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ABSTRACT 

A new method of stock assessment, dynamic response analysis, allows a 
qualitative assessment of stock status relative to its level of maximum net 
productivity to be carried out with minimal data. This paper evaluates the 
performance of dynamic response analysis on a simulated population under 
variable conditions with uncertain data. In the no-harvest case the data consist 
simply of a temporal sequence of relative population sizes. Dynamic response 
analysis is most sensitive to the number and precision of the population estimates 
and least sensitive to environmental variability and the intrinsic population growth 
rate. Significance levels must be chosen carefully, since some combinations of 
parameters and error levels result in an unacceptably low proportion of correct 
assessments. Dynamic response analysis can be a useful stock assessment technique 
for the management of marine mammals, but attention must be paid to the 
quantity and quality of the data. 

Key words: dynamic response analysis, marine mammal management, Marine 
Mammal Protection Act. 

Dynamic response analysis is a method of stock assessment applicable to a 
population for which recent records of abundance estimates and harvests are 
available. The method was developed recently at  the Southwest Fisheries Center, 
National Marine Fisheries Service, in response to monitoring obligations under 
the Marine Mammal Protection Act. It is, however, a general management 
technique. Dynamic response analysis determines whether a population is above 
or below its maximum net productivity level (MNPL). The theory behind the 
analysis is presented by Goodman (1988). This paper explores the amount and 
precision of data required for dynamic response analysis to work satisfactorily. 
The third paper in the series applies the analysis to several northern elephant 
seal populations (Boveng et al. 1988). 

One application of dynamic response analysis utilizes an index of population 
abundance over time, augmented by harvest data, if any, to determine whether 
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the population growth rate is accelerating or decelerating. A number of potential 
sources of error could affect the assessment. Environmental conditions may vary, 
for example, or there may be uncertainty in estimating population size. Before 
dynamic response analysis is used as a management tool, its robustness to the 
kmds of data likely to be found in actual practice should be evaluated. The 
sensitivity of dynamic response analysis to variable and uncertain data is inves- 
tigated in this paper by analyzing a simulated population with known variability 
and measurement error. 

METHODS 

The robustness of dynamic response analysis is measured by estimating, under 
various conditions, the probability that the analysis will give a correct assessment 
of population size relative to its MNPL. In particular, dynamic response analysis 
is applied to a depleted population recovering in the absence of harvest. The 
density-dependent dynamics follow the logistic model. For the no-harvest case, 
the data consist of estimates of population size (or an index of relative population 
size) spanning some number of years. The following questions are posed: (1) 
How many population estimates (censuses) will be required for dynamic response 
analysis to work reasonably well? (2) How precise must the population estimates 
be? (3) How sensitive is the method to the growth rate of the population? (4) 
How sensitive is the method to environmental variation? ( 5 )  How powerful is 
the method when a significance test is applied? While some details of the results 
will depend on the specific properties of the logistic model, there are general 
answers to these questions that will apply, regardless of details, for a wide range 
of forms of density dependence. 

To simulate errors in estimating population size, the sequence of population 
estimates is chosen from Gaussian distributions whose means are the actual 
population size (following deterministic logistic growth) and whose variances, 
expressed as the coefficient of variation, are set as an input parameter. To simulate 
environmental variability, the carrying capacity parameter K in the logistic model 
is chosen, at each time step, from a Gaussian distribution whose variance is set 
as an input parameter. Since, in the logistic model, the population’s present 
growth rate is determined by the difference between present population size and 
the maximal population size at carrying capacity, this variation in carrying 
capacity will cause the observed growth rate to fluctuate. The mean carrying 
capacity is fixed at unity. 

Given a sequence of population estimates with some variability, the status 
of the population relative to the logistic MNPL of 0.5 may be determined by 
fitting a second-degree polynomial to the population estimates and examining 
the sign of the second-degree regression coefficient (Goodman 1988). A negative 
coefficient indicates that the growth rate is decreasing, and hence that the 
population is above the MNPL, while a positive coefficient indicates the opposite. 
Whether the assessment is correct or not depends on whether the midpoint of 
the deterministic growth sequence is above or below the MNPL. Even in a 
deterministic system without measurement error, ambiguity about the assessment 
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of a sequence of population estimates arises when the sequence includes the 
MNPL. In this paper the midpoint of the sequence has been chosen as a reference 
point; this ensures that a population trajectory including the MNPL will be 
assessed in conformity with the majority of the population estimates it contains. 
Each simulation was repeated 1,000 times, and the proportion of correct as- 
sessments was taken as an estimate of the probability that dynamic response 
analysis would be correct at that population level. In this implementation of 
dynamic response analysis, therefore, no statistical test is performed, but the 
proportion of correct assessments is analogous to the power of the techniqu- 
that is, its ability to reject a false case. 

The decision strategy outlined above, which considers the direction of the 
population growth curvature only, is the simplest application of dynamic response 
analysis. Because it is easy to understand and apply, this decision strategy has 
been employed in the following simulations to assess relative sensitivity. In actual 
practice, however, dynamic response analysis is unlikely to be used in such a 
simplistic manner. Other kinds of information will usually be available and, if 
so, can be used to increase the power of the analysis considerably. For example, 
rough estimates of past abundance can help interpret current estimates, even 
though past estimates are not sufficiently quantitative to be used as part of a 
dynamic response analysis. 

As one illustration of a more realistic application of dynamic response analysis, 
the results of a second series of simulations with a more refined decision process 
are presented. In these simulations it is assumed that something is known of 
the precision of the population estimates, and both linear and polynomial 
regressions are computed for each temporal sequence of estimates. The mag- 
nitudes as well as the signs of the linear regression coefficient (the slope) and 
the second-degree polynomial regression coefficient (the curvature) are considered. 
If the slope is negative, or if it is not significantly different from zero, this is 
taken as evidence that the population is above the MNPL. If the slope is 
significantly positive, the curvature then indicates whether the population is 
below the MNPL (second-degree polynomial regression coefficient significantly 
positive), near the MNPL (coefficient not significantly different from zero), or 
above the MNPL (coefficient significantly negative). The null hypothesis in each 
case is that the regression coefficient is not significantly different from zero. In 
each simulation the parameter values are used to generate the true case, and we 
are evaluating the ability of dynamic response analysis to recognize, after eval- 
uating the significance of the two coefficients, the true case as one of these three 
levels. 

For the simulations reported here, the region “near the MNPL” has been 
defined as the range of population sizes from 0.4 to 0.6 (as a fraction of K ) .  
Within this range, if dynamic response analysis determines that the population 
is either below or near the MNPL, the assessment is tallied as correct. Above a 
population size of 0.6, only determinations of above MNPL are counted as 
correct. This classification represents a biologically conservative management 
approach in which the standards for deciding that the population is above the 
MNPL (and harvesting, therefore, may be permitted) are more stringent than 
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Figure 1. The proportion of correct assessments by dynamic response analysis as a 
function of population size and N, the number of population estimates used in each 
assessment. Values of other parameters are the coefficient of variation of the population 
estimates (CV) = 0.05, the logistic parameter of maximum intrinsic population growth 
rate ( r )  = 0.15, and the standard deviation of the variation in carrying capacity (UK = 
0.0). 

the standards for deciding that the population is below the MNPL (and pro- 
tection, therefore, is called for). Other strategies are of course possible. 

RESULTS 

The results of the simulations are presented in Figures 1-7. The probability 
of a correct assessment by dynamic response analysis is plotted as a function of 
population size. Each figure typically shows that dynamic response analysis does 
well at low population levels, but shows a decline near the MNPL (0.5) to 
about 0.5. This is not surprising. At the MNPL the second derivative of the 
population growth curve is changing in sign, so a sequence of population estimates 
centered on this point is about equally likely to show positive as negative 
curvature. The goal is to confine this decline in assessment accuracy to as narrow 
a range of population sizes as possible. 

Figure 1 presents three curves which show the effect of different numbers of 
data points. The parameter N represents the number of population estimates 
available. The lowest curve, for N = 5 ,  shows that a sequence of five population 
estimates is not sufficient, at a value of r = 0.15, for dynamic response analysis 
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Figure 2. The proportion of correct assessments by dynamic response analysis as a 
function of population size and CV, the coefficient of variation of the population estimates. 
Values of other parameters are N = 10, r = 0.15, and uK = 0.0. 

to work satisfactorily except at very low population levels. There is considerable 
improvement in the ability to detect a population's status correctly with a 
sequence of 10 population estimates (middle curve in Fig. 1). With 20 censuses, 
the technique works very well except in a narrow band near the MNPL. Thus, 
the analysis is relatively sensitive to the length of the time-series of population 
estimates. 

Figure 2 presents four curves which contrast the effects of the precision of 
the population estimates. Precision is measured by the coefficient of variation 
(CV), the ratio of the standard deviation to the mean. When the coefficient of 
variation is very low (0.01)-that is, with highly precise population estimates- 
the technique is definitive except in a narrow band near the MNPL. This band 
rapidly expands as the coefficient of variation increases to 0.05, 0.1 and 0.15 
(Fig. 2). As discussed later, even a coefficient of variation of 0.15 is considered 
fairly precise for many types of population estimation. Therefore, the simulations 
indicate relatively high sensitivity to the precision of the population estimates. 

Figure 3 presents curves which show the effect of different rates of population 
growth. The logistic parameter r, which is used here to indicate population 
growth rate, is the maximum growth rate the species can achieve under un- 
crowded conditions and abundant resources. The unit of time is the interval 
between population estimates. In the logistic model the growth rate declines 
linearly with density, so that at the MNPL of 0.5 the growth rate will be ~ / 2 .  
Figure 3 shows that populations capable of more rapid growth will be analyzed 
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Figure 3. The proportion of correct assessments by dynamic response analysis as a 
function of population size and r, the logistic parameter of maximum intrinsic population 
growth rate. Values of other parameters are N = 10, CV = 0.05, and UK = 0.0. 

correctly by dynamic response analysis more often than populations with lower 
growth rates. 

Figure 4 shows the effect of environmental variability on dynamic response 
analysis. The variability is measured by the standard deviation of the carrying 
capacity CTK. In these simulations it is assumed that there is no error in the 
estimation of population size. As the environment becomes more variable, 
dynamic response analysis is less effective above the MNPL, but even at the 
highest level of environmental variability shown here (CTK = 0.15), the probability 
of a correct assessment remains high except in the vicinity of the MNPL. 

In Figure 5 the stochastic effects of estimation error and environmental vari- 
ability are combined. Each curve has a specified precision to the population 
estimates, measured by the coefficient of variation, and a specified variation in 
the environment, measured by the standard deviation of the carrying capacity. 
Three cases, ranging from small (CV = 0.05, CTK = 0.05) to large (CV = 0.15, 
CTK = 0.15) variability, are shown. As expected, the proportion of correct as- 
sessments decreases with increasing variability in both parameters. 

As discussed under Methods, the simulations reported in Figures 1-5 simply 
use the sign of the second-degree polynomial regression coefficient as the decision 
statistic. Figures 6 and 7 include the results of a more refined application of 
dynamic response analysis, using significance tests with both linear and poly- 
nomial regressions. These simulations show how a knowledge of the precision 
of the population estimates can be used to increase the power of the analysis 
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Figure 4. The proportion of correct assessments by dynamic response analysis as a 

function of population size and uK, the standard deviation of the variation in carrying 
capacity. Values of other parameters are N = 10, CV = 0.0, and Y = 0.15. 

greatly. They also provide more realistic estimates of the probability that dynamic 
response analysis will assess the population correctly. 

Figure 6 compares two curves given a sequence of 10 population estimates, 
an intrinsic population growth rate of 0.15, and a coefficient of variation of 0.3. 
The lower curve with open triangles is similar to the curves presented in Figures 
1-5; that is, it relies on the sign of the second-degree regression coefficient only. 
Because the coefficient of variation of the population estimates is relatively high 
(CV = 0.3), the curve remains near 0.5 over a wide range of population sizes. 
Under these conditions, in other words, the assessment is little better than chance. 
The upper curve shows the improvement possible by using significance tests on 
both the linear and polynomial regression coefficients. The significance (a) levels 
were set at 5% for the linear regression and at 10% for the polynomial regression. 
With this procedure, dynamic response analysis is able to assess the status of 
the population correctly over a wide range of population sizes, even with relatively 
imprecise population estimates. 

Significance levels must be chosen carefully, however, to avoid a drop in the 
proportion of correct assessments. Figure 7 shows a comparison among three 
curves, using an example when only five population estimates are available. 
With such a short time-series (N = 5 ) ,  the sign of the second-degree regression 
coefficient alone is not very informative, even though the population estimates 
are precise (CV = 0.05). This is shown by the curve with open triangles in 
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Figure 5 .  The proportion of correct assessments by dynamic response analysis as a 

function of population size, precision of population estimates (CV), and environmental 
variability ( u K ) .  Values of other parameters are N = 10 and r = 0.15. 

Figure 7 (a similar curve is shown in Fig. 1) which is again near a proportion 
of 0.5 correct assessments over a wide range of population sizes. The curve with 
closed circles shows the performance of the more “advanced” version of dynamic 
response analysis, using significance levels of 5% and 10% for the linear and 
polynomial regressions, respectively, as in Figure 6. In this case, however, the 
analysis does well at low population levels, drops sharply at population sizes 
above 0.6, and then increases to become high again at population sizes near K .  
This effect is due to the relative strengths of the “signals” given by the linear 
and polynomial regression coefficients. In the range of population sizes from 
about 0.6 to 0.8, the slope is usually significant but curvature is not, indicating 
(incorrectly), that the population is near the MNPL. 

When the significance test for the detection of slope is made more stringent 
(a = 0.01) and the significance test for the detection of curvature more lenient 
(a = 0.2), the sharp drop in the proportion of correct assessments can be avoided, 
as shown by the curve with open circles in Figure 7. This latter choice of 
significance levels leads to satisfactory performance by dynamic response analysis 
over a wide range of population sizes, as before, and a considerable improvement 
over relying on the sign of the polynomial regression coefficient alone. Further 
simulations have shown that the optimal choice of significance levels depends 
mainly on the number and precision of the population estimates. The nature of 
the dependence appears to be complicated and no simple rules are offered. 
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Figure 6. Comparison of the proportion of correct assessments by two different 

implementations of dynamic response analysis. Values of parameters are N = 10, CV = 
0.3, r = 0.15, and UK = 0.0. Curve with open triangles relies on the curvature of the 
population growth trajectory only. Curve with closed circles uses a decision procedure 
which tests the significance of the slope at the 5% level and of the curvature at the 10% 
level. 

However, given the number and precision of the population estimates, optimal 
significance levels can be found using simulations, as in Figures 6 and 7. 

DISCUSSION 

The simulations described in this paper examine the robustness of two par- 
ticular implementations of dynamic response analysis under variable conditions 
with uncertain data. The results presented in Figures 1 4  show that dynamic 
response analysis is more reliable (1) with a longer sequence of population size 
estimates, (2) with more precise population estimates, (3) with populations 
capable of higher intrinsic growth rates, and (4) with lower environmental 
variability. The qualitative results for these related factors agree with intuition 
because each either provides a stronger “signal” about pondation growth rate 
or allows that signal to be more clearly perceived. 

The second set of simulations gives more quantitative estimates of the prob- 
ability that dynamic response analysis will correctly determine whether a pop- 
ulation is above or below its MNPL. Most of the parameter values in the 
simulations were chosen to approximate values which could be met in the actual 
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study of large mammals. It is dear that dynamic response analysis is capable of 
telling whether an unharvested population is above or below its MNPL merely 
from an historical sequence of abundance estimates. However, it is also clear 
that data used in a dynamic response analysis will have to satisfy fairly stringent 
conditions before much confidence can be placed in the result. 

Probably the most stringent data requirement is a precise method of estimating 
population abundance (or an index of relative population abundance). It is 
hardly surprising that a method of stock assessment which relies, as dynamic 
response analysis does, on the differences in estimated abundance in successive 
time periods should be very sensitive to the precision of those abundance esti- 
mates. Figure 7 shows that, with r = 0.15 and as few as 5 estimates, dynamic 
response analysis can perform satisfactorily if the coefficient of variation is 0.05 
or less. This is rather high precision. Most field studies report less precise estimates 
of abundance (higher coefficients of variation). Table 1 summarizes the precision 
of some direct counts of abundance which have been reported for large mammals. 
All the reported coefficients of variation fall above 0.05, although precision in 
the range 0.05-0.1 is not impossible to achieve under the right conditions. 
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Table 1. Precision of direct estimates of abundance for some populations of large 
mammals. Some of the values for the coefficient of variation (CV) are derived while others 
are estimated empirically. 

Species Method cv Reference 
Sea lion Replicated ground 0.06 Calculated from 

Moose Aerial counts under 0.1 LeResche and 

Gray whale Derived from shore 0.1 Reilly et al. 1983 

counts of live pups 

excellent conditions Rausch 1974 

DeLong et a l a  

counts during 
migration 

Large ungulates Derived from aerial 0.11-0.18 Laws et al. 

Sea otter Replicated aerial 0.13 Exesb 

Porpoise Derived from aerial 0.16 Smith 198 

Sperm and fin Derived from catch 0.16-0.46 Allen and 

(6 species) quadrat counts 

strip transects 

line transects 

1975 

whales statistics Kirkwoodc 
White-tailed deer Helicopter censuses 0.2 Beasom 1979 
Bottlenose dolphin Aerial strip transects 0.42-0.67 Leatherwood et al. 

walrus Aerial strip transects 0 .254 .99  Estes and Gilbert 
1978 

1978 

aDeLong, R. L., G. A. Antonelis and E. Jameyson. 1982. California sea lion pup 
production, premature birth, and neonatal mortality on San Miguel Island, 1969-1981. 
Unpublished manuscript. National Marine Mammal Laboratory, Northwest and Alaska 
Fisheries Center, National Marine Fisheries Service, N O M ,  7600 Sand Point Way, N.E., 
Seattle, WA 98 1 15. 

Estes, J. A. 1982. Aerial surveys of the California sea otter population, winter 1981- 
82. Unpublished manuscript. Center for Marine Studies, University of California, Santa 
Cruz, CA 95064. 

‘Allen, K. R., and G. P. Kirkwood. 1976. Is experimental management of whale 
stocks practicable? Paper ACMRR/MM/SC/Cmt. 3, FA0 Scientific Consultation on 
Marine Mammals, Bergen. 

Indirect methods of abundance estimation, such as estimates derived from mark- 
recapture data, will usually be less precise than the direct counts shown in Table 
1. Fortunately, low precision can be compensated for by a longer temporal 
sequence of abundance estimates. Figure 6 shows, for example, that a coefficient 
of variation of 0.3 can still give quite satisfactory results if there are 10 abundance 
estimates rather than only 5. A coefficient of variation of 0.3 is within a practical 
range of precision for many population studies. 

It is important to recognize that the variation in abundance estimates simulated 
here is due, in actual practice, to a combination of many factors, including 
counting errors, differences among observers, variation in sighting conditions, 
and variation in availability. It could be estimated by a replicated series of counts 
under actual conditions. However, this measurement error is a minimum estimate 
of the variation to be expected in a temporal series of abundance estimates 
(Harris 1986, Gerrodette 1987). Internal population events, such as changes 
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in behavior or age structure, as well as external changes in the environment, 
also contribute variability to a series of estimates. Furthermore, a time-series 
may have positive autocorrelation. These factors should be recognized if precision 
is estimated from the residuals of a regression of abundance estimates over time. 

The simulations have also shown that a reasonably long temporal sequence 
of abundance estimates is required. As noted above, there is an inverse relationship 
between the required number and precision of the estimates, so that dynamic 
response analysis may work equally well with a short sequence of precise estimates 
or a long sequence of imprecise estimates. The short sequence of precise estimates 
is to be preferred, however, since the longer the time, the less certain we are 
that other factors are remaining constant. If the precision of the population index 
is known, the length of the time-series needed for dynamic response analysis to 
work satisfactorily can be computed. Boveng et al. (1988) explore ways of 
choosing the length of the time-series even when precision is not known. 

Based on the range of parameters reported in these simulations, dynamic 
response analysis appears less sensitive to environmental variability and the rate 
of population growth (Figs. 3 and 4). The most variable environment simulated 
had a coefficient of variation of 0.15 in the carrying capacity K. With normally 
distributed variation, this means that approximately 95% of the time the carrying 
capacity is between 0.7 and 1.3 times its long-term mean value. Simulated 
values of the intrinsic population growth rate Y, where time is scaled in units of 
interval between population estimates, ranged from 0.1 to 0.2. Since observed 
maximum population growth rates will generally be less than the theoretical 
maximum logistic parameter Y, this range of values for Y is appropriate on an 
annual basis for pinnipeds (Eberhardt and Siniff 1977, Payne 1977, Eberhardr 
1981, Cooper and Stewart 1983), but perhaps slightly high for most cetaceans 
(Kasuya 1976, Best 1981, Reilly 1984, Breiwick et al. 1984, Reilly and Barlow 
1986). 

For management purposes, a determination that the population is “near the 
MNPL” is, although not precise, nevertheless informative and useful. In cases 
of conservative management, such as mandated by the Marine Mammal Pro- 
tection Act, a population in the immediate vicinity of its MNPL would be 
managed as if it were below the MNPL-i.e., measures would be taken to 
protect and increase the size of the population. This conservative management 
policy is the reason why population densities near the MNPL have been grouped 
together with densities below the MNPL in this paper. 

To reach an assessment that the population is near the MNPL, the significance 
of the slope and the curvature of the population growth trajectory were evaluated 
in the second set of simulations. However, when using dynamic response analysis 
in this way, the significance levels must be chosen carefully. As shown in Figure 
7, the use of inappropriate significance levels could result in a low probability 
of correct assessment over a certain range of population sizes. Such a loss in 
power can be avoided by the appropriate choice of significance levels, given the 
number and precision of the population estimates, as shown by the curve with 
open circles in Figure 7. 

The general features of the sensitivity of dynamic response analysis reported 
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in this paper do not depend on the specific nature of the density-dependent 
response of the population. As emphasized by Goodman (1988), dynamic 
response analysis makes only a few assumptions about the density-dependent 
dynamics of a population, and these assumptions are almost certainly satisfied 
by an actual population. The simulations reported here used the logistic model 
as a specific example. The results therefore show a decline in power near the 
logistic MNPL of 0.5, but this decline is expected to occur wherever the MNPL 
happens to fall for a specific population. Fowler (1981) has argued that for 
large mammals, the MNPL occurs at a population size which may be near the 
carrying capacity, whereas for fish, the MNPL will be a smaller fraction of K. 
In other words, the yield curve may be skewed to the left or right. One of the 
strengths of dynamic response analysis is that it does not attempt to estimate 
the actual MNPL or the shape of the yield curve, but only to answer the 
qualitative question at hand: whether the population is above or below the 
MNPL. 

Although it does not matter to dynamic response analysis whether the yield 
curve is symmetric or not, the “peakedness” of the curve will determine how 
wide the decline in power of the analysis near the MNPL will be. This is because 
it is the slope of the curve that dynamic response analysis is trying to estimate. 
If the yield curve has a sharp peak, it will be relatively easy to tell whether the 
population is on one side or the other. On the other hand, if the yield curve is 
rather flat-topped, so that the growth rate of the population changes little in 
response to population size, the effective MNPL is indistinct. This latter situation 
will reduce the accuracy of dynamic response analysis near the MNPL, but for 
the same reason it will make the biological consequences of this inaccuracy less 
important. 

ACKNOWLEDGMENTS 

I thank Daniel Goodman, Peter Boveng, Terence Jackson and reviewer no. 2 for critical 
comments on the manuscript. I am indebted to William Perrin and Douglas DeMaster 
at the La Jolla Laboratory of the Southwest Fisheries Center, National Marine Fisheries 
Service, where this work was supported by a National Research Council Research Asso- 
ciateship. 

LITERATURE CITED 

BEASOM, S. L. 1979. Precision in helicopter censusing of white-tailed deer. Journal of 
Wildlife Management 43:777-780. 

BEST, P. B. 1981. T h e  status of right whales (Euklaena glariafis) off South Africa, 
1969-1979. South Africa Sea Fisheries Institute Investigational Report 123: 1 4 4 .  

BOVENG, P., D. P. DEMASTER AND B. S. STEWART. 1988. Dynamic response analysis. 
111. Application to four northern elephant seal colonies. Marine Mammal Science 4: 
210-222. 

1984. Population dynamics 
of western Arctic bowhead whales (Bafaena mystiretus). Canadian Journal of Fisheries 
and Aquatic Sciences 4 1 :484-496. 

Demography of northern elephant seals, 
1911-1982. Science 219969-971. 

BREIWICK, J. M., L. L. EBERHARDT AND H. w. BRAHAM. 

COOPER, C. F., AND B. S. STEWART. 1983. 



GERRODElTE: DYNAMIC RESPONSE ANALYSIS. 11. 209 

EBERHARDT, L. L. 1981. Population dynamics of the Pribilof fur seals. Pages 197-220 
in C. W.  Fowler and T. D. Smith, eds. Dynamics of large mammal populations. 
Wiley & Sons, New York. 

EBERHARDT, L. L., AND D. B. SINIFF. 1977. Population dynamics and marine mammal 
management policies. Journal of the Fisheries Research Board of Canada 34: 183- 
190. 

ESTES, J. A., AND J. R. GILBERT. 1978. Evaluation of an aerial survey of Pacific walruses 
(Odobenus rosmarus divergens). Journal of the Fisheries Research Board of Canada 
35:1130-1140. 

FOWLER, C. W. 1981. Density dependence as related to life history strategy. Ecology 
62 :602-6 10. 

GERRODETTE, T. 1987. A power analysis for detecting trends. Ecology 68:1364-1372. 
GOODMAN, D. 1988. Dynamic response analysis. I. Qualitative estimation of stock 

status relative to maximum net productivity level from observed dynamics. Marine 
Mammal Science 4:183-195. 

1986. Reliability of trend lines obtained from variable counts. Journal 
of Wildlife Management 50:165-171. 

1976, Reconsideration of life history parameters of the spotted and striped 
dolphins based on cementa1 layers. Scientific Reports of the Whales Research Institute 

1975. Elephants and their 
habitats. Clarendon Press, Oxford. 

1978. An evaluation of some 
techniques for aerial censuses of bottlenosed dolphins. Journal of Wildlife Manage- 
ment 42:239-250. 

LERESCHE, R. E., AND R. A. RAUSCH. 1974. Accuracy and precision of aerial moose 
censusing. Journal of Wildlife Management 38: 175-182. 

PAYNE, M. R. 1977. Growth of a fur seal population. Philosophical Transactions of 
the Royal Society of London, Series B 279:67-79. 

REILLY, S. B. 1984. Observed and maximum rates of increase in gray whales, Eschrichtius 
robustus. Pages 389-399 in W. F. Perrin, R. L. Brownell, Jr. and D. P. DeMaster, 
eds. Reproduction in whales, dolphins and porpoises. Reports of the International 
Whaling Commission, Special Issue 6. 

REILLY, S. B., AND J. BARLOW. Rates of increase in dolphin population size. 
Fishery Bulletin (U.S.) 84: 5 2 7-5 3 3. 

REILLY, S. B., D. W.  RICE AND A. A. WOLMAN. 1983. Population assessment of the 
gray whale, Eschrichtius robustus, from California shore censuses, 1967-80. Fishery 
Bulletin (U.S.) 81:267-281. 

SMITH, T. D. 198 1. Line-transect techniques for estimating density of porpoise schools. 
Journal of Wildlife Management 45:650-657. 

HARRIS, R. B. 

KASUYA, T. 

28:73-106. 
LAWS, R. M., I. S. C. PARKER AND R. C. B. JOHNSTONE. 

LEATHERWOOD, S., J.  R. GILBERT AND D. G.  CHAPMAN. 

1986. 

Received: June 3, 1986 
Accepted: January 4, 1988 




