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ABSTR Am 

A new method for estimating population sizes from catch-at-age data is given. The method treats the 
observed population sizes as missing data and uses a combination of the Kalman filter and the EM 
algorithm to derive maximum likelihood estimates of the parameters and minimum mean square error 
estimates of the population sizes. The algorithm does not assume that the observation errors and the 
errors in the population dynamics are uncorrelated with equal variances, which is a common assumption 
of existing techniques. A new parameterization for both recruitment and fishing mortality is given, based 
on smoothness priors. Recruitment (or fishing mortality) is estimated as a nonparametric function of 
time by calculating an “optimal” tradeoff between goodness-of-fit and smoothness of the function. The 
algorithm allows for multiple sources of observations (fishing, surveys, etc.) and allows for missing data 
in the observations, which can arise if the different sources of the observations occur on different time 
scales. An example suggests that the new algorithm may better capture variation that is important when 
using the population estimates to study the role of the environment (or other exogenous variables) on 
the population dynamics. 

I can address the motivation of this paper by con- 
sidering a slightly modified version of a model pro- 
posed by Collie and Sissenwine (1983). Assume that 
the underlying population dynamics satisfy 

N(a + 1, t + 1) = [N(a , t )  - C(a,t)] m + w(a, t )  

u = l , A  (1) 

where N(a,  t )  is the number of fish age a at time t ,  
C(a,t) is the catch of age a fish at time t ,  m = 
exp(-m) is the mortality rate and the vector w ( t )  
= (~ (1 ,  t), . . . ,w(A, t))’ is a sequence of indepen- 
dent, identically distributed normal random vectors 
with mean 0 and covariance matrix Q, and for any 
vector a, the notation ar denotes the transpose of 
the vector. We assume that the initial population 
vector N(0)  is gaussian with a mean of p and 
covariance 1. 

The population itself is not observed. Instead we 
observe that 

n(a , t )  = q( t )N(a , t )  + v(a, t )  (2) 

where q is an unknown parameter and the vector 
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v ( t )  = (~(1, t ) ,  . . . ,v(A, t))’ is a sequence of indepen- 
dent, identically distributed normal random vectors 
with mean 0 and covariance matrix R. I t  is assumed 
that E(v(t)  w(t)’) = 0; that is, the observation 
error and the underlying randomness in the popula- 
tion are uncorrelated. There is some interest in the 
value of the estimates of the q( t )  (or if mortality is 
to be estimated, in the estimate of 6) but the major 
interest lies in estimating the unobserved popula- 
tion sizes N(a, t) .  The estimates of the N(a, t )  should 
reflect not only the trend in the population, much 
as a regression might, but also the period-to-period 
variation of the population, such as might be related 
to environmental changes. This will be the emphasis 
throughout the paper. 

The model described in Equations (1) and (2) dif- 
fers from that of Collie and Sissenwine (1983) in that 
I do not assume that the mortality rate is known; 
here I allow the underlying population dynamics to 
be random, and the observation errors in Equation 
(2) to be additive rather than multiplicative. For 
known m, Collie and Sissenwine (1983) suggested 
minimizing 

over the parameters (in our notation) 8 = (q ,N( t ) )  
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I can explain some of the problems with esti- 
mating Equations (1) and (2), using the likelihood 
of Equation (3). Under the gaussian assumptions of 
the model, the complete data log-likelihood is given 
by (Shumway and Stoffer 1982a) 

where N ( t )  is the vector of unobserved population 
sizes. The concern here is not whether the multi- 
plicative or additive form of the model is more cor- 
rect, but rather what elements of the model are data, 
what are parameters, and how to calculate appro- 
priate estimates of each. 

If there were all-seeing observers, both the popu- 
lation process N ( t )  and the observation process n(t)  
would be available as data. Equations (1) and (2) 
imply a sequence of conditional probability distribu- 

where el, O2 are parameters of the distributions to 
be estimated. Assuming additive gaussian errors, 
then el would include the mean vector F N ( t )  and 
a covariance matrix that can be calculated recmive- 
ly (see below). The mortality rate m serves as a con- 
straint on the form of the estimates of the mean vec- 
tor, much as in the theory of regression. Similarly, 
the parameters for the observation process are a 
mean vector H ( t ) N ( t )  and a covariance matrix, 
where H ( t )  in this case depends on the parameters 
q ( t )  that constrain the estimates of the mean vec- 
tor. With an all-seeing observer, both n(t) andN(t) 
are realized values of random vectors and hence, are 
the data to be used to estimate the unknown param- 
eters of the distributions, 8, and Q2. 

Thus, the unobserved population sizes are most 
appropriately treated as missing data. The estima- 
tion scheme proposed by Collie and Sissenwine 
(1983) treats the N ( t )  as parameters to be estimated. 
Little and Rubin (1983, 1987: sec. 5.4) showed that 
treating missing data as parameters in likelihood 
equations does not produce maximum likelihood 
estimates of the parameters unless the proportion 
of missing data approaches zero as the sample size 
increases. This is because much of the asymptotic 
theory of maximum likelihood estimation depends 
on the number of observations becoming large, 
relative to  the number of parameters. Little and 
Rubin (1983, 1987) showed that for a regression-like 
situation, the bias due to treating data as param- 
eters can be quite large. 

The alternate approach discussed by Little and 
Rubin (1983, 1987) is to integrate out the missing 
data from the complete data likelihood and maximize 
this function over the parameters as usually defined 
in estimation theory. This is the approach taken by 
Shumway and Stoffer (1982a), who used the EM 
(expectation-maximization) algorithm of Dempster 
e t  al. (1977) and Kalman filtering to derive maxi- 
mum likelihood estimates for the parameters of the 
model and minimum mean square error estimates 
of the missing data. 
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t ionsfdN(t  + 1) I NV), 4) andf,(n(t) I N ( t ) ,  e2), 

1 1 
2 2 

- - log I 1 I - - (N(0)  - p(0))’ x-1 

T 
1 - T log I Q I - - 1 ( N ( t )  - FN(t - 1))’ 

2 2 1 - 1  

Q-’ ( N ( t )  - FN(t - 1)) 

T 
1 - log I R 1 - - z (n ( t )  - H(t )N( t ) ) ’R-I  (n(t) 

2 2 1-1 

where F = mZ and H(t) = q(t)Z. Similarly, the com- 
plete data log-likelihood in Equation (3) by substi- 
tution is 

Collie and Sissenwine (1983) noted that their estima- 
tion scheme assumes that the process and observa- 
tion errors have the same variance. However, from 
Equations (4) and (5) it can be seen that they make 
the stronger and unlikely assumption that both the 
errors in the population dynamics and the errors in 
the observation process are uncorrelated. Further, 
we can see from Equation (4) that when the N ( t )  
are treated as parameters, the estimates of the N ( t )  
depend on the observed data n(t) for t = 1,T. 
Following Shumway and Stoffer (1982a), the ex- 
pected log-likelihood conditioned on the observed 
data comprises three parts: a term due to estimating 
the expected value of the initial population size, 
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1 1 
2 2 

- ~ log 12: I - - tr {Z-I [P(OIT) + (N(0)  - p) 

x (N(0)  - r)’ll, (6) 

a term due to the unobserved dynamics, 

T 
1 
2 t = l  

- -- 1 log I Q ( t )  I 

T 
1 
2 1 - 1  

- - 2 tr {Q(t)-’  [(N(tIT) - FN(t - 112’)) 

x (N(t jT)  - FN(t /T)T  

+ P ( t J T )  + FP(t - 117’) F‘ - P(t - 1IT) 

x F’ - FP(t, t - lIT)]}, 

and a term due to the observation process, 

T 
1 
2 / - I  

- - 2 log 1 R ( t )  I 

P(t,t - 11s) = E[(N( t )  - N(tIs))  

As shown in Equations (6) through (8), the proper 
estimates of the N ( t  ) and the related covariance 
matrices should be conditional expectations based 
on all of the data rather than on only the data up 
to time t. Assuming that all quantities are calculated 
properly, estimates that include only the data up to 
time t - 1 are termed “predicted” estimates, esti- 
mates that include only the data up to time t are 
termed “filtered” estimates, while estimates given 
all the data are termed “smoothed” estimates. I 
shall show below that the appropriate formulas for 
predicted, filtered and smoothed estimates differ 
significantly. Thus using Equation (5) as the likeli- 
hood and treating the N ( t )  as parameters does not 
produce proper estimates of the N ( t ) .  

In the rest of this paper, I review state-space 
models and methods for estimating both the param- 
eters and the unobserved components of the model. 
A very readable background for what follows is 
chapter 3 in Shumway (1988). The estimation 
scheme described does not require that the compo- 
nents of R, Q, and 1 have equal variance and are 
uncorrelated. Explicit estimates of these matrices 
are given. Then I show that a variety of age-based 
models proposed in the literature can be formulated 
as a state-space model, but that the formulations as 
presented make the same error of treating the un- 
observed components as parameters, and assume 
zero covariance in the errors. Auxiliary information 
as in Deriso et  al. (1985) can be put into this for- 
mat. And I show that the state-space formulation 
can include multiple observations of the population, 
but where some of the observations are missing. 
This can arise when the population is observed from 
fishing and from a variety of surveys, but some of 
the surveys are not done every year. This is essen- 
tially the problem discussed in Methot2. I give true 
maximum likelihood estimates for this model, allow- 
ing the different observation processes to have dif- 
ferent error structures and estimate the relative 
weight that should be given each. This is a sig- 
nificant advance over the procedure in Methot 
(fn. 2). 

A related paper is the analysis of Brillinger et al. 
(1980) who use a modified Kalman filter and max- 
imum likelihood estimation to estimate the average 
birth and death rates and population structure of 
Nicholson’s blow-fly data when only total numbers 

‘Methot, R. 1986. Synthetic estimates of historical abundance 
and mortality for northern anchovy, Engradis murdnz. Adm. 
Rep. LJ-86-29. Southwest Fisheries Center La Jolla Laboratory, 
National Marine Fisheries Service, NOAA, P.O. Box 271, La Jolla. 
CA 92038. 
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where z ( t )  = (z l ( t ) ,  . . . ,zp(t))’ is the p-dimensional 
unobserved state of the system; u( t )  = (u,(t). . . . , 
u,(t))’ is a p-dimensional vector of deterministic in- 
puts; y(t) = (yl(t), . . .,y,(t))’ is the observed data 
of the system; ~ ( t )  = ( w l ( t ) ,  . . .,w,(t))’ is a se- 
quence of zero mean normal vectors with common 
covariance matrix Q; v ( t )  = (vl(t), . . .,iq,(t))T is a 
sequence of zero mean normal vectors with common 
covariance matrix R; and F ,  B, G, and H are ap- 
propriately dimensioned matrices that may depend 
on an unknown parameter vector 6. Note that q, the 
dimension of the observation vector, can be larger 
than p, the dimension of the state vector. Thus 
several different observation processes of the under- 
lying dynamics are allowed. 

Using the same notation as in Equations (9) and 
(lo), the predicted, filtered, and smoothed estimates 
of the state vector and the covariance matrices can 
be calculated recursively as follows: for prediction 
and filtering, 

of births and deaths at any time are available. In 
their model, knowing the births is equivalent to 
knowing the recruitment at each time period and 
the deaths are observed directly without error. Also, 
they appear to use the filtered estimates of the 
population structure, while the smoothed estimates 
are the minimum mean squared estimates given all 
the data. P. Sullivans in his Ph.D. dissertation in- 
dependently developed a length-based fishery model 
using Kalman filtering and maximum likelihood 
estimation. 

I reiterate that the models considered here assume 
additive errors, while much of the existing literature 
prefers multiplicative errors, particularly for the 
observation equation. The basis of this preference 
appears to be that models with multiplicative errors 
have given a better “fit” to the data for other esti- 
mation schemes. In these estimation schemes the 
errors are assumed to have equal variances and are 
assumed to be uncorrelated. The better fit found for 
multiplicative errors in these algorithms may be due 
to  these assumptions on the error variances. In ef- 
fect, the errors are being scaled by the observed data 
which suggests that the assumption of equal vari- 
ances is incorrect. In the present formulation I 
assume additive errors, but I can allow for errors 
with unequal variances, for errors that depend on 
the size of either the observed catch n(a, t )  or on the 
unobserved population N(a,  t ) ,  and for missing 
observations, and I can obtain simple to compute 
standard errors of the estimated underlying popu- 
lation sizes. The algorithm is also simple to program. 
If multiplicative errors are assumed, it is more dif- 
ficult to calculate exact maximum likelihood esti- 
mates. Approximate likelihood methods (such as the 
extended Kalman filter) have known undesirable 
properties. When the full richness of the assump- 
tions allowed in additive error models is used, it is 
an open question if multiplicative errors are to be 
preferred. 

STATE SPACE MODELS 

The State-Space Model can be written in the form 
(Jazwinski 1970; Anderson and Moore 1979; Ljung 
and Soderstrom 1983): 

sP. Sullivan. Center of Quantitative Sciences. University of 
Washington, Seattle, WA 98195, pers. cornmun. 1988. 
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z ( t ) t  - 1) = F ( t ) z ( t  - 1Jt - 1) + Bu(t - I) (14) 

P(tIt - 1) = F(t )P( t  - l l t  - l)F(t)’ 

+ GQ(t)G‘ (15) 

K ( t )  = P(tlt - l )H(t)’  

x (H(t)P(tJt - 1)H(t)’ + R(t))-’ (16) 

where z(O(0) = p and P(O(0) = 1, and for smoothing, 

J( t  - 1) = P(t - lit  - l)H(tY(P(t(t - 1))-’ (19) 

z(t - l(T) = z(t - l l t  - 1) + J( t  - 1) 

x (z(tIT) - z ( t ( t  - 1)) (20) 

P(t - 1IT) = P(t - l ( t  - 1) + J ( t  - 1) 

x (P(t(T) - P(t(t  - 1))J(t  - ly, (21) 

The predicted state variable z(t It - 1) differs from 
the quantity often used as the predicted value in the 
fisheries literature in that it is based on the last 
period’s filtered estimate rather than on the last 
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period’s predicted estimate. (For example, Deriso 
et  al. (1985) suggested using backward VPA or 
cohort analysis to obtain predicted values.) The 
filtered estimate z(t I t )  is a weighted average of the 
predicted value of z(t It - 1) and the observed er- 
ror in estimating y ( t ) ,  where the weighting term 
K ( t )  (the Kalman gain matrix) is regression-like. 
Similarly, the covariance of the estimate, as meas- 
ured by P(t It - l), increases due to the prediction, 
but decreases by the amount K(t )H( t )P( t l t  - 1) 
after the observation has been made. The smoothed 
estimate z(t IT), which is the correct estimate of the 
underlying population (it satisfies the conditional ex- 
pectation), is found by a backward recursion on the 
filtered estimates, where the filtered estimate is ad- 
justed by a regression on the error between the 
smoothed and predicted estimates of the following 
period. Thus the smoothed estimates correct the 
predicted estimates both by the error in predicting 
the observed data as well as by the error in pre- 
dicting the underlying population when using the 
filtered estimates of the underlying population. The 
square roots of the diagonal terms of the various 
P matrices produced by the Kalman recursions are 
the standard errors of the predicted, filtered, and 
smoothed estimates of the population. 

Equations (12) and (13) are the basic form of the 
state-space model. It is a simple extension to the 
model to allow any of the matrices F ,  B, G ,  or H 
to be nonlinear functions of the past values of the 
y(t) (see, for example, Shiryayev (1984), section 
VI.7), to allow the error vectors w ( t )  and v ( t )  to de- 
pend on past values of the y ( t )  (Shiryayev 1984), or 
to allow the v ( t )  to depend on the underlying state 
vector z( t )  (Zehnwirth 1988). 

In a typical fisheries problem, the matrix H ( t )  
represents fishing. If some age-specific measure of 
effort E(a, t )  is known, then H ( t )  is a diagonal 
matrix with E(a, t )  on the diagonals. Or it may be 
assumed that the exploitation rate is of the form 
s (a)E( t ) ,  where E(t )  is known and the s(a) values 
are to be estimated. Then for given values of s(a), 
the matrix H ( t )  has s (a)E( t )  on its diagonals. The 
matrix F ( t )  is formed in a similar manner to repre- 
sent the population dynamics. 

In some parameterizations, it is assumed that a 
known vector is subtracted from the state vector 
either before or after the effect of F on the popu- 
lation. For example, the known vector might be the 
catch from the previous time period. The extension 
to the Kalman filter in this case is straightforward, 
an example of which can be found in Jazwinski 
(1970). Essentially, all predicted estimates of the 

state are corrected by the constant amount. The 
covariance and gain calculations are unaffected by 
the known vector. 

The Kalman filter, Equations (14) through (21), 
assumes that the matrices F ,  B, G, H ,  R, Q,  and I, 
and the vector p are known. For fisheries problems, 
the matrices F and H usually depend on a set of 
parameters to be estimated (e.g., F = ml), and R ,  
Q, and p are to be estimated. Let 6 be a vector con- 
taining the parameters that F and H depend on, and 
let 0 = (6,R,Q,p) be the total parameters of the 
model. Shumway and Stoffer (1982a) showed that 
conditional on 0, the complete data likelihood is 
given by Equation (4). They apply a result of Demp- 
ster e t  al. (1977), which shows that maximum like- 
lihood estimates of the parameters can be obtained 
by finding the conditional expectation (the E-step) 
of the complete data likelihood with respect to the 
missing “data” (in this case the missing data are the 
sufficient statistics of the normal distribution) and 
alternately estimating the expected value of the 
missing data, and then maximing the likelihood (the 
M-step) using the completed data. Shumway and 
Stoffer (1982a) showed that the expected conditional 
log-likelihood is given by Equations (6) through (8). 
All of the terms in this likelihood, for a given value 
of 0, can be found by the Kalman filter. Moreover, 
given these values, the maximization problem is a 
deterministic one. 

If we assume that the matrix F is independent of 
time and unrestricted, then Shumway and Stoffer 
(1982a) showed that the maximization step is accom- 
plished by setting 

+ H(t).P(tIT)H(t)’] 

p = z(0lT). 

T 

where S,(j) = 1 (P(t,t - j lT)  
1 - 1  

+ z(tlT)z(t - jlTp). (26) 
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for Pacific mackerel published in Parrish and 
MacCall (1978). I emphasize that I am only using 
these data for illustrative purposes and do not claim 
to be making a careful, thorough reexamination of 
the problem. Though m can be estimated using 
Equation (28), I assume that the value of m is known 
a priori. If I were to use a different value of m, it 
would be difficult to judge to what extent the new 
estimates differ solely due to the different mortal- 
ity rate, rather than due to the estimation scheme. 
I assume, as in the reference, that the mortality rate 
m is equal to 0.5, so that the F matrix in my nota- 
tion is a matrix with a value of 0.6065 in position 
(i, i - l), i = 2, . . . , 7 ,  corresponding to the under- 
lying dynamics for age groups 1 through 6. 

Recruitment in Pacific mackerel is highly variable. 
I want to obtain estimates of recruitment that ac- 
curately reflect this variability while still being con- 
sistent with the observed data. Also, I do not want 
to a priori assume a functional relationship between 
recruitment and population size. To this end, I 
assume that the recruitment time series, after tak- 
ing differences of a given order, is a random vari- 
able, i.e., 

Shumway and Stoffer (1982a) gave a recursive for- 
mula for calculatingP(t,t - 1IT) while performing 
the backward smoothing recursion. 

If we assume that F is constrained to be of the 
form F = mD where m is a constant and D is a 
known matrix, then Shumway and Stoffer (1982b) 
showed that 

Q = (C - m D '  - niDB' + m2DAD') (27) 

tr(Q - 'BDT) 
tr(Q -IDAD') 

m =  

Equations (27) and (28) can be solved by taking 
an initial guess for &, then iteratively solving for 
Q and m until the values converge. 

Finally, we can make explicit the effect of assum- 
ing equal variances and no covariances for both w ( t )  
and v(t). For given estimates of Q and R, since both 
are square, symmetric matrices, they can be fac- 
tored as 

Q = UDU' 

R = LL' 

where U is an upper triangular matrix, D is a diag- 
onal matrix, and L is the lower triangular square 
root of R. To obtain an underlying population 
dynamic that has an uncorrelated error vector @(t )  
and uncorrelated observations with variances of 1, 
we make the following transformations: 

G = GU 

$ ( t )  = L- 'y( t )  

B(t) = L- 'H(t)  

* ( t )  = L- 'v( t )  

and replace G, w, y ,  H ,  and v in Equations (14) 
through (21) with the transformed values. Then O ( t )  
has covariance matrix I, and C(t) has covariance 
matrix D. The assumption that both the error in the 
dynamics and in the observations are equal, further 
constrains the values of D to be identical. This is 
a very strong assumption. 

AN EXAMPLE 

As an example of these methods, I use the data 

V k T ( t )  = w(t) (29) 

where w(t )  is a normal random variable with a mean 
of zero and with an unknown variance o2 and Vk 
denotes kth order finite differencing. Akaike (1979) 
originally showed that this formulation is the dis- 
crete equivalent of fitting a spline to  the data (in 
this case as a function of time), where the estimate 
of the variance o2 expresses the tradeoff between 
the degree of smoothness in the fitted curve with 
fidelity to the observed data. In this approach, k and 
the variance of w(t )  are treated as hyperparameters 
of the model. A fitting criterion such as AIC is then 
used to determine the best value of k given the data. 
Following Kitagawa and Gersch (1984), I could use 
smoothness priors to more generally decompose 
recruitment as 

~ ( t )  = T ( t )  + S(t )  + [ ( t )  + ~ ( t )  (30) 

where T ( t )  is a trend term (as in Equation (29)), S( t )  
is a seasonal term, and [ ( t )  is an irregular stationary 
term. A decomposition such as Equation (30) would 
be useful, for example, in modeling the monthly an- 
choveta recruitment considered in Mendelssohn and 
Mendo (1987). However, for convenience in this 
paper, I restrict recruitment to be of the form in 
Equation (29). 
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The relationship between this “smoothness 
priors” approach, “smoothing splines”, and other 
penalized likelihood methods is discussed further for 
a variety of contexts in Brotherton and Gersch 
(1981), Kitagawa and Gersch (1984, 1985, 1988), 
Ansley and Kohn (1986), and Kohn and Ansley 
(1987, 1988). Wahba (1977) and O’Sullivan (1986) 
discussed the relationship between generalized 
cross-validation, penalized likelihood functions, and 
determining the tradeoff between smoothness and 
fit. 

F o r k  = 0, Equation (29) models recruitment as 
a random variable around a fixed but unknown mean 
value. Fork = 1, Equation (29) models recruitment 
as a random walk with unknown mean level and drift 
(variance). Higher values of k have similar interpre- 
tations. Values of k higher than two or three rarely 
need to be considered, since these include the dis- 
crete equivalent of cubic splines. Cubic splines can 
approximate most functionals (in this case of time) 
to a reasonable degree of accuracy. 

For this example, I assume k = 1, so that 

r ( t )  = r(t - 1) + w( t )  (31) 

which is a random walk with unknown variance. (A 
more complete analysis of this data would probably 
also include an irregular stationary term as in Equa- 
tion (30) and determine the “best” order of differ- 
encing using a given criterion.) Equation (31) can 
be incorporated into the state space model by let- 
ting the (1 , l )  element of the matrix F be equal to 

1 .  The matrices H ( t )  are diagonal matrices whose 
values are calculated from table 13 in Parrish and 
MacCall (1978). Because I am assuming that the 
estimates of F are known, then the value of Q for 
the M step is maximized as 

T-’[S,(O) - St(1)F’ - FSt(1) + FSt-l(0)F’]. 

As in Parrish and MacCall (1978), I treated age 
groups 4 through 6 as fully selected by the fishery, 
and will refer to these age groups as “adults”. 
Similarly, I refer to the number of age-1 fish at the 
start of the season as the number of recruits. I 
assume that F and H ( t )  are known, so the estima- 
tion problem is reduced to determining the means 
of the initial population sizes and the values of the 
two covariance matrices Q and R. 

The resulting maximum likelihood estimates of Q 
and R (Tables 1, 2) show that the variances of the 
error terms differ by up to two orders of magnitude, 
hardly meeting the usual assumption of equal vari- 
ances. Moreover, the covariances (expressed as cor- 
relations in the tables) are quite high, so that using 
1 
- as a weighting factor will not be adequate. The 

predicted, filtered, and smoothed estimates of the 
adults (Fig. 1) are very similar, reflecting that the 
errors have been “filtered out” over time by the 
population dynamics. 

0 

TABLE 1 .--Estimated values of the matrix 0 presented as a variancecorrelation matrix. The diagonal 
terms are the variances, and the off-diagonal terms are the crossarrelations. 

Aae 0 Aae 1 Aae 2 Aae 3 Aae4 AGE 5 Aae 6 

Age 0 8.72E+09 -0.9075 0.2429 0.0592 0.1785 -0.2096 0.0249 

Age 2 1.07€+09 0.0396 0.2416 0.1109 0.0675 
Age 3 5.28€+08 0.7030 0.5964 0.3140 
Age 4 1.90E+08 0.6717 0.3944 
Age 5 3.08E + 07 0.4854 
Age 6 2.18€+06 

Age 1 4.59E+09 -0.1750 -0.0574 -0.1658 0.1803 -0.0432 

TABLE Z.-Estimated values of the matrix R DreSented as a varianceCorrelation matrix 

__ 
Age 0 
Age 1 
Age 2 
Age 3 
Age 4 
Age 5 
A m  6 

Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 

7.30E+07 -0,0497 0.8505 0.7367 0.6594 0.5120 -0.4019 
2.62E+07 0.1594 0.0896 -0.0544 -0.3411 0.4325 

4.95E+06 0.6764 0.6412 0.3830 -0.2418 
3.43E+06 0.7286 0.4908 -0.2260 

7.1 1 E + 05 0.5708 - 0.2030 
2.05E+05 -0.1331 

5.40-E + 04 
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FIGURE I.-Estirnated number of adults, 1939-66, using values from Parrish and MacCall. 

The predicted, filtered, and smoothed estimates 
of the recruits (Fig. 2), unlike those of the adults, 
are not similar. The filtered and smooth estimates 
are often indistinguishable, but there are some years 
(such as 1941 and 1943) where there are significant 
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differences. The predicted values are very smooth, 
tending to emphasize the trend in the recruitment. 
In an analysis of recruitment estimates produced by 
standard cohort analysis of the anchoveta off Peru, 
Mendelssohn and Mendo (1987) found the estimates 

- SMOOTHED 
_ _ _ _ _ _  FILTERED 

PREDICED 

i 

A 

1930 1940 1950 1960 1970 

TIME 
FIGURE 2.-Estimated number of recruits, 1939-65, using values from Parrish and MacCall. 
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to be far too smooth. The results of this present ex- 
ample may explain their observation. If these values 
were used in a subsequent analysis, say to determine 
the role of the environment on recruitment, a totally 
false picture of this relationship could emerge. I em- 
phasize that the predicted estimates are calculated 
from the previous season’s filtered values, whereas 
it is often true in the fisheries literature that the 
predicted values are estimated from the previous 
predicted values, rather than from the filtered 
values. Direct comparison with the estimate in 
Parrish and MacCall (1978) are difficult because 
restricting recruitment to be of the form (Equation 
(29)) with k fixed, rather than the more general form 
(Equation (30)) with k variable, may not be appro- 
priate for the Pacific mackerel data. But overall, 
their estimates tend to resemble the smoother trend 
of my predicted estimates. 

RELATIONSHIP TO OTHER LITERATURE 
AND A NEW PARAMETERIZATION 

If the models are restricted to additive errors, 
then most of the simpler difference equation models 
proposed in Collie and Sissenwine (1983), Deriso 
et  al. (1985), Fournier and Archibald (1982), Four- 
nier and Doonan (1987), and among others can be 
formulated as I did. Some of these models assume 
recruitment is a nonlinear function of the underly- 
ing population, which cannot be handled in this 
model without some modifications (suggested 
below). However, all of these authors treat the 
underlying population sizes as parameters of the 
data rather than as missing data. As discussed 
earlier, it is questionable whether this will produce 
proper estimates of the underlying populations. 
Biases from treating missing data as parameters in 
a regression setting are explicitly discussed in Little 
and Rubin (1983, 1987). 

A very broad class of possible models that can be 
selected to model catch-at-age data are given by 
Schnute (1985). He correctly identified the values 
that are parameters of the difference equations he 
discusses, and these are sufficient for estimating the 
likelihood (if evaluated properly). However, if we 
assume observation error, then it can be shown (see, 
for example, Shumway 1988) that the innovations 
are determined by predictors calculated from the 
previous period‘s filtered, rather than predicted 
values. Moreover, the minimum mean squared error 
estimates of the underlying populations, as dis- 
cussed earlier, are the smoothed estimates. I t  ap- 
pears that Schnute (1985) used the predicted or, 

at best, the filtered estimates of the underlying 
populations. 

A popular parameterization that appears to have 
been first suggested by Doubleday (1976) is to 
assume that the observation matrix H ( t )  is of the 
formH(t) = { s ( u ) f ( t ) )  where s(u) is an age-depen- 
dent selectivity factor andf(t) is a time-dependent 
exploitation rate. These values can be found by using 
a minimization routine during the M-step of the 
algorithm. However, it  should be noted that the 
estimate off(t) for each t will depend on R and that 
the estimate of R will depend on both s( .) and!( .), 
so that either R, s, and f should be solved for 
together, or else they should be successively solved 
for using Equation (7) while holding the other 
parameter values fiied. 

Alternatively, Equation (7) can be differentiated. 
Then for given values off(t), the optimum value of 
the vector s(a) a t  each iteration are the diagonals 
of the matrix S given by 

S = AB-’ (33) 

T T 

where A = y(t)z(tlT)’f(t), and B = f2(t) 

(P(tIT) + z(tlT)z(tlTr. However, this is an un- 
constrained estimate and does not guarantee that 
s(u) is between (0,l). It can be shown that the op- 
timal solution is to set s(u) at zero if s(u) is negative 
or to 1 if s(u) is greater than 1. 

For fixed values of s(a) and R, Equation (7) is 
maximized when f(t) takes the value 

1 - 1  1 - 1  

where the matrix S is as above. This is the uncon- 
strained solution. The constrained solution again is 
to force the estimate to lie within the closed inter- 
val ( 0 , l )  as with the estimate of the s ( ~ ) .  Since the 
estimates of R,  s(u), andf(t) are interrelated, I have 
found it to be a workable procedure to first estimate 
Q as given above and then for a given number of 
iterations, iteratively solve forf(t ) then s(u). When 
these values stabilize, estimate R using the formula 
given above. While this procedure does not neces- 
sarily maximize Equation (7), it  is sufficient for the 
generalized EM algorithm the new values increase 
the function given in Equation (7). 

As with the original estimates, the smoothed and 
filtered estimates of recruitment (Fig. 3) are close 
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FIGURE 3.-Estimated number of recruits 1939-65, assuming q(a. t )  = / ( t ) s ( a ) .  

to each other, while the predicted values are too 
smooth. The estimated values off(t) (Fig. 4) general- 
ly decline with time. All three estimates are signifi- 
cantly different from the previous estimates. Years 
where relative highs and lows occur differ, show- 
ing the sensitivity of this class of models to the 

assumed form of the H matrix. Since the estimates 
of R, s(a) and f(t) are interrelated, I suspect that 
the parameter estimates are highly correlated and 
hence unstable. While I have not calculated the 
parameter covariance matrix, it should be checked 
for any serious analysis using these techniques. 

0'4 0.3 1 

TIME 

FIGURE I.-Estimated values off(t) when p(Q, t )  = f(t)s(a). 
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While the parameterization H ( t )  = {f(t)s(a)) 
greatly reduces the number of parameters, I still 
face the same problem as when I treated the un- 
observed population as parameters: each new period 
adds another parameter to the model. The model 
still appears to be overparameterized, and the 
asymptotic theory for maximum likelihood estima- 
tion may be invalid. 

As with the recruitment estimates, the number 
of effective parameters can be reduced by adding 
a smoothness prior onf(t). However, f(t) is a pro- 
portion and not likely to be a normal variable. The 
f(t) are also constrained to lie in the interval (0, l), 
so a transformation to an unconstrained variable 
would also be desirable. Iff(t) is a binomial random 
variable then arcsin (m) is approximately normal 
with nearly equal variance. This suggests the trans- 
formation of variables 

f(t) = sin2(e(t)) (35) 

where e ( t )  is an unconstrained normal variable. 
Then the smoothness prior becomes 

Vke( t )  = w ( t )  (36) 

(a smoothness prior that includes a seasonal com- 
ponent or irregular stationary part, as in Equation 
(30), can also be used), and for any age class, the 
observation equation becomes 

1 

y(a, t )  = s(a)sinz(e(t))z(a, t ) .  (37) 

The underlying population dynamics must also be 
expanded to include the smoothness prior constraint 
(Equation (36)). 

Unfortunately, the observation equation is no 
longer linear in the state vector. The smoothness 
prior is a prior distribution on thef(t), and a full 
Bayesian analysis can be done to obtain the overall 
distribution. The variance of w ( t )  is then treated as 
a hyperparameter in the analysis. 

A simpler approach is to evaluate the filter equa- 
tions approximately by using any one of a number 
of nonlinear filters (see Anderson and Moore 1979). 
One that is easy to implement, given the nonlinear- 
ities in this problem, is the extended Kalman filter 
(EKF), which a t  each time period just linearizes all 
the nonlinear terms around the value of the pre- 
dicted state vector. The EKF, however, can have 
divergence problems and is not guaranteed to find 
the true penalized likelihood estimates. 

When using the EKF, it works to make a forward 
and backward pass of the filter given the current 
estimates of f(t) and x ( t  IT), and then to estimate 
s(a) and R as before. I tested the algorithm on the 
mackerel data with k = 1 in the constraint (Equa- 
tion (36)). The resulting estimates (Fig. 5) are similar 
to the previous estimates, but the estimated values 
off@) (Fig. 6 )  are less variable with a stronger trend 
than before. It is clear from Figure 5 that the 

- SMOOTHED 
_ _ _ _ _ _  FILTERED 

I , , . . PREDICTED 

1930 1940 1950 1960 1970 

TIME 
FIGURE 5.-Estimated number of recruits using a first order spline for estirnatingf(t). 
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FIGURE B.--Spline estimates of f(t). 

smoothness prior estimate has shifted some of the 
variation in the observed data to variations in the 
underlying population dynamics rather than varia- 
tions inf(t). Further research needs to be done to 
see which of these estimates is the most “valid”. 

The EM algorithm in general can be sensitive to 
the initial values given the parameters (see Wu 
1983), and I have found that the fixed value of X can 
also affect the estimates. Initial combinations of p, 
f(t), and s(a) that are totally inconsistent with the 
observed catch data can cause the algorithm to find 
a local maximum. This can be avoided by ex- 
perimenting with several, very different starting 
values and determining if they converge to the same 
estimates. 

If recruitment is thought to be a linear function 
of the previous population size, then there is no 
problem including this in the Kalman filter. If 
recruitment is a nonlinear function of the previous 
population, then the EKF can again be used to ap- 
proximately determine the conditional expectations 
needed for the EM algorithm. 

If information is available from a variety of 
sources, say from fishing and from surveys, as in 
Methot (fn. 2), then each of the vectors and matrices 
can be partitioned to represent this situation. For 
example, let y,(t) be the observed catches from a 
survey and yf(t) the observed catches from fishing. 
Let y(t)’ = (y,(t),y,(t))’, and partition the H matrix 
similarly. Then the diagonal blocks of H will con- 
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tain the observation dynamics for the survey and 
for fishing, while the off-diagonal blocks will be zero. 
Given these modifications, all the algorithms de- 
scribed previously in this paper can be used to derive 
estimates for this situation. 

Research or other surveys of the fishery usually 
occur less frequently than does commercial fishing, 
causing part of the vector y(t) to be missing at given 
times periods. Shumway and Stoffer (1982a) and 
Shumway (1988) gave a straightforward modifica- 
tion of the Kalman filter for this case. 

DISCUSSION 

I have introduced a new method for estimating 
population sizes from catch-at-age data that in- 
cludes, if additive errors can be assumed, many of 
the previous difference equation models. I show that 
it is incorrect to treat the unobserved population 
sizes as parameters to  be estimated rather than as 
missing data. I also show that the minimum mean 
square estimates of the population sizes are the 
smoothed estimates rather than the predicted 
estimates suggested in many papers. The model 
assumes neither equal variances in the errors in the 
population dynamics nor in the observation errors 
and does not require that the errors be uncorrelated. 
For Pacific mackerel, the smoothed estimates are 
shown to be much more variable than the predicted 
estimates. 
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I also suggest a new parameterization for the age- 
specific exploitation rate q(a, t ) .  If it is assumed that 
q(a, t )  = s (a) f ( t ) ,  then the model is over determined. 
I put a smoothness prior onf(t) in order to obtain 
a tradeoff between the degree of smoothness inf(t) 
as a function of time versus fidelity to the data. The 
degree of differencing can be treated as a hyper- 
parameter of the model to determine the optimal 
amount of differencing given the data. 

An advantage of the approach of this paper is that 
the calculations are straightforward and simple to 
program, and explicit formulas are given for the op- 
timal parameter values at each iteration of the EM 
algorithm. Additional optimization software is not 
required to perform the calculations. Moreover, 
properties of the Kalman filter and the EM algo- 
rithm are well known. There is a large literature giv- 
ing variants of the filter to calculate sensitivity to 
model misspecification, and recursive formulas for 
the derivatives with respect to a given parameter 
of the model also exist in the literature. 

It is also simple to include environmental variables 
into the formulation, either as additional state vari- 
ables or as fixed effects in the observation equation 
or both (see Sallas and Harville [1988] on how to 
estimate the fiied effect parameters within the con- 
text of Kalman filtering). Thus the influence of the 
environment can be modeled directly, rather than 
resorting to the conventional practice of obtaining 
population estimates first and correlating these 
estimates with the environmental variables second. 

A disadvantage of my approach is that there is 
no guarantee that any of the estimates of the under- 
lying population sizes will be positive. The popula- 
tion sizes are treated as normal random variables, 
and it is quite possible for the additive corrections 
in the filtered or smoothed estimates to make small 
population sizes negative if the observation error is 
large. P. Sullivan (fn. 3) has found that for a length- 
based model the Kalman filtering approach works 
best when there are pulses in the recruitment, that 
is, when the population is not in equilibrium. The 
likelihood surface is such that without recruitment 
pulses it is difficult to estimate the parameters of 
the growth-curve. Most fisheries are not in equilib- 
rium, however. As the models in this paper do not 
contain a growth-curve, it is unclear if a similar find- 
ing will be valid. 

Some of my results suggest that the estimates are 
sensitive to the form of the model chosen for the 
population dynamics. This is not surprising, because, 
unlike most missing data problems, the missing part 
of the data is never observed directly, but only 

through the presumed form of the dynamics. For 
example, when modeling catch (or catch per unit ef- 
fort) against an environmental variable, catch data 
often are not available for all periods. But there are 
at least some periods when both variables are ob- 
served, which can be used to estimate the relation- 
ship between the two sets of variables. This rela- 
tionship is used to produce the smoothed estimates 
of the missing data. For estimating population sizes 
from catch-at-age data, the a priori estimate of the 
form of the observation equation replaces this em- 
pirically derived estimate. 

In many of the references cited, multiplicative 
errors are preferred in the observation equation 
because variances appear to change with the size 
of the population. My experience is that relaxing the 
assumption of equal, uncorrelated errors appears to 
at least partially take into account the observed 
differences. If the model estimates are not satisfac- 
tory, assuming additive, gaussian errors, then the 
regular EM algorithm can be used to properly esti- 
mate the smoothed estimates of the underlying 
population. However, the EM algorithm requires the 
complete data likelihood as well as the expectation 
of the log-likelihood with respect to (y(l), . . . ,y(T)). 
In multiplicative models, assumptions about the 
error structure can lead to very complicated multi- 
variate distributions for the complete data due to 
the Jacobian of the transformation. The conditional 
expectation of the log-likelihood may have to be 
evaluated by numerically integrating a nontrivial 
multiple integral. Certainly, as a first pass, the 
simpler techniques of this paper would appear to 
have a lot to offer as an alternative. 
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