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Abstract 

Methods of using length-frequency statistics to estimate L, and the ratio Z/K in steady-state fish 
stocks with von Rertalanffy growth and exponential mortality are studied. Several standard procedures 
applicable when mortality i s  constant are reviewed, and new methods are introduced which have superior 
performance. The various methods are evaluated using Monte Carlo techniques. Problems of systematic 
bias are discussed, and remedial measures are suggested. Finally, a method is developed (but not yet 
evaluated) to estimate length-specific mortality rates under the steady-state model. 

Introduction 

The  current revival of interest in length-frequency based stock assessment methods has led to 
several new techniques which provide fisheries biologists with alternatives to well-established proce- 
dures or  allow analysis in situations where traditional age-based methods are infeasible. Because age 
estimation is often difficult and usually expensive, length-frequency based methods may be the 
most efficient and reliable means for estimating some of the key parameters of fishery models 
(see Mathews, Part I, this V O ~ . ) .  

Most of t h e  new length-based procedures, like the graphical and manual methods they are 
designed to replace, are applicable to situations where spawning is periodic and the identity of 
cohorts is adequately maintained in the population’s length-frequency distribution. Under such 
circumstances, it is possible to estimate jointly parameters of growth, mortality and recruitment by 
fitting composite models to single length-frequency samples (e.g., Schnute and Fournier 1980). o r  
to sequences of samples taken over time (e.g., Pauly and David 1981). Estimation and hypothesis 
testing are facilitated by adopting specific structural assumptions on  the underlying processes and 
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then maximizing likelihood functions or fitting model expectations to observed length class fre- 
quencies by  least squares o r  other criteria. Solutions are found by iterative search techniques which 
take advantage of ,  and indeed require, t h e  numerical power of computers. 

where cohorts are not clearly distinguishable in catch length distributions, individual length-fre- 
quency samples are too small to be treated separately, first approximations are adequate, or sophis- 
ticated computer systems and optimization software are unavailable. Among these simple methods, 
probably the  best known is the formula due to Beverton and Holt (1956): 

Less attention has been paid lately to the relatively simple methods applicable in situations 

L,-Q 
. . .  

which estimates the  total instantaneous mortality coefficient, Z, in a steady-state population with 
constant exponential mortality and von Bertalanffy growth, from the mean length,P, in a random 
sample of fish above length L,. In using (l), it is assumed that L, and the von Bertalanffy parameters, 
K and L,, are given. If only L, and L, are known (or estimated from other information), slight 
rearrangement of (1) yields an estimate of the ratio 8 = Z/K, a component of many standard yield 
models and stock assessment procedures (see Gulland 1983). 

T h e  Beverton-Bolt formula represents a particular class of methods for computing analytical 
estimates of growth and mortality parameters on  the  basis of length-frequency data, procedures 
requiring rather strong assumptions but  whose use is justified by their simplicity and their robust- 
ness under variable recruitment. This paper reviews three such methods reported in the literature, 
and introduces some new ones which require more computation but the same amount, o r  less, input 
information. First, the  assumptions underlying the steady-state methods are given and a structure 
for length-frequency samples is described. Next, estimators based on the assumption of constant 
mortality rate are discussed, followed by a consideration of systematic biases. Next, the assumption 
of constant mortality is relaxed and methods for estimating length-specific mortality are developed. 
Finally, some Monte Carlo experiments on the constant-mortality methods are described ; the con- 
cluding section offers advice on use of the various procedures. 

Basic Assumptions 

PROBABILITY DENSITY O F  FISH LENGTHS 

In all the  methods treated here, a steady-state population is assumed. Growth is assumed to  
follow the deterministic von Bertalanffy curve with parameters K and L,. The curve’s location 
parameter, to ,  usually included in modelling length a t  age, is omitted since it does not influence 
length-frequency distributions. Unless otherwise stated, mortality of fish above a knife-edge selec- 
tion size, I,, is assumed to occur a t  a constant instantaneous rate, Z, and recruitment to this size 
to take place a t  a constant instantaneous rate, R.  

Under these conditions, the probability density (g ( Q ) )  of fish length in the sampled stock is 

e (I,, - Q ) O  - 
. . . 2 )  
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On integrating (2), the  cumulative length-distribution function (G ( Q ) )  is seen to be 

G ( I z ) = l -  -- (::E.)” 
L, Q I z <  L, 

and the mean and variance of  length for fish above length L, are 

/ o \  

and 

. . . 3 )  

. . . 4 )  

. . . 5) 

A convenient ancillary variable may be defined as X = P/L,, the actual length of a fish in propor- 
tion t o  its maximum possible length. By changing variables in (2)  it is seen that the density for X is 

0 (1-X)B-  1 

(1 - X C P  
. . .6) h ( X )  = - 

where X, = L,/L,, and its distribution function is 

. . . 7 )  

SAMPLING SCHEME 

I t  is assumed that a random sample of n fish is taken from g (f)  above the minimum catchable 
size, L,, with lengths P I ,  Pq, . . . , P n  . We assume the lengths are observed without error. In practice 
this assumption is usually violated, bbt  the  consequences may not  be serious unless measurement 
errors are very large. W e  also assrime, more critically, that there is no systematic measurement bias. 

Measurement error aside, observed fish lengths are recorded with various degrees of “accuracy.” 
As a result, sample length-frequency distributions range from the very sparse (multiple observations 
of a given length being uncommon in samples of moderate size) to the highly aggregated (the data  



56 

being grouped into relatively few length intervals, each containing relatively many observations). To 
describe each data set we adopt a general scheme wherein the n. sample observations are grouped in- 
to r > 2 contiguous length-intervals, each fish in a particular interval being assigned a length equal to  
theinterval midpoint. Let P i  denote themidpoint of the i-th intervalof width A,  (i = 1, 2, . . . , r). We 
define L , ,  as the loyer  bound of the first length interval and L,,, as the upper bound of the last 
interval, i.e., L,, f P ,  -- A,  /2, _and L,, = Pr + A r / 2 .  A data set consists of a set of length in- 
terval midpoints { P , ,  P,:  . . . , Pr}and a corresponding set of frequencies {n, ,  n2,  . . . , nr }. (Note 
that the interval frequencies sum to the total sample size, n. .) 

Estimators 

The procedures used to estimate growth and mortality parameters from length-frequency 
samples differ in their statistical properties, the assumptions they require, and the amount of infor- 
mation they produce. In this section, assuming constant mortality, we review three established 
methods and explore several new approaches. W e  first examine some methods applicable when 
both L, and L, are known and only e is t o  be estimated. Then we consider the joint estimation of 
8 and L, when only Le is given. 

BEVERTON-HOLT METHOD 

The classical formula for 6, given by rearranging (l), is 

- 
I,, - R 

. . . 8) 

It was derived in a non-probabilistic way by Beverto; and Holt (1956), from an expression for mean 
length in the catch. However, it is readily seen that e,, is identical to  the moment estimator based 
formally o n  the density a t  (2)  and the resulting expected length ( 4 ) .  Further analysis with Taylor 
series shows that BBH has a statistical bias approximately equal to  

e ( e  + 1) 

n. ( 0  + 2)  
Bias ( iBH) = . . . 9 )  

and a large-sample variance of 

e ( e  + i)2 

n. ( f 3 + 2 )  
V a r ( i B H )  = . . . 10) 

In constructing iBH, L, and L, were assumed known. However, this is never true, so in apply- 
ing B,, independent estimates of these parameters, o r  simply educated guesses, must be substituted. 
The statistical properties of G B f f  are consequently altered, so that (9) and (10) no longer apply. 
This problem of systematic bias will be discussed in a later section. 
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SSENTONGO-LARKIN METHOD 

Ssentongo and Larkin (1973) also assumed L, and I,, were known. They developed an esti- 
mator for 8 by first deriving a moment estimator for Z, based on  the mean age of fish in the sample, 
and then, given the assumed relationship between length and age, changing variables. The resulting 
expression, assuming fish lengths are measured and recorded exactly, is 

6 , , = ( y - y C ) - 1  . . .  

where 

n. n. 
1 1 

n. n. 

- y = - -  In (1-5-)=-- C In (I - X i )  

i =  1 i =  1 

and 

y, = -In (1 - X,) 

I t  may readily be shown that 6s,d is also the maximum likelihood estimator based on  the density a t  
(6), and is a special case of a more general maximum likelihood procedure discussed later. 

As Ssentongo and Larkin report, e,, has a statistical bias of 

and a large-sample variance of 

. . . 12) 

. . . 1 3 )  

Thus the bias of 6sL is greater than lhat of gBH, but its asymptolic variance is smaller, as expected. 

L, must invariably be estimated. Note further that  the estimate of L, must exceed Lmax ; we return 
t o  this point later. 

As in the  Beverton-llolt estimator, the properties of esL are altered in practice, since L, and 

POWELL METHOD 

Powell (1979) considered the problem of estimating both 0 and L, in a more general context, 
in which the asymptotic lengths of  fish in a population are regarded as random variables, X ,  with 
expectation L, and variance O K .  Of various estimation schemes suggested by Powell, the  most 
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interesting is based on  use of the first and second moments of the resulting probability distribution 
of P.  Manipulation of Powell's results (Equations ( 4 )  and (6)  in his paper) reveals that 

0 
= L,- (,) (L,-L,) 

and 

. . . 14) 

. . . 1 5 )  

We suppose L, is given. Then, provided 0: is known, or  the range of X is negligible compared with 
the expected maximum range of P in the data  (in which case set 0: = 0), E ( P )  and V (P) can be 
equated to the corresponding sample statistics and solved for 0 and Lm. Let a denote the sample 
mean length for fish above L,, and S$ the sample variance. Then the resulting moment estimators 
of B and L, (when CI; = 0) are 

2s; 

(T-L,)-Si  
e, = 

and 

- 2sa (T - L,) 

(H - Lc)2 - s8 
L m p =  II + 

. . . 16) 

, . . 17) 

- 
= P + 6, (T-Id,) 

Since Powell's method makes use-of additifnal information in the sample t o  estimate L,, 
6, is a considerable improvement over e,,, and BsL when accurate, independent information o n  
L, is unavailable. 

REGRESSION METHOD 

Another method for estimating 0 and L, jointly may be developed by considering the  equa- 
tion a t  (4), and exploiting the fact that E ( a )  is a linear function of  L,. Let (w, ,  w2,  . . . , w, }be 
an increasing sequence of fish lengths in the interval (L,, L-). For a random sample of lengths in 
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this interval, let Fj denote the  average length of the nj fish in the sample whose length exceeds 
wj. I t  follows from (4)  that  

. . . 18) 

j = 1 , 2 , .  . , , m 

i.e., E (F.) is linear in wj. The idea of the method is to  partition the length-frequency sample using a 
specified sequence {w}and estimate Q and p in the linear regression model J 

- 
p . = a + p w . +  J 1 5  . . .19) 

where the E .  are random errors with zero mean and covariance matrix A. Minimum variance un- 
biased estimates of Q and p are found by weighted least squares, using the weight matrix A-’ . An 
estimate of A may be computed from the sample statistics, the (i, j)-th element being 

1 

- -  
A.. = cov ( a  i ,  p i )  = az /n i  . . .20)  

11 J 

where tr?is the variance among the n. lengths in the smaller, “included” sample, i.e., the variance 
among the common elements in the 1-th and j-th partitions. 

Consistent estimates of 8 and L, are then provided by 

J 

and 

Q 

I,, = - 
R 1 -i 

. . . 2 1 )  

. . .22)  

Although the choice of divisions in the  length-frequency distribution is somewhat arbitrary, there is 
undoubtedly some optimal partitioning. To a degree, precision in parameter estimates is increased 
by creating more partitions (data points). One possibility is t o  let the observed length interval mid- 
points define a set of partitions, resulting in r data points for the regression, namely, 

. . . 2 3 )  
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and 

j = l , 2  , . . . ,  r. 

The drawback to this approach is that a large weight matrix must be inverted. The task is greatly 
simplified when fewer data  points are created. In particular, if the  divisions are not  close together 
the covariances among the partitions are reduced. Acceptable results can then be obtained by ignor- 
ing the  off-diagonal elements of A, and weighting the  mean lengths by the reciprocals of their 
variances, o r  simply by the partition sample sizes. 

Asymptotic variances and covariances among the estimates of 8 and L, are approximately 

and 

. . . 2 4 )  

. . . 25) 

261 

Another linear regression approach has been developed by Jones (1981). From (3) ,  observe 
that the probability of a fish length exceeding w is 

P ( w )  = 1 - -G (w) . .27)  

This may be estimated empirically by p (w), the proportion of fish in the sample whose length 
exceeds w. Jones, assuming LC and I,, are known, suggests plotting InP (wi) vs. In (L, - wi) ,  
i = 1 , 2 , .  , . , m and estimating 0 as the slope of a rcyession line fit to these points. We note that if 
this regression is fitted by least squares, an appropriate weighting scheme should be  used to account 
for the  correlated errors in the sequence of  InP (w). There are also unresolved questions related to  
choice of partitions. 

Some other regression methods are discussed in a later section. 
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MAXIMUM LIKELIHOOD METHOD 

If n. fish are sampled from the density (2). and assigned to length interval midpoints as des- 
cribed above, the joint likelihood of the length-frequency sample is 

"i r 

i =  1 
x= n fi 

where 

. . . 28) 

. . . 29) 

is the probability of falling in the i-th length class interval. When the A i  are small, the  exact interval 
probabilities may be approximated by 

. . . 30) 

For any values of 0 and L,, X is maximized by setting Lc as large as possible. Therefore, 
under the sampling scheme adopted here, the maximum likelihood estimate of L, is L,,. Further, 
when 0 = 1, the maximum likelihood estimate of L, is LmU. Except in this singular case, the  joint 
maximum likelihood estimates of 8 and L, (eMId and LLML)  must be found numerically, applying 
iterative search methods to x' o r  In X . If Newton-type methods are used, the asymttotic co- 
variance matrix for the estimates is also easily computed. Note that in the search for L,,,, Lmax 
is a lower bound. Observe also that if both L, and L, are assumed known, the  maximum likelihood 
estimator of 0 is identical t o  the Ssentongo-Larkin estimator, 6s.IA. 

Another likelihood model may be constructed by considering the conditional probabilities of 
the length class frequencies given the total sample. Such freyuencies are multinomial with probabi- 
lities 

p i  = ti[ ; f i  * 
- 1  

From (29), we have 

i =  1 , 2 , .  . . , r  

. . . 3 1 )  

. . . 32) 
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Given n. ,  Lmh, and Ilmax, the likelihood of  the sample is therefore 

n. 

or =( i = 1  
. . . 33) 

\nl n2  , . . nr/ 

and maximum likelihood estimates of L, and 0 and their asymptotic standard errors may be found 
in the usual way by maximizing d p  or  In 2 directly, o r ,  for example, by fitting the  expected length 
class frequencies t o  corresponding observations using an iteratively reweighted Gauss-Newton algo- 
rithm. In the latter approach, one finds 0 and L, which minimize 

. . . 3 4 )  

with weights wi equal t o  the reciprocals of the expected frequencies. The resulting maximum likeli- 
hood estimates will also be minimum chi-square estimates, and the minimized d will be asymptoti- 
cally distributed as X2 with r - 3 degrees of freedom. 

In fitting the multinomial model, a question arises concerning the optimal choice of the length 
classes into which the data are grouped. Intervals of equal width are customary in length-frequency 
analysis, but as a rule of thumbobservations are often pooled where necessary to ensure an expect.ed 
frequency of a t  least 5 in each interval. This is typically required in the right tail of the distribution. 
More specific guidance o n  grouping for  a fixed number of intervals, r, may be offered if an optimality 
criterion is adopted. For example, one sensible choice would be t o  set Ihe grouping intervals in such 
a way that t h e  power of the usual multincjmial chi-square goodness of  fit test (or  likelihood ratio 
test) for the  null distribution is maximized with respect to some selected class of alternatives. 
Suppose we wish t o  test g ( a )  against the  open (unspecified) class of alternative length-frequency 
distributions. In  this situation it has been shown (Cox and Hinkley 1974) that the optimal grouping 
is that which uniquely maximizes the expected “entropy” of samples drawn from the null distribu- 
tion, namely, 

and that this is accomplished, in our  context, by dividing the length range into intervals of equal 
probability under g ( a ) .  Thus the r “optimal” length class intervals should have upper end points 
equal to the sequence of  quantiles of the  length distribution, of orders l / r ,  2/r, . . . , 1. For our  
multinomial model these partitions are a t  

1 
i -  

. . . 36) 

j = 1, 2, . . . ,  r . 
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In practice the unknown parameters would be replaced by estimates. We have not evaluated this 
procedure. 

Because we would expect grouping of data to result in loss of information and reduced effi- 
ciency of estimators, the  actual number of intervals used should in general be as large as possible, 
subject to the rule that expected frequencies in each length class exceed 4. This recommendation 
applies provided the assumed steady-state model is correct. In cases where recruitment is actually 
cyclic but the steady-state model is being used to estimate 0,  simulation studies (S. Ralston, unpub- 
lished data) suggest that coarser grouping of data will have the effect of smoothing out  recruitment 
fluctuations and increasing the  precision of 6 (in the  same manner that  pooling of several samples 
taken over the course of a spawning cycle will render the steady-state model applicable). In such 
cases, trial and error will indicate the optimal grouping. 

Systematic Biases 

We turn now to a consideration of systematic biases in the estimators, which arise when the 
underlying model assumptions are violated. In some situations serious biases result, in others the 
estimation procedures are robust and biases negligible. 

SUBSTITUTION O F  L,,, FOR L, 

Since L, is a location parameter, and I,, a scale parameter, they have no bearing on  the  shape 
of the theoretical length distribution. This is determined solely by A. Estimators of 6 based on  
samples drawn randomly from (:!), and assuming I,, and I,, are known, therefore have distributions 
unaffected by L, and L,, and dependent only on  0 and n.. IIowever, in  practice both L, and L, 
are unknown. In most of the procedures studied here an estimate of L,, or of both Lc and I,, must 
be substituted, and properties of the estimators are affected. 

W e  consider L, first. In one of the likelihood models, the multinomial, problems related t o  L, 
were circumvented by treating it as a nuisance parameter and conditioning the length interval 
probabilities on  the  sample end points, i.e., on  Lmin and LmaF. In all the other methods specifica- 
tion of L, is required. In these cases, L, (or w1 in the regression method) is typically set t o  Lmin ,  
the lower bound of the sample length-frequency distribution. Indeed, in most applications the fre- 
quency distribution is formed by truncating a larger sample a t  a selected Lmin, setting aside the data 
below this length, and retaining for analysis only the upper “descending” portion. Setting I., equal 
t o  Lmin  in this manner is clearly reasonable. As pointed out  in the section on Maximum Likelihood 
Method, doing so maximizes the likelihood of the sample under (2). Further, assuming continuous 
sampling (all A i  = 0), analysis of the relevant order statistics shows that 

(L‘= - L,) 
E (IJmin)  = L, + - . . . 3 7 )  

nA + 1 

so that for 0 greater than about 2, Lmin  is essentially unbiased as an estimator for L,, even for fairly 
small samples. In virtually all cases, then, systematic biases due to  estimating L, by Linin will be 
negligible. 

SUBSTITUTION O F  L,,, FOR L=, IN OBI, AND OsI, 

In the earlier sections, we noted that both &, and were susceptible to systematic bias 
resulting from the replacement o f  I,, by an independent estimate or  guess. To avoid the bias, one 
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would need to apply one of the methods which estimate 0 and L, jointly. However, heretofore 
only Powell’s method was available for this, and we are unaware of any situations in which it has 
been used. In the  majority of cases, one of the simpler methods has been adopted instead. Except 
when reliable, independent estimates of L, have been available from tagging or  analysis of hard 
parts, the  usual practice has been to set L, = L,,, the  length of the longest fish measured, or  the 
upper bound of the  length distribution. When growth is deterministic with L, the  upper bound to 
length, as assumed in (Z), this substitution biases BBH and 6,, downward, the degree of negative 
bias depending on  8 ,  X,, and n.. 

Specifically, under (2) it may be shown that  the  sample size required t o  ensure that L,, is within 
1006% of L, with probability $J is the smallest integer exceeding 

If 0 is large and X, small, very large samples are required for this sytematic bias to be negligible. 

In (1  - @ )  
n ( 6 ,  e )  = 

6 e 
In[l-(----- ) I  

1 -x, 

. . . 3 8 )  

For example, i f  X, = 0.3 and @ = 0.95, we have the following results for n ( 6 ,  0): 

6 

0.01 
0.05 
0.10 
0.20 

e =  3.0 e = 4.0 

1.0 x 106 7.2 io7  
8.2 io3 1.2 i o 5  
1.0 io3 7.2 io3 
1.3 x 10’ 4.5 x 102 

Thus for I,,, to be a reasonably accurate estimate of L,, it must represent the longest fish in a 
sample of several thousand. This sample need not be the same one used t o  estimate e. Indeed, if the  
deterministic von Bertalanffy model is correct and samples are drawn under identical conditions, 
L,, should represent the longest specimen seen in all the  samples taken. 

some arbitrary amount, typically about 5% (e.g., Pauly 1983,  who suggests dividing L,,, by 0.95). 
Depending on  the  true value of 0 and the size of the sample from which L,,, is derived, a 5% 
adjustment may be a fortuitous choice, bu t  clearly some better procedure is needed. The obvious 
choice, as suggested above, would be to make fuller use of the sample information t o  estimate e 
and L, jointly, Le., use Powell’s method, the regression method, o r  a maximum likelihood proce. 
dure. In the same vein, an interesting alternative approach which accounts for the systematic bias 
explicitly is based on  the following pair of equations in e and L,, derived from (2):  

To correct for  this sytematic bias, it is often recommended that  L,, be adjusted upward by 

. . . 39) 

Substituting sample values ofT and L,= for their expectations and solving by iteration, one can 
compute joint moment-type estimates of L, and 6 .  Sampling variances and other properties of the 
parameter estimates can be derived empirically using bootstrap techniques, 
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Numerical evaluation of the bias term in (40) shows that a simple 5% adjustment of L,, (or 
division by 0.95) is rarely appropriate (Table 1). In most fishery applications, where Xc is 0.5 or  
greater, the correct adjustment is ap t  to be anywhere between about 0.5% and 25%, depending o n  0 
and n.. The consequences of using an incorrect adjustment may be judged by various criteria, one 
being the  so-called “D-measure” described by Majkowski (1982). For example, a D-measure analysis 
of GBH sh?ws that the  estimator is quite sensitive to errors in the estimate o r  guess of Lm (Table 
2). Since eBH is linear in L,, the  relevant D-measure is directly proportional to the errors, and 
s_ymmetrical. Combining the information in Tables 1 and 2, one can compute the expected bias in 
OBH when a simple 5% upward adjustment is applied to L,,, (Table 3). Obviously, too large an 
adjustment simply replaces the negative bias in OB, with an unknown positive bias. 

Table 1. Percentage negative bias in L,,, as estimator 
of L,, as a function of  Xc, 0, and n. .  

0 
XC n. 2.0 3.0 4.0 

Tab5 2. 
in eBH 
(Biases in 

0.0 200 6.2 15.2 24.1 
500 4.0 11.2 19.2 

6.1 1,000 2.8 8.9 

0.5 200 3.1 7.6 
500 2 .o 5.6 

1,000 1.4 4.5 

0.75 200 1.6 3.8 6.0 
500 1 .o 2.8 4.7 

1,000 0.7 2.2 4 .O - 
h 

Percentage carat, i.e., L, D-yeasure biases 
d,”e to systematic errors in Lp of 6%. 
€IBH have same sign as errors in L,.) 

0 
XC 6 2 .o 3.0 4 .O 

0.0 1 1.5 1.3 1.3 
2 3.0 2.7 2.5 
4 6 .O 5.3 5.0 
8 12.0 10.7 10.0 

16 24.0 21.3 20.0 
32 48.0 42.7 40.0 

0.5 

0.75 

2.0 
9.6 
8.0 

1 3.0 2.1 2.5 
2 6.0 5.3 5.0 
4 12.0 10.7 10.0 
8 24.0 21.3 20.0 

16 48.0 42.7 40.0 
32 96.0 85.3 80.0 

1 6.0 5.3 5.0 
2 12.0 10.7 10.0 
4 24.0 21.3 20.0 
8 48.0 42.7 40.0 

16 96.0 85.3 80.0 
32 192.0 170.7 160.0 

Table 3. Percentage bias in $H when L, is set at 
L,,,/0.95, under various combinations of Xc, 0, and 
n . .  - 

0 
x c  n. 2.0 3.0 4.0 

0.0 200 
500 

1,000 
m 

0.5 200 
500 

1,000 
m 

0.75 200 
500 

1,000 
m 

-1.9 
+1.6 
+3.5 
+7.9 

+6.0 
+9.5 

+11.4 
+15.8 

+21.5 
+25.3 
+27.2 
+31.6 

-14.3 -25.1 
-8.7 -18.7 
-5.5 -14.6 
+7.0 +6.6 

-7.3 -18.4 
-1.7 -12.1 
+1.4 -7.9 

+14.0 +13.2 

+6.7 -5.3 

+15.7 +5.3 
+12.3 +1.6 

+28.1 +26.3 
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VARIABILITY IN ASYMPTOTIC LENGTH 

Another problem of systematic bias can arise if L,,, is substituted for L, in the Beverton- 
Holt o r  Ssentongo-Larkin formulas but  the deterministic von Bertalanffy model is incorrect. Specifi- 
cally, if the  growth trajectories of individual fish converge on different asymptotic lengths, Le., if 0x2 > 0, L,, can easily exceed the  expected asymptotic length, L,, when derived from large 
samples. As Powell’s model shows, the positive bias in L,, as an estimator of L, can be significant 
when uf is relatively large and 8 is not. Subsequent estimates of 0 will also be inflated. 

Under such conditions, the  maximum likeliho%d methods based on (2) will also give biased 
results, since L,,, is regarded as a lower bound on  L,,, . Partial remedies might be to base estima- 
tion o n  the more realistic likelihood arising from the stochastic model of Powell, o r  to estimate L, 
by some statistic reflecting the average size of the  largest fish seen in the catches. Using Powell’s 
likelihood would entail estimation of  uf as well as 0 and L,, and would require numerical approxi- 
mation of the  theoretical length frequencies. 

W e  note that because the regression method a t  (19) is based on fitting sample mean lengths to 
their expected values, which are unaffected by 02,  the estimates of L, it produces d o  not  suffer 
from these types of bias. In contrast, Powell’s estimators of 0 and L, are derived assuming c f  = 0, 
so are presumably biased when this assumption is violated. 

VARIABLE RECRUITMENT 

Variability in recruitment violates a basic assumption of the  methods, but is not particularly 
troublesome as long as the process is stationary, Le., there has been no systematic trend in R. When 
spawning is periodic and reasonably regular, and survival of pre-recruits is stable, the effects of 
variable recruitment can be smoothed out  by sampling the population on several occasions during 
a complete spawning cycle and pooling the individual length-frequency distributions. Distributions 
should be weighted by an index of population size, such as average catch per unit effort. When 
recruitment is trending u p  or  down the smoothing procedure is ineffective, and serious bias in 
estimates of 0 can result from use of any of the estimators, the bias being in the same direction as 
the trend in It. 

VARIABLE MORTALITY 

If the simple, constant mortality models are applied t o  length-frequency data when in fact 
mortality is variable, subsequent population assessments and yield computations based m the 
estimates of 0 and L, are likely to be biased. But since the robustness of the methods in such 
circumstances has not  been studied, the specific ramifications are unclear. 

than others, One kind is temporal variability in mortality, caused, for example, by a systematic 
change in fishing effort o r  stock vulnerability. Accommodating this kind of variability would be 
relatively difficult, because the  simplifying steady state conditions no longer exist. A second type 
of variation is that due  to  size (or  age) dependence of mortality. Assuming such size-specificity 
is time invariant, construction of steady-state population models and parameter estimation proce- 
dures is straightforward. We develop such procedures in the fohowing section. 

Nevertheless, several forms of variability may be identified, and some are more easily handled 

Estimating LengthSpecific Fishing Mortality Rates 

When aging of the catch is feasible, the analysis of cohort catch histories is one of the chief 
methods of estimating virtual populations and age-specific mortality rates. When it is not, but the 
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catch is known by length class interval, one may estimate population size and length-specific mortal- 
ity using a length-based analog of the  cohort methods (e&, Jones 1981;  Pauly 1984). These are 
applicable under more restrictive assumptions than cohort analysis. Recruitment must be approxi- 
mately constant,or smoothed out by pooling catch-at-length data, a growth model must be assumed, 
and mortality rates must be constant in time. 

The  method developed by *Jones and extended by Pauly is based on  the  deterministic von 
Bertalanffy growth model and a constant instantaneous natural mortality rate, M. Assuming M, the 
fishing mortality rate in the largest length class, F,, and the von Bertalanffy parameters K and L, 
are known, the length-based VPA proceeds recursively in the same manner as the  popular age-based 
methods, beginning with the  catch in the largest length class and working backward to estimate the 
sequence of length-specific population sizes and fishing mortality rates. Alternatively, if only I,, 
and the “exploitation rate” F t / Z t  in the  terminal length class are specified (where Z, = F, + M),  
estimates of M / K  and the remaining Fi/Zi may be found, there being in either case one parameter 
estimated for every data point, Le., every length-interval catch. 

In this section we adopt the same steady-state assumptions, and describe an alternative proce- 
dure for estimating length-specific mortality rates, growth parameters and population size jointly 
from a regression analysis of catch by  length class. This is simply an extension of the  age-based 
catch curve models developed by Ricker (1948, 1975) and frequently applied to  cohort analysis. 

ICdser (1908), Heincke (1913), and Baranov (1918). 

and knife-edge selection at  age t(!. Beyond t,, the  fishing mortality rate F is described as a step 
function of age t ,  namely 

Historically, in fact, the  age-based catch curves were preceded by length-based methods due t o  

We assume a steady state, with constant recruitment, R,  constant natural mortality rate M, 

F ( t )  = Fi 

ti < t < ti + 61 

. . . 4 1 )  

i = 1 , 2 ,  . . . ,  r 

where t i  = t, + 

tions, the number of fish caught in the i-th age class, ( t i ,  ti + b i ) ,  during a time period of duration r ,  
is 

2 
j =  1 

6j -1  and the 6 s  are successive age increments (6, = 0). Under these condi- 

1 

= Ci, say. 

Let the 6 i  correspond, by virtue of a bijective growth model, to a specific sequence of  length inter- 
vals into which the  catch is conveniently grouped, say the  sequence (wi, wi + Ai) ,  i = 1, 2 , .  . . , r ,  

where wi = L, + 
correspondence is established by the relation 

‘c 
j =  1 

Aj-l = P i  - A i / 2  and A, = 0. If the von Bertalanffy model is used, the  
- 

. . . 4 3 )  
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Making the subsitution of  length for age, we have 

where Zi = Fi + M, 0i = Zi/K,  and w, = A, = Z, = 0.  
If the  fishing mortality rate is constant after recruitment, (44)  reduces t o  

. 44) 

. . . 45) 

where C. /T  = R F/Z is the constant total catch in a unit time interval. Alternatively, (45)  may be 
derived from the  length density a t  (2), i.e., 

. . . 46) 

= TF - 7 + ' , g (Q)dQ 
Z 

where N ( P )  is the  number of  fish of length P in the steady-state population. Recalling the earlier 
discussion on maximum likelihood methods, C,/C- is seen to be the probability that  a fish taken 
a t  random from the  population will be in the i-th length class interval, a function of L,, L,, and 
Z/K, as in (29). 

As formulated in (44) ,  t h e  length-based catch model is a set of r equations in r + 4 unknown 
parameters (R. M, K, L,, and the  Fi, i = 1 , 2 ,  . . . , r), so additional restrictions must be imposed t o  
permit estimation. As usual, this may be done by making further structural assumptions about 
fishing mortality. One possibility is to assume that fishing mortality rates are constant and distinct 
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within m < r - 4 segments of the  catchable length range. Another is to relate fishing mortality rate 
to length class by a particular parametric model, such as the quadratic F ( i )  = a + bi + ci2. In the 
latter event the problem is reduced to estimating seven parameters from the r observed length class 
catches. 

eters can be estimated by iteratively reweighted least squares. When weights are set equal to the 
expected catches, this amounts to minimizin the familiar Pearson chi-square statistic. For large 
samples, this statistic will be distributed as X5 with r - q - 1 degrees of freedom. The resulting 
parameter estimates will also be maximum likelihood estimates, and if a Gauss-Newton algorithm is 
used in the optimization an estimate of their asymptotic covariance matrix will be readily available. 

For some purposes individual estimates of M ,  K and the fishing mortality rates may not be 
necessary, and in this event the catch models can be parameterized in terms of R ,  Id,, and the ratios 
M/K and F,/Zi, i = 1,2, . . . , r. (In the structured mortality model, let Fi/Z, = a' + b'i + c'i2). In 
(44), for example, this is accomplished by replacing Oi  by the product 

With proper structuring, so that  adequate degrees of freedom are available, the q-model param- 

In the models just described, it is assumed that the  entire catch is taken by a single gear, so 
that  estimating the length-specific fishing mortality rates is equivalent to  estimating the selectivity 
curve for that gear with respect to the species under study. If  more than one gear is significantly 
involved, then the catch data from all of them must be combined (properly weighted), and the 
analysis applied to  the aggregate information. A s  in age-based VPA methods, gear-specific fishing 
mortality rates can be computed by allocating the  fishing mortality estimate for each length class 
in proportion to the associated catch by each gear. 

ties. Nevertheless, we would speculate that length-specific fishing mortality rates will not be iden- 
tifiable, o r  estimable with much precision, unless they vary fairly dramatically with length. Further, 
separation of natural mortality and the fishing mortality rates and useful precision in the mortality 
rate estimates will likely require that a substantial fraction of the total mortality be due t o  fishing. 
Thus, the  model will probably not  estimate fishing mortality rates well when spplied to lightly 
exploited stocks. 

lightly exploited stocks, a regression model may be developed to estimate I,,, K and a set of length- 
specific natural mortality rates. Taking Ci to be a small sample proportional to 7 and the steady 
state population size in the i-th length class, we will have, corresponding to  (44) ,  the model 

We have not yet applied these procedures, nor investigated lheir robustness and other proper- 

However, when adequate length-frequency data are available from virgin populations or  very 

Mi MI- 1 , -  

. . . 48) 
i 

I,, - w 

where 6 is the proportionality constant and Mi is the instantaneous natural mortality rate in the i-th 
Ien@h interval. Again, further restrictions on  the parameters are necessary to allow estimation. 
Structural relationships among the Mi could be introduced, as above. I f  the segmented mortality 
model is adopted, such independent infomiation as average size a t  maturity could be used to  define 
points of  change in the model. Note that the steady-state recruitment level, I t ,  is no longer estim- 
able, and difficulty in estimating the mortality parameters can be expected unless the length-specific 
changes in mortality rate are striking. When variation in natural mortality rates is negligible, only 
L, and 8 = M/K are estimable from the  length-frequency information. 
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Evaluation of Methods 

Four of the constant-mortality methods described above were compared by Monte Carlo 
procedures in situations where both 0 and L, were to be estimated from length-frequency data 
and L, was assumed known. Specifically, performance of the following procedures was examined: 

(i) L, was set equal to  Lmax, and the classical Beverton-Holt estimator then applied to 
estimate 8. 

(ii) Powell’s method of moments was applied to estimated L, and 8, given the sample mean 
and variance of P .  

(iii) The weighted regression method, based on  the linear relationship be tween8 and L,, 
was used to estimate L, and 0. 

(iv) The continuous maximum likelihood method was applied t o  estimate L, and 8. 
For  specified values of X, and 8 samples of lengths were drawn from (6) by the inverse trans- 

formation method, a well-known Monte Carlo procedure. Let u be a random variate uniformly 
distributed on  ( 0 ,  1). Then a corresponding random variate from (6). x,  is uniquely determined by 

1 
ii 
- 

. . . 4 9 )  x = 1 - ( 1  - X c )  (1 - u )  

A uniform random number generator was used t o  produce sets of ui and the associated random 
lengths, x i ,  i = 1.2,. . . , n.. Except when the level of aggregation was being studied, experiments 
were conducted using Lhe raw gencrated lengths. ‘I‘hus D continuous distribution of Lhe sample 
variates was assumed (all A i  = 0). Recall that use of the auxiliary variable, X ,  is equivalent t o  scaling 
the length axis so that L, = 1.0. 

bias (B), and the coefficient of error (CE). For a particular parameter 8 ,  we define these as 
Performance of the  estimators was measured by the coefficient of variation (CV), the relative 

/- 
C V ( i )  = - , 

8 

Bias ( G )  
B ( i )  = ___ , 

H 

. . , 5 0 )  

. . f 5 1 )  

and 

where MSE ( i )  is the mean squared error of G. For each set of experimental circumstances, these 
measures were computed with respect to  L, and 6 on the basis of 200 replicate samples. Trial 
simulations showed that this number of replicates was sufficient to describe the sampling distribu- 
tions of the estimators accurately. 

interest were 1 - X,, the proportion of the total possible length range selected in the sample, the 
level of aggregation in the data, and, in the regression method, the number of partitions and type 
of weighting used. Below we describe each particular simulation experiment, and the chief results. 

Experimental variables of primary interest were the level of 8 and the sample size, n.. Of  lesser 
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Experiment 1 

The performance of the four estimation procedures was compared at three levels of  0 (2.0, 
3.0.4.0) and three levels of n. (200,500,1,000), with Xc = 0. 

Results: The Beverton-Holt method produces estimates with the lowest CV, but these esti- 
mates have a substantial negative bias, especially with small n. and large 0 (Tables 4 and 5). The 
Powell method, on the other hand, computes estimates with the highest CV of any method exam. 
in&. but generally with the smallest B (positive) as well. Estimates derived by the regression 

Table 4. Performance measures for various estimators of L,, as a function of 6 and n., 

0 
2 .o 3.0 4.0 

n. Method CV B CE CV B CE CV B CE 

200 BH 
P 
R 
ML 

5 00 BH 
P 
R 
ML 

1,000 BII 
P 
R 
ML 

3.3 
10.7 
5.8 
4.7 

2.2 
6.6 
3.4 
2.6 

1.7 
4.6 
2.4 
1.8 -- 

-5.9 6.8 
2.1 10.9 

-1.0 5.9 
-1.7 5.0 

-3.7 4.3 
0.8 6.6 

-0.4 3.4 
-0.7 2.7 

-2.7 3.2 
-0.1 4.6 
-0.4 2.4 
-0.6 1.9 

6.1 -15.3 
15.9 1.8 
10.3 -5.3 
10.5 -3.2 

4.0 -11.4 
11.2 1.7 
6.6 -1.9 
6.0 -1.1 

3.5 -8.6 
7.3 1.2 
5.0 -0 .8  
4.5 -0.2 

16.5 
16.0 
11.6 
11.0 

12.1 
11.3 
6.9 
6.1 

9.3 
7.4 
5.1 
4.5 

Table 5. Performance measures for various estimators of 0, as a function of Band n. .  

7.1 -23.2 24.3 
39.5 12.4 41.4 
19.2 -7.2 20.5 
25.2 3.7 25.4 

5.8 -19.2 20.1 
13.0 1.3 13.0 
11.1 -4.2 11.9 
9.6 -1.5 9.7 

4.6 -16.7 17.3 
11.6 0.8 11.7 
7.9 -3.8 8.8 
7.5 -1.5 7.7 

e 
2 .o 3.0 4.0 

n. Method CV B CE CV B CE CV B CE 

200 BH 
P 
R 
ML 

500 BH 
P 
R 
ML 

1,000 BH 
P 
R 
ML 

8.7 -9.0 12.5 
20.0 3.5 20.3 
12.2 -3.0 12.6 
12.2 -3.0 12.6 

5.0 -5.0 7.1 
12.2 1.5 12.3 

7.1 -0.5 7.1 
7.1 -1.0 7.1 

5.0 -4.0 6.4 
8.7 -0.5 8.7 
5.0 -1.0 5.1 
5.0 -1.0 5.1 

8.8 -20.3 22.2 
24.0 3.0 24.2 
16.7 -8.0 18.5 
17.3 -4.3 17.9 

5.8 -15.0 16.1 
17.0 3.0 17.3 
10.5 -2.7 10.9 
10.5 -1.3 10.6 

5.8 -10.7 12.1 
11.1 2.3 11.3 
8.2 -0.3 8.2 
7.5 0.3 7.5 

9.7 -28.5 30.1 
54.8 11.5 57.5 
28.6 -9.0 30.0 
36.3 5.8 36.8 

7.5 -23.8 24.9 
18.0 2.0 18.1 
16.4 -4.8 17.1 
13.9 -1.5 14.0 

6.1 -20.7 21.6 
15.4 1.3 15.5 
10.6 -5.0 11.7 
10.3 -2.0 10.5 



method, with optimal weighting and 10 partitions, appear to  have slightly greater bias than the 
maximum likelihood estimates (negative in both cases) and the  Powell method, but  are far superior 
to  the Beverton-Holt estimates in this regard. In terms of precision, the regression method is almost 
as good as the  maximum likelihood method. 

As expected, the  maximum likelihood method, among the estimators examined, generally 
has the best overall performance in ternis of mean squared error and CE, followed closely by the 
regression method. The maximum likelihood estimates of L, almost always had the smallest CE. 
At cf = 2, the Beverton-Ilolt procedure performed relatively well in terms of CE, virtually on  a par 
with the  maximum likelihood and regression methods, but it did comparatively poorly a t  higher 
values of 0. At 0 = 2, the Powell estimates generally had the largest CE of any method; otherwise, 
Beverton-Holt estimates tended to have the  largest CE. 

estimated. A s  expected, increasing 11. uniformly reduces B, CV, and CE. 
In all methods, the effect of increasing 0 is to increase B, CV, and CE for both parameters 

Experiment 2 

The effects o n  Beverton-Holt estimates of using a bias-corrected estimate of L, were studied. 
In each generated sample, L,,, was increased by the theoretical bias term on the right side of (40), 
and this corrected estimate of L, was used as a basis for estimating 0. 

Results: Adjustment of L,, for bias resulted in a significant reduction in B (LmBp!, as 
anticipated, and also in B (eB,), and increases in CV for both parameter estimates. The Lh s were 
changed very little by the adjustment. In practice, the bias correction procedure would have t o  be 
implemented by  iterative solution of (39) and (40), Le., the bias term itself would have to he esti- 
mated, and the properties of the estimators would he affected. 

h 

Experiment 3 

The effects of X, on the  performance of all methods was studied, with n. fixed a t  200, and 8 
at 3.0. Samples were drawn from (6) with X, set a t  three levels (0.0,0.5,0.75) and estimators were 
applied with X, assumed known. 

Results: As expected, increasing the value of X, (with n. unchanged) reduced B, CV, and CE 
for L, in all methods, but had no effect on estimates of 0. With respect to  estimation of I,,, 
increases in X, have the same effect _as increasing sample size with X, fixed. On the other hand, as 
pointed o u t  earlier, distributions of 0 are unaffected by the magnitude of X, when X, is known. 
The amount of information about 0 conveyed by the sample depends only on 0 and the sample size. 
(Note, for example, that  in the  regression model if L, is known, 0 is completely determined by the 
slope of the regression line, the expected value of which is independent of X,.) 

Experiment 4 

The effects of weighting schemes and the number of partitions on  estimates produced by the 
regression method were studied. Weights were determined in three ways: (1) the complete covariance 
matrix was inverted, (2)  the diagonal elements only were inverted, and off diagonal elements neg- 
lected and (3) uniform weights were assigned. Under the diagonal weighting scheme, regression 
estimates were computed with both 10 and 20 partitions. 

Results: Use of  the  full covariance weighting produced the most precise estimates, as expected, 
but  these estimates had greater bias than those produced with either diagonal o r  uniform weighting. 
However, the fully weighted estimates had the lowest CEs. When 10 partitions are used, diagonal 
weighting, or even equal weighting, appears to he satisfactory. 

the  expense of greater bias and resulting estimates had smaller CEs. 
Similarly, increasing the number of partitions (points) in the  regression reduced the CVs a t  
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Experiment 5 

Effects of aggregation were assessed by comparing estimates derived using continuous data 

Results: In most cases, aggregation at  this level slightly increased the CVs and reduced relative 
(i.e., exact lengths) with those computed from data  grouped by intervals of width I A , / l O O .  

biases (except for increases in bias of Powell estimates). The CEs were increased slightly in all 
methods except the Beverton-Holt, in which case they were reduced. (Note that among the esti- 
mators studied, those o f  the Beverton-Holt procedure are distinguished by having their CEs com- 
posed mostly of bias. In the other methods, the variance dominates.) 

Conclusions and Recommendations 

Each of the  methods outlined here has attributes which make it the  method of choice in 

The classical estimator of 0 due to Beverton and Holt, for example, is the only one applicable 
particular circumstances. 

when the available information is limited to  the mean length in a sample of fish above I+ and an 
independent estimate of Id=. The difficulty with the method, of course, is that considerable bias 
in O B H  will result unless I,, is known accurately. As discussed earlier, estimating I,, by I,,,, is 
advisable only if  a very large sample has been measured. Alternatively, the estimate of L, (and K )  
can be derived independently by fitting the von Bertalanffy model to tag recapture data o r  to  read- 
ings of hard parts, and then substituted into the Beverton-Holt estimator. Here, too, I,, is rarely 
determined with sufficient accuracy unless fish are aged, o r  tagged and recovered, over lhe entire 
lenb4h range and an asymptote is clearly evident. These conditions are difficult to  achieve when 
there is a low probability that a tagged fish will survive long enough to  approach the asymptotic 
lenL4h and be recaptured, or  when otoliths and other hard structures are difficult to  read and inter- 
pret in old fish. The result is often serious bias in estimates of L, and K.  However, since these 
biases are inversely related, some compensation occurs when the pair of parameter estimates is 
inserted into the Beverlon-Holt formula to compute Z. 

I f  the variance among lenL4hs in the sample is known in adtlition to  the mean, a consideral)lc 
improvement is a f foded  by Powt:ll’s method of moments, which provides joint estimates of tf and 
I., without reliance on independent information. If  tag recapture statistics or  otolith data are 
available, they may then be used lo estimate K with I,, fixed at  1,; . An estimate of Z follows 
immediately. 

most dependable of the constant-mortality methods in practice. In statistical terms, it is very effi- 
cient, giving parameter estimates with almost minimum ineiin squaretl error. It also is inseiisitive 
to assumptions on  J,=, which may be regarded either as an absolute upper bound to length,or as the 
expected asymptotic length in a stochastic von Bertalanffy growth process. Among the simple 
methods studied, only the Beverton-Holt procedure shares this robustness with respect to I,=. 

means of judging the appropriateness of underlying model assumptions; serious violations can be 
detected directly by comparing observed mean lenglhs a l ~ v e  the spccificd cul-off points with lhose 
predicted by the model. 

Perhaps the  only drawback t.o the regression method is the need t o  compute the covariance 
matrix A to achieve full efficiency. However, little is sacrificed by weighting simply by the partition 
sample sizes. 

From a theoretical standpoint, the maximum likelihood procctdure is highly attractive, yielding 
estimators with greatest asymptoLic efficiency and other desirable properties. ilowever, it is not 
robust to violations of the assumption on L,, and this has apparently been a source of difficulty 
in applications. In a number of cases, searches for L, have converged on I,,, , suggesting overesli- 
mation of and 8. Use of Powell’s stochastic model (or  a sitital)le variant) in a maximum likeli- 
hood context might be more appropriate, but we have not lrietl it. 

P 

The weighted regression mel.hod is attractive for several reasons, and has proven to  be the 

Another reason for recommending the regression method is that it provides a simple graphical 



14 

In the methods outlined here, estimators are based on  length-frequency data entirely, or on  
combinations of length-frequency data and other information, applied sequentially. Where con- 
sistent information on  growth and mortality is available from several independent sources, e.g., 
from tagging, otolith analysis o r  length-frequency samples, it may also be used jointly to estimate 
the parameters of a common steady-state model. A maximum likelihood approach is most appro- 
priate here, provided one can specify the forms of the various error distributions. An ancillary 
benefit of joint estimation is that  the  relative contribution of each type of information toward 
the mean squared errors of the parameter estimates can be determined, providing useful guidance 
for research planning and allocation of resources. Examples of joint estimation of growth parameters 
from length-increment data and age-length data  have been reported by Laurs e t  al. (1983), who 
combined tag recapture results with counts of daily increments o n  sagittae of North Pacific alba- 
core, by Kirkwood (1983), who pooled tag recapture data  with information on “aged” length- 
frequency modes in southern bluefin tuna and by Morgan (Part I, this vol.). Extension of such tech- 
niques to joint estimation of growth, mortality and recruitment parameters in more general con- 
texts is straightforward. 
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