mo (New Zealand) to several months (Papua New Guinea). Because tags tended to be released in each subarea during these periods, it is to be expected that a surge of tag returns would coincide with increased fishing, approximately 1 yr following tagging.

The predicted values decline smoothly in Fig. 4 because we could not account for variations fishing activity in the aggregate case. When we were able to account for such variations, the predicted values decline jerkily (Fig. 5) because they reflect variations in catch, as well as the steady decline due to all the components of attrition.

Parameter Estimates from the Analytical Model

Table 6 gives goodness-of-fit and parameter estimates obtained from all but the variable attrition model. Table 7 gives the goodness-of-fit and parameter estimates obtained by fitting the variable attrition model to the data sets for which effort data were available.

The results from the variable attrition model are close in most cases to the corresponding results from the fixed attrition models. The goodness-of-fit was not improved, and the catchability estimates are likewise much the same. The last two columns in Table 7 match well except for the New Zealand results. In this case the discrepancy between variable attrition and fixed attrition models may be due to the large degree of seasonality in the New Zealand fishery, the resulting large variation in attrition being more easily accounted for by the possibility of variable attrition in the model.

The parameter estimates in Tables 6 and 7 form the basis of Skipjack Programme reports for individual subareas wherein the implications of these results to fisheries in the subareas are discussed in detail.

Reliability of the parameter estimates

The confidence limits reported in Tables 6 and 7 do not include uncertainty in the values of the nuisance parameters, and therefore, the confidence ranges in the tables are minimum estimates.

Accounting for uncertainty in ψ (the type 2 shedding rate) would directly affect the confidence ranges of attrition, and thus to a similar extent the estimates of throughput and harvest ratio. The 95% confidence range of ψ is $0.0031-0.0116 \cdot \text{mo}^{-1}$. However, given its small magnitude relative to the attrition rate, its variance is unlikely to significantly affect the confidence ranges of any of the above parameters.

Accounting for the uncertainty in the value of $\alpha\beta$ would affect the confidence ranges of all parameters except Z_c and Z_f . The range between the best and worst case estimates of β can be large (Table 3), and the assumed value of α is a guess based on little quantitative information. The confidence ranges given in Tables 6 and 7 would be larger if the uncertainty in $\alpha\beta$ had been included, which can be seen in the three-parameter confidence regions for Papua New Guinea and Solomon Islands, 1980 (Fig. 2 and 3). It is interesting to note, however, that the effect of uncertainty in $\alpha\beta$ is dependent on whether this quantity is in the upper or lower part of its possible range (0-1). Thus the confidence range of M is considerably reduced if $\alpha\beta$

Can. J. Fish. Aquat. Sci., Vol. 44, 1987

es are Zca- f vari Z _c = Z _c = har-	
figur New % 0 % 0 H	
er two or the G _/ = Isewha	
e low ue. Fe data, ys ^{-t} e h effor	
en, th rt vali catch sel-day vitl	ľ
if giv e effor with vess (mo	
e, and on the model caland rtality	
stimate epend ed by I ew Ze ng mo	
eter eter eter eter eter eter eter eter	
param ntities nnce e) $F_{f} =$	
best pricest i r quan f varia f varia ility (
is the ells fo = % o atchat	
th cell fank of the cell G_{c}^{-1} if G_{c}^{-1} is a constraint of the cell $q = c$	
the in the point of the point	
figure are so of the Mt · m rtality rt dat:	
upper , there fitting hput () ng moi	
. The refore in one hrough fishir s) wit	
able 2 its; the used i T = t $F_{c} =$	
la in T lata ser s were (Mt), t data. timens	
ng dat or all d periods stock n effor atio (c	
the fourth of th	
Table avails onsec = star (mo	
dels in as not es in c ta, P trition	
al mo lata w releas ort dat c = att	
a from a from th effi ata, Z	
i the au nits. E ls, data del wi atch d	
s from nce lir Island y mo with c	
Result onfide ociety ined t no ⁻¹)	
LE 6. 95% co and S and S : expla tion (n	
TAB the land ance attri	

vest ratio (dimen	sionless) with c	atch data, $H_f =$	= harvest rand	0 (dimensionless) with citori a	413.				
Data set	ບັ	G,	р (10³)	T (10 ³)	(_e 01)	Z.	Ζ,	F.	F_{f}	H.	H
Aggregate	0.95		3000 2500-3700	520 460590		0.17 0.15-0.20		0.0063 0.0051-0.0077		0.037 0.0320.042	
Trust Territory and Guam	0.71		660 370-1310	150 100-250		0.23 0.14-0.36		0.0074 0.0038-0.0131		0.032 0.020-0.048	
New Zealand	0.91	0.85	13 10-17	5.0 3.8-7.0	1.2 0.8-1.7	$0.38 \\ 0.30 - 0.52$	0.39 0.29-0.62	0.17 0.13-0.22	0.18 0.12-0.25	0.46 0.33 - 0.60	0.46 0.29 - 0.65
Papua Ncw Guinea	0.96	0.95	35 27-45	13 11-16	$0.090 \\ 0.060 - 0.144$	0.38 0.32 - 0.46	0.47 0.35 - 0.65	0.058 0.045-0.075	$0.061 \\ 0.040 - 0.097$	0.15 0.13-0.18	0.13 0.10-0.16
Solomon Islands (1977)	0.69	0.52	49 25 - 124	11 7-19	0.008-0.065	0.23 0.13-0.34	0.14 0.01-0.29	$0.024 \\ 0.010 - 0.049$	0.0092 0.0027-0.0223	0.06-0.17	0.067 0.034-0.270
Solomon Islands (1980)	0.63	0.68	89 49-185	13 9-22	0.056 0.029-0.096	0.15 0.07-0.26	0.16 0.09-0.26	0.025 0.012-0.046	0.027 0.014-0.047	0.16 0.10-0.25	0.17 0.11-0.24
Fiji	0.80	0.68	$39 \\ 20-79$	7.3 4.8-11.4	0.081 0.036-0.164	$0.19 \\ 0.13 - 0.26$	0.19 0.12-0.26	$0.0091 \\ 0.0044 - 0.0174$	0.0097 0.0043-0.0197	0.048 0.031-0.072	0.030-0.084
Society Islands	0.36		9.7 1.8-67.1	5.7 2.1-20.1		$0.59 \\ 0.20 - 1.30$		$0.010 \\ 0.001 - 0.055$		0.017 0.005-0.048	
Gilbert Group	16.0		1.0 0.5-2.1	0.38 0.24-0.64		0.37		0.009-0.038		0.031-0.083	

Can. J. Fish. Aquat. Sci., Vol. 44, 1987

FIG. 4. Aggregate tag attrition curve. Points are the aggregate tag return rates (Table 2). The solid line gives the expected values based on the best fit of first model form in Table 1. The y-axis is a square root scale.

FIG. 5. Example tag attrition curve for a subarea (Solomon Islands, 1980). In other respects, this figure is similar to Fig. 4.

is known to be greater than 0.4, but more precise definition of $\alpha\beta$ within the range 0.4-1 would not narrow the confidence range of *M* much further (Fig. 2 and 3).

It must be stressed that the parameter values for individual subareas, and overall, apply to the time of the tagging experiment. Since that time, significant changes have occurred in several fisheries in the region. In addition, periodic major environmental events occur that presumably could affect skipjack populations in the tropical central and western Pacific waters (Wyrtki 1975; Donguy and Henin 1978).

Standing stock and throughput

The standing stock in different areas, under conditions of uniform stock density, would be proportional to the size of the area. Therefore, differences among individual country results would reflect the size of the areas covered by the different tagging experiments, which by design roughly covered the area of the locally based fisheries. Such is evident in Table 6 by comparison of P for the Gilbert Group with P for the other individual subareas. The Gilbert Group estimate is smaller than all others, and the "fishery" was a single vessel survey concen-

TABLE 7. Results from varying attrition model with data sets containing effort values in Table 2. The parameter $\alpha\beta$ was fixed to the values given in Table 2. The format of the entries in each cell is the same as in Table 6. For comparing M with results from fixed attrition models, values of attrition minus fishing mortality $(Z_f - F_f)$ from Table 6 are included in the last column of this table.

Data set	G	<i>q</i> (10 ⁻⁴)	М	$Z_f - F_f$
New Zealand	0.85	13 9-18	0.35 0.25-0.58	0.21
Papua New Guinea	0.95	0.88 0.60-1.30	0.41 0.31-0.55	0.41
Solomon Islands (1977)	0.51	0.26 0.08-0.64	0.13 <0.01-0.27	0.13
Solomon Islands (1980)	0.68	0.55 0.39-0.96	0.14 0.07-0.22	0.13
Fiji	0.68	0.79 0.35-1.56	0.18 0.12-0.24	0.18

trated near a single atoll, a much smaller area than the other individual country fisheries. The aggregate estimate of P is much larger than the sum of estimates for individual subareas in Table 6 because these are only a portion of the area included in the aggregate. Between these extremes, differences among subareas are difficult to interpret, firstly because of the large overlapping confidence intervals and secondly because of the difficulty in evaluating the effective area covered by the fisheries during the tag recovery period.

Throughput, T, should be only approximately proportional to the size of the fished area, since throughput is the product of attrition and standing stock and attrition has a component due to emigration which is expected to vary inversely with the size of the fished area.

Attrition

Attrition and its components are not expected to be proportional to the area covered by the experiment. However, attrition is not necessarily independent of area because it includes a component due to dispersive movement of fish. This component tends to increase in importance with decreasing size of the area under consideration. Therefore the attrition is expected to vary inversely with area and, for large areas, approach a dispersion-free attrition rate. It is probably for this reason that the aggregate attrition estimate was lower than all but one of the individual country estimates (though only three have nonoverlapping confidence intervals).

Under the assumption of steady state, the attrition rate is also the population turnover rate. Simulation modelling showed that in a non-steady-state situation the attrition estimate would tend to reflect the average attrition over the time of the experiment. Thus if the lack of steady state is attributable to seasonal fluctuations, and tags are returned over a period of at least 1 yr, then the attrition estimate would reflect the yearly average population turnover. Furthermore, simulation showed that in nonequilibrium conditions (i.e. when the sum of inputs is different from the sum of outputs), the estimate of Z_c tends to be closer to the sum of inputs and Z_f closer to the sum of outputs. The implication is that if Z_c is larger than Z_f , then the population is increasing whereas if Z_c is less than Z_f , then the population is decreasing. The only cases in which there were

Can. J. Fish. Aquat. Sci., Vol. 44, 1987

appreciable differences between Z_c and Z_f were the results from the 1977 Solomon Islands data set $(Z_c > Z_f)$ and from the Papua New Guinea data set $(Z_c < Z_f)$. (The confidence regions given in Table 6 are not relevant in judging the significance of a difference between estimates of Z_c and Z_f when these parameters are obtained from the same data sets because there is likely to be a high positive covariance between the two estimates, which would tend to minimize the variance of the difference between them.) It may only be fortuitous that the increasing trend in P in Solomon Islands (October 1977 versus June 1980) was consistent with that predicted by the 1977 estimates of Z_{c} and Z_{f} , since the confidence intervals for the two estimates of P are large and overlapping. (In this case, where the results from two independent sets are compared, the confidence regions in Table 6 are relevant.) The trend predicted for Papua New Guinea could not be checked because there was no further tagging experiment in these waters.

The aggregate estimate of attrition is $0.17 \cdot \text{mo}^{-1}$ (0.15-0.20). When fishing mortality is subtracted the remaining attrition is 0.16 mo⁻¹. Joseph and Calkins (1969) reported a comparable estimate of skipjack attrition, excluding F, of 0.14 mo⁻¹ from a tagging experiment in the northern zone of the eastern Pacific fishery. Ssentongo and Larkin (1973) gave a method for calculating attrition in exploited fish populations given the length of fish at recruitment, the mean length in the catch, and values for the parameters L_x and K of the von Bertalanffy growth model. For skipjack, assuming a length at recruitment of 38 cm and a mean length in the catch of 50.4 cm (the mean length of skipjack tagged by Skipjack Programme), and using values of $L_{\infty} = 62.5$ cm and $K = 0.17 \cdot \text{mo}^{-1}$ (Sibert et al. 1983), the predicted value of attrition is 0.24 · mo⁻¹, which drops to $0.23 \cdot \text{mo}^{-1}$ when our estimate of F is subtracted. Pauly (1979) reported a regression equation for predicting natural mortality of a fish species given its von Bertalanffy parameter values and its mean environmental temperature. The regression equation was based on reported natural mortality estimates from a wide variety of fish families (including skipjack among several examples of scombrids). It is unclear to what extent attrition mechanisms other than natural mortality and fishing mortality are included the estimates used to derive the regression equation. Assuming the values given above for L_{∞} and K and a mean water temperature of 25°C, the Pauly estimate of natural mortality for skipjack is 0.18 · mo⁻¹, which is similar to our overall estimate of attrition.

Catchability

Catchability coefficients, q, for pole-and-line gear (Table 6) range from 2.7×10^{-5} fishing day⁻¹ for November 1977 tagging in Solomon Islands to 9.0×10^{-5} fishing day⁻¹ for May-June 1979 tagging in Papua New Guinea; however, all estimates have overlapping confidence intervals and little can be made of the differences among subareas. For purse-seiners in New Zealand, q is 1.2×10^{-3} set⁻¹ or 1.8×10^{-3} fishing day⁻¹ using the average of 1.5 sets fishing day⁻¹ for the 1979-80 and 1980-81 New Zealand fishing seasons (Argue and Kearney 1983). This catchability for purse-seiners is 28 times higher than the average for pole-and-line gear in Table 6, which probably reflects greater fishing power for purse-seiners and greater skipjack vulnerability in the coastal waters of New Zealand.

Harvest ratio

Having defined the harvest ratio and having obtained estimates thereof, it is useful to have a bench mark to show

Can. J. Fish. Aquat. Sci., Vol. 44, 1987

FIG. 6. Beverton-Holt yield surface. Relative yield is plotted as a function of harvest ratio and length at recruitment. Natural mortality is assumed to be $0.16 \cdot \text{mo}^{-1}$. L_{∞} and K of the von Bertalanffy growth model are assumed to be 62.5 cm and $0.17 \cdot \text{mo}^{-1}$, respectively (Sibert et al. 1983).

whether a given estimate is high, indicating heavy fishing pressure, or low, indicating the possibility for increased yield. The harvest ratio is analogous to the X-factor of Gulland (1971), defined such that

(11) $Y = XT_v$

where Y is the potential yield and T_{v} is the virgin turnover. On the basis of two arguments, Gulland suggested that the maximum yield from a fishery is obtained with a value of approximately 0.5 for X. One argument is based on the Schaefer model and has been shown by Francis (1974) to be unreliable. The other argument is based on the Beverton-Holt yield per recruit model wherein for a broad range of conditions, the maximum yield per recruit is obtained with a value close to 0.5 for X. Beddington and Cooke (1983) argued that for most realistic sets of parameter values, a value of X somewhat smaller than 0.5 gives maximum yield. However, if the Beverton-Holt yield is calculated for a skipjack-like fish with the values of L_{x} and K assumed above and a natural mortality of $0.16 \cdot \text{mo}^{-1}$, the harvest ratio (or X) producing maximum yield is seen to be in the neighborhood of 0.5-0.7 with a size at recruitment between 36 and 40 cm (Fig. 6). It should be noted that the sustainability of yields under Gulland's second argument depends on an assumption of constant recruitment, regardless of standing stock level (Beddington and Cooke 1983). Nevertheless, a harvest ratio close to 0.5 would seem to be a good signpost for a skipjack fishery approaching full exploitation.

The estimates of harvest ratio (Table 6) tend to be lower than 0.5. For the aggregate case, the harvest ratio is low, 0.04, implying that fishing is having little impact on the skipjack resource in the study area as a whole. For subareas with well-established commercial fisheries (New Zealand, Papua New Guinea, and Solomon Islands), harvest ratios are higher, 0.15-0.46, while the other subareas, which have small or fledgling fisheries, have low harvest ratios, <0.1. Low harvest ratios for a large part of the study area imply that there is a potential for greatly increased skipjack yield, both within individual subareas and in the study area as a whole. However, recently expanded purse-seine fisheries in the vicinity of the Trust Territory, Papua New Guinea, and Solomon Islands have undoubtedly realized some of this potential.

Conclusion

The results of the analyses given in this paper provide evidence that the resource of skipjack in the study area of the Skipiack Programme is large, its rate of turnover is high, and the rate of mortality due to fishing during the study period was only a small fraction, <0.05, of the rate of turnover. This implies that skipjack catches over the whole study area could be substantially increased from those of the study period. The tag recapture and attrition models used to obtain aggregate estimates and confidence intervals for standing stock, turnover, and fishing mortality were applied to tagging data from subareas with skipjack fisheries for which catch statistics were available. Parameter estimates so derived suggest that the impact of fishing in the smaller areas is larger than the overall impact of fishing.

It should be emphasized that the results reported here apply to the time of the tagging experiment. Substantial development of purse-seining has occurred in the region since that time. This large increase in fishing effort, the large confidence intervals of parameter estimates, and the occurrence of high harvest ratios in some subareas all argue for a cautious approach in planning further development of skipjack fisheries in the central and western Pacific.

The analytical techniques used in this study are based on a set of models derived to address the situation of skipiack and of the tagging experiment conducted by the Skipjack Programme. With due attention to our discussion of assumptions, these techniques could be applied to other situations with similar salient features. The activity of the fishery can vary during the experiment, but large trends in conditions of fishery or environment during the experiment should be a warning signal. The behavior of the fish should be similar across all sizes (ages) that are tagged and should not have large trends during the experiment. These analyses should be used cautiously with long-lived fish that are exposed to the fishery for a long time, but fish like skipjack with a high turnover rate, and consequent short time in the fishery, would be good candidates.

Acknowledgements

This study was a part of the Skipjack Survey and Assessment Programme and later the Tuna and Billfish Programme of the South Pacific Commission and was funded jointly by Australia, France, Japan, New Zealand, the United Kingdom, and the United States. The success of this study depended on the hard work of the tagging vessel crew, including R. D. Gillett, J.-P. Hallier, C. P. Ellway, J. Ianelli, and D. Whyman, among many others. For counsel during the analysis of data and preparation of this report we thank J. R. Sibert, M. J. Williams, J. Wetherall, R. Allen, R. Francis, and two anonymous reviewers.

References

ANONYMOUS. 1975. A proposal for a skipjack survey and assessment programme in the central and western equatorial Pacific Ocean. Expert Committee on Tropical Skipjack (16-17 October 1975). Available from South Pacific Commission, Noumea, New Caledonia. 10 p.

1978. Annual Report of the Inter-American Tropical Tuna Commission, 1977. Available from Inter-American Tropical Tuna Commission, c/o Scripps Institution of Oceanography, La Jolla, CA. 155 p.

ARGUE, A. W., AND R. E. KEARNEY. 1982. An assessment of the skipjack and baitfish resources of Solomon Islands. Skipjack Survey and Assessment Programme Final Country Report No. 3. Available from South Pacific Commission, Noumea, New Caledonia. 73 p. 1983. An assessment of the skipjack and baitfish resources of New

Zealand. Skipjack Survey and Assessment Programme Final Country

Report No. 6. Available from South Pacific Commission, Noumea, New Caledonia. 68 p.

- BAYLIFF, W. H., AND L. M. MOBRAND, 1972. Estimates of the rates of shedding of dart tags from yellowfin tuna. Inter-Am. Trop. Tuna Comm. Bull. 15(5): 441~462.
- BEDDINGTON, J. R., AND J. G. COOKE, 1983. The potential yield of fish stocks. FAO Fish. Tech. Pap. No. 242: 47 p. BEVERTON, R. J. H., AND S. J. HOLT. 1957. On the dynamics of exploited fish
- populations, U.K. Minist, Agric, Fish., Fish. Invest. (Ser. 2) 19: 533 p. CONWAY, G. R., N. R. GLASS, AND J. C. WILCOX. 1970. Fitting nonlinear models to biological data by Marquardt's algorithm. Ecology 51: 503-507
- DONGUY, J. R., AND C. HENIN. 1978. Surface salinity fluctuations between 1956 and 1973 in the western South Pacific Ocean. J. Phys. Oceanogr. 8: 1132 - 1134
- FRANCIS, R. C. 1974. Relationship of fishing mortality to natural mortality at the level of maximum sustainable yield under the logistic stock production model. J. Fish. Res. Board Can. 31: 1539-1542.
- GILLETT, R. D., AND R. E. KEARNEY. 1983. An assessment of the skipjack and baitfish resources of French Polynesia. Skipjack Survey and Assessment Programme Final Country Report No. 7. Available from South Pacific Commission, Noumea, New Caledonia. 81 p.
- GULLAND, J. A. 1971. The fish resources of the ocean. FAO Fish. Tech. Pap. No. 97: 425 p.
- JOSEPH, J., AND T. P. CALKINS. 1969. Population dynamics of the skipjack tuna (Katsuwonus pelamis) of the eastern Pacific Ocean. Inter-Am. Trop. Tuna Comm. Bull. 13(1): 273 p.
- KEARNEY, R. E. 1982a. An assessment of the skipjack and baitfish resources of Fiji. Skipjack Survey and Assessment Programme Final Country Reort No. 1. Available from South Pacific Commission, Noumea, New Caledonia. 50 p.

1982b. Development and implementation of the Skipjack Survey and Assessment Programme, p. 1-17. In R. E. Kearney [ed.] Methods used by the South Pacific Commission for the survey and assessment of skipjack and baitfish resources. Tuna and Billfish Assessment Programme Technical Report No. 7. Available from South Pacific Commission. Noumea, New Caledonia,

- KEARNEY, R. E., AND R. D. GILLETT. 1982. Methods used by the Skipjack Survey and Assessment Programme for tagging skipjack and other tuna, p. 19-43. In R. E. Kearney [ed.] Methods used by the South Pacific Commission for the survey and assessment of skipjack and baitfish resources. Tuna and Billfish Assessment Programme Technical Report No. 7. Available from South Pacific Commission, Noumea, New Caledonia.
- KLEIBER, P., AND R. E. KEARNEY. 1983. An assessment of the skipjack and baitfish resources of Kiribati. Skipjack Survey and Assessment Programme Final Country Report No. 5. Available from South Pacific Com-mission, Noumea, New Caledonia. 49 p.
- NELDER, J. A., AND R. MEAD. 1965. A simplex method for function minimization. Comput. J. 7: 308-313.
- PAULY, D. 1979. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. Int. Explor. Mer 39: 175-192.
- SIBERT, J., R. E. KEARNEY, AND T. LAWSON. 1983. Variation in growth increments of tagged skipjack (Katsuwonus pelamis). Tuna and Billfish Assessment Programme Technical Report No. 10, Available from South Pacific Commission, Noumea, New Caledonia. 43 p.
- SKIPJACK PROGRAMME. 1981. Effects of skipjack tagging procedures on subsequent tag recoveries. Regional Technical Meeting on Fisheries 1981, 13: Working Paper No. 8. Available from South Pacific Commission, Noumea, New Caledonia. 15 p.
- SOKAL, R. R., AND F. J. ROHLF. 1969. Biometry. W. H. Freeman, San Francisco, CA. 776 p. SSENTONGO, G. W., AND P. A. LARKIN. 1973. Some simple methods of esti-
- mating mortality rates of exploited fish populations. J. Fish. Res. Board Can. 30: 695-698
- TUNA PROGRAMME, 1984a. An assessment of the skipjack and baitfish resources of Papua New Guinea. Skipjack Survey and Assessment Programme Final Country Report No. 12. Available from South Pacific Commission, Noumea, New Caledonia. 91 p.

1984b. An assessment of the skipjack and baitfish resources of Northern Mariana Islands, Guam, Palau, Federated States of Micronesia, and Marshall Islands. Skipjack Survey and Assessment Programme Final Country Report No. 18. Available from South Pacific Commission, Noumea, New Caledonia. 111 p.

WYRTKI, K. 1975. El Niño: the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr. 5: 572-584.

Can. J. Fish. Aquat. Sci., Vol. 44, 1987