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Virtual population analysis (VPA) is  widely used in fish stock assessment. However, VPA results are generally 
presented as point estimates, without error variance. Using numerical methods, we estimated the total variance 
of historical (1 929-65) biomass estimates of mackerel, Scomber japonicus, off southern California. In the years 
before 1940, coefficients of variation (Cv’s) approached 100%; later, when weights at age and the age structure 
of the catch were better known, the Cv’s were about 25%. Most of the variability derives from uncertainties in 
estimates of natural mortality (M) and of weights at age. We also developed dimensionless coefficients (sensitiv- 
ities) to examine the effects of errors in the inputs on the VPA biomass estimates. The largest sensitivities were to 
M and the total catch and varied substantially from year to year. As expected, sensitivity to M decreased with 
increasing exploitation, and sensitivity to catch increased with increasing exploitation. Using such sensitivities, 
one could estimate the error in a biomass estimate for a past year when M (or any other input) was thought to 
be unusually high or low. Thus, retrospective corrections can be made. Also, such sensitivities form an analytic 
tool for examining the properties of VPA, or any quantitative model. 

L‘analysede population virtuelle (APV) est largement utili& pour I’evaluation des stocksde poissons. Les r6sultats 
de cette analyse sont generalement prhntes comme des estimations ponctuelles, sans erreur de variance. Les 
auteurs ont estime par methodes numeriques la variance totale, de 1929 3 1965, des estimations de biomasse 
de maquereau, Scomber iaponicus, au large du sud de la Californie. Au cours des ann& antbrieures a 1940, 
les coefficients de variation (CV) 6taient presque de 100 % tandis que plus tard, lorsque I’on a mieux connu les 
poids selon I’sge et la structure des Qges des prises, les valeurs de CV btaient de 25 % environ. La plus grande 
partie de la variabilitb decoule d’incertitudes li&s aux estimations de la mortalit6 naturelle (M)  et du poids selon 
I‘ige. Les auteurs ont aussi determine des coefficients sans dimension (de sensibilite) afin d’etudier les effets des 
erreurs des parametres d’entr6e sur les estimations de biomasse par APV. Les elements de sensibilite les plus 
importants avaient trait 3 M et aux prises totales et variaient de facon appreciable d’une ann& a I’autre. Tel que 
prevu, la sensibilitb 3 la valeur de M diminuait a mesure que le taux d‘exploitation augmentait et celle aux prises 
augmentait en meme temps que le taux dexploitation. Ces elements de sensibilite pourraient permettre d’estimer 
l’erreur d‘une biomasse estim& pour une ann& anterieure lorsque la valeur de M (ou de tout autre parametre 
d‘entrk) apparait anormalement elev& ou faible. II serait donc possible dapporter des corrections a posteriori. 
De plus, ces elements de sensibilite constituent un outil analytique pour I‘examen des proprietes de I’APV ou de 
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tout autre modele quantitatif. 
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irtual population analysis (VPA) has been applied widely 
to commercial fish stocks in the more than 20 yr since V its development (Murphy 1965; Gulland 1965). Although 

several studies have examined the errors implicit in the method, 
VPA abundance estimates s t i l l  tend to be presented as exact 
numbers, i.e. without error variances. Pope (1972) examined 
separately the effects o f  error in the estimate o f  terminal instan- 
taneous fishing mortality (F) and of errors in the catch statistics. 
Sims (1982) examined the errors caused by assuming a constant 
fishing effort throughout the fishing season, in the presence of 
seasonal variation in effort. Saila et al. (1985) discussed the 
propagation of error in Pope’s (1972) approximation (and there- 
fore the basic model). However, none of the above authors dis- 
cussed the effects of simultaneous errors in several parameters, 
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nor of covariances among the parameters. Sampson (1984) 
overcame these limitations for analysis o f  a single cohort. How- 
ever, the cited studies have stopped short of estimating the var- 
iances o f  VPA abundance estimates themselves. 

We used the delta method (Seber 1973) to examine the errors 
caused by simultaneous errors in any number o f  parameters, 
including covariances, and have applied the method to the 
southern California stock of mackerel, Scornberjuponicus. Our 
work provides a numerical estimate o f  the variance of each 
year’s biomass estimate. In addition, we have developed a 
method to examine the sensitivity of VPA to i t s  input 
parameters. 

The California fishery on S. juponicus, known locally as 
Pacific mackerel and elsewhere as chub mackerel, supported a 
commercial fishery from the late 1920’s to the mid-1 960’s (Par- 
rish and MacCall 1978). The resource was severely depleted 

539 



during the following decade, but recovered strongly in the late 
1970’s. when it reached record levels of abundance (MacCall 
et al. 1985). As the fishery is monitored closely by the Cali- 
fornia Department of Fish and Game, continuous landings and 
age composition data are available except for the years 1970- 
75, when landings were insufficient to support the monitoring 
effort. We used the data collected from 1920 to 1969 as the 
basis for the present study. The data collection and subsequent 
analysis are described in detail in Parrish and MacCall(1978), 
MacCall et al. (1985). and Prager and MacCall (1987). 

Methods 

Cohort Analysis 
To compute population estimates, we used a variation of 

MacCall’s (1986) approximation, which can be stated in the 
form 

(1) N ,  = N , , ,  exp(M) + kC, 
where N is the population estimate in numbers, M is natural 
mortality, C is the catch, the subscripts f and f + 1 represent 
relative time in years, and k is a constant whose value depends 
on M and on the temporal distribution of the catch throughout 
the year. MacCall suggested using 

(la) k = M/{1 - exp(-M)} 
as an improvement over Pope’s (1965) approximation. 
However, to maximize the accuracy of our VPA, we calculated 
a value of k based on an iterative monthly VPA on the unaged 
monthly catch data so that equation 1 holds on an annual basis. 
These year-specific values of k were then used in the analysis 
of the aged annual catches. Since the Pacific mackerel fishery 
is highly seasonal, MacCall’s approximation (MacCall 1986) is 
more accurate than the iterative solution by annual VPA, even 
when equation la is used without fitting k to the seasonal 
distribution of catch. 

Equation 1 estimates age-specific abundances in numbers; 
biomass estimates are obtained by multiplying equation 1 by 
the respective weights at age. The stock’s total biomass B in 
year i is estimated as the sum of the age-specific biomasses (for 
ages I . . .m)  at the beginning of the fishing season, i.e. 

Murphy’s Linkage Algorithm 
Estimation of terminal fishing mortality rates is one of the 

largest difficulties in performing VPA. Murphy (1965) 
described an objective method of estimating terminal F by link- 
ing cohorts. This method has been used in the previous VPA’s 
of the Pacific mackerel stock (Panish and MacCall 1978; 
MacCall et al. 1985). Murphy’s linkage method requires only 
one estimate of terminal F to start the analysis of any number 
of contiguous cohorts. The method as used in this fishery com- 
prises the following steps (Fig. 1): (1) Estimate the terminal F 
for the oldest age-class (5 ’ )  in the final year (f), where the 
notation 5’ indicates all fish aged 5 and older. (2) Calculate 
N,,J+ in the final year from C,,J+ and F,.J+. (3) Use VPA to 
estimate N,_, ,4+ and F,-,,4+. (4) Since the mackerel is consid- 
ered fully recruited at age 4, assume that in each year FJ+ is 
equal to F 4 + .  ( 5 )  This value of F,-l,J+ supplies a new terminal 
fishing mortality rate for VPA estimation of F,-2 .4+.  By repeat- 
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FIG. 1. Murphy’s F-linkage algorithm and our modification for a series 
of k + 1 yr is illustrated by a matrix of F values. (For clarity, most 
are represented by dots.) The algorithm starts at the top with F,.,+, and 
first follows all bold arrows diagonally and horizontally. Then, the 
algorithm completes all paths shown by the lighter arrows. Diagonal 
arrows represent calculation of F values by backwards VPA. Hori- 
zontal arrows to the right represent transfer of F values by the F trans- 
fer coefficient (FTC, equation 3) or by equality in Murphy’s original 
algorithm. Horizontal arrows to the left represent transfer of F values 
by equation 5 (or by equality in the original algorithm). The bold paths 
yield an estimate of F, for each year. The light paths complete the 
biomass estimates. 

ing steps 3, 4 and 5 for each earlier year, an estimate of F4+ 
for each year is obtained. (6) Assume that F4 = F4+ in each 
year. From this value of F4, calculate N4 and perform a standard 
backwards VPA for the cohort from age 4 back to age 1. A key 
assumption of Murphy’s linkage algorithm is that fishing mor- 
tality is the same among fully recruited age-classes. Thus, in 
each year, it is presumed that 

(2) F4 = F4+ = F 5 + .  

F Transfer Coefficient 
We relaxed the assumption of equation 2 by postulating that 

FJ+ is proportional, but not necessarily equal, to F4+ because 
of fluctuations in availability among ages and years. Varying 
differential growth, for example, could cause such fluctuations. 
The values of F4+ are assumed known from VPA. Then for 
each year, the estimate of F,+ is 

(3) F,’ = F,+-FTC 

where FTC is a transfer (proportionality) coefficient. In prac- 
tice we consider FTC to be stochastic, with mean 1 .O. In other 
words, Murphy’s linkage (equation 2, which implies FTC of 
unity) is assumed to be valid only on average. 

By parameterizing the FTC in this way, we can assume a 
nonzero variance oZm for the relationship between F4+ and F,+ 
(which leads to a similar relationship between F4+ and F.,) and 
examine the effect that this variability has on the VPA popu- 
lation estimates. The approach also allows exploration of mean 
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Fl‘C values other than unity; in this study, we examined values 
of 1.0,0.9, and 1.25. 

For a given F,+ and FTC, F, can be calculated by noting the 
relationship 

C,+ 8 a,+ - C,+ * a,+ 
c, (4) 0 4  = 

where a, is defined as 
the reciprocal of the 
exploitation rate: 

(4a) a, = Z]{F;[ 1 - exp( - ZJ]}. 
Substituting equation 4a into 4 and solving for F,, we obtain 

(5 )  F, = M/{a, [ I  - exp( -F, - M)] - 1). 

Although equation 5 cannot be solved analytically, it can be 
solved easily by iteration. We used F,+ as a starting estimate 
of F, and obtained convergence in a few iterations. 

Murphy’s linkage algorithm resembles schemes of “sepa- 
rable VPA” (Doubleday 1976; Deriso et al. 1985). Separable 
VPA estimates relative availabilities at age, which are used to 
predict age-specific estimates of fishing mortality as a combi- 
nation of independent age- and year-specific factors. Terminal 
F values for adjacent cohorts are linked by optimizing the fit 
to this model. Murphy’s algorithm does not attempt to extend 
this rationale to partially available ages, but focuses only on 
fully available ages. Murphy’s use of combined cohorts 
increases sample sizes, and thereby reduces this source of ran- 
dom variability. However (as in Gulland’s VPA), no degrees of 
freedom remain, so his algorithm leaves no direct means of 
accounting for stochastic variability in the model, unlike sep 
arable VPA. Our treatment attempts to reintroduce considera- 
tions of stochasticity into the linkage. At the same time, it p m  
vides a method of extending Murphy’s linkage algorithm to the 
case of unequal availability. 

Variance Estimation 
To estimate the variances of the VPA biomass estimates, we 

used the delta method (Seber 1973). The delta method numer- 
ically estimates the variance of a function B(xl ,  x,, . . . J,) by 
means of a Taylor expansion. The expression for the estimated 
variance of B is 
(6) Var[B(x)] i= Var[x,].(aB/a~,)~ 

t-I  

+ 2 z z C O V [ X , ~ ~ ~ . ( ~ ~ / ~ X , ) . ( ~ B / ~ X , ) .  
t t i  

In this case, the function B is the population biomass estimate 
and the xt (and xl) are the usual data needed for a VPA estimate 
of stock biomass: the catches and weights at age in each year, 
the natural mortality coefficient M, an estimate of the fishing 
mortality coefficient in the final year (terminal F), and, in our 
application, the FTC. 

To solve equation 6 for Var[B], one must estimate the vari- 
ances of each x,, the covariances of each pair of x,, x,, k #/f, 
and the partial derivatives of B with respect to each x,. Where 
possible, we made these estimates based on data or theoretical 
grounds, but were forced to make ad hoc assumptions in several 
cases because of lack of data. 

Partial Derivatives 
We used numerical derivatives for the aB/ax,. To calculate 

them, we made a cohort analysis estimate of stock biomass B,  
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for a given year. Then the x, being considered was temporarily 
increased by 1% and a new stock biomass estimate B, was made. 
By defmition: 
(7) aB/aX, (B2 - B1)/O.Olxt. 

Variances of Catches at Age 
For most of the period under consideration, samples of mack- 

erel from the catch were aged by examining the otoliths, and 
the age composition of the total catch was computed using a 
stratified estimate with monthly strata (Fitch 1951). As an 
example, let us assume that of the ni fish aged in year i ,  the 
proportion falling into age-class j was pW As the proportions 
in the different agetlasses are distributed multinomially, the 
sampling variance of each p, is given by 

(8) VarIp,,] = P!, . q,/ni 

where q = (1 - p). Since the monthly age composition data 
had been lost, we assumed that the age composition of the total 
catch was the same as that of the sample, i.e. that 
(9) c, = ci ‘ p ,  

where C, is the total catch in year i. Then the variance of C, is 
given by 

(IO) Var[Cu] = c, . Var[P,] 
= C2, . pij . q,/ni. 

In the years before 1933 and between 1935 and 1938, age 
composition of the catch was determined by modal analysis of 
the length-frequency histogram, rather than by otolith ageing 
(Parrish and MacCall 1978). This introduced two problems. 
First, the numbers of fish measured in these years are not 
known. And second, because the method is not particularly 
accurate, the ageing variance Var[C,] for these years is higher 
than the nominal estimated value (equation 10) by an unknown 
amount. We incorporated both of these phenomena in an admit- 
tedly ad hoc way. First, we found the smallest proportion 
(n,/C,) of fish sampled for otolith analysis in any year. Then, 
for the years of modal analysis, we used for each ni (the number 
of fish sampled) in equation 10 this proportion times the year’s 
catch divided by 2. For given proportions at age, this resulted 
in twice the estimated variances for C, in those years. 

Variance of Total Catch 
Equation IO estimates the variance in each C, due to sam- 

pling error of .the proportions. However, the variance of C, is 
further increased by any uncertainty in the estimate of total 
catch for the year, Ci. We treated this source of variability sep 
arately by assuming for each C, a coefficient of variation of 5%. 
a value believed to approximate the uncertainty in the official 
catch records (R. Klingbeil, California Department of Fish and 
Game, 245 W. Broadway, Long Beach, CA 90802, USA, pen. 
comm.). 

Variances and Covariances of Weights at Age 
As the weight at age data are derived by two different meth- 

odologies, we used different approximations to estimate the 
variances and covariances of the estimated mean weights at age. 
1940 io 1968 

Mean weights at age for the fishing season were known (Fitch 
1951). but no information on variance was available. Estimated 
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May 1 weights were estimated by F’rager and MacCall(1987) 
from the published mean weights by linear interpolation based 
on the mean dates of each year’s catch. 

Estimation of the variances associated with those weight esti- 
mates posed several problems. First, variance arises from sam- 
pling errors and changes in timing of the fishery, as well as 
from estimation errors in the interpolations. Also, one expects 
covariance among weights of different ages within a season, as 
all are likely to be high or low together. These covariances must 
be known to compute the variance of the biomass estimate 
(equation 6). 

To estimate the variance for each weight at age, a 3-yr cen- 
tered moving average W*,J of the estimated May 1 weights was 
used as a plausible estimate of the true weight at age for that 
year. The deviation of the year’s estimate from the 3-yr mean 
is called d,l. Then, d,l divided by the 3-yr mean provides a stand- 
ardized deviate (STD) for that year: 

STD,, = W*,J/d,. 
The variancwovariance (STDCOV) matrix of these standard- 
ized deviates was used to estimate the variances and covariances 
of the estimated weights at age. The estimated covariance for 
the two ages j and k in year i is 

(11) Cov[W,,W*] = sTDCov,~w,l .w* 
where variance is the special case of j = k. In effect. the values 
in the STDCOV matrix are squared coefficients of variation. 
Pre-1940 

Because no weight data exist, the weights at age before 1940 
were estimated by regression analyses on population size. In 
some cases the weights of adjacent ages were included in the 
regression models (F’rager and MacCall 1987). The STDCOV 
matrix developed for the 1940-68 weights at age was assumed 
to apply to these estimates as well. The regression models used 
to reconstruct the weights introduced additional error, and by 
the sequential nature of the reconstruction, these errors prop- 
agated from younger to older ages. On the other hand, weight 
estimates for the older ages used information from adjacent ages 
or cohorts, thus averaging out some of the error. The error of 
the regression model for weight of age 1 fish suggests a coef- 
ficient of variation (CV) of about 20%. The mean-squared error 
is 1218 g2, and the mean weight is 177 g; thus the coefficient 
of variation is 

(12) 
or about 20%. Although the models of older ages appear to 
have higher RZ, this is misleading, since those models rely upon 
the estimated weights at previous ages. 

To accommodate these facts, we assumed that each recon- 
stmcted weight should have its variance inflated by 20% to 
reflecting a constant and independent 20% reconstruction error. 
This was accomplished by increasing all values in the STDCOV 
matrix by 0.04 before applying equation 1 1 to compute variance 
for the pre-1940 data. Because each age’s variance is assumed 
to be independent, and the biomass estimates were composed 
of five ages, some of this additional variance canceled out in 
the computations. 

Variance of the Natural Mortality Coefficient, M 
We know of no publication in which an estimate of the var- 

iance of M has been derived for any fish stock. We regrettably 
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CV = (1218)1R/177 = 0.197 

cannot provide the exception and have estimated this quantity 
in an ad hoc manner, although the estimate is strengthened by 
theoretical considerations. The estimate of M (0.501yr) for S. 
japonicus is taken from Parrish and MacCall(1978). 

Before estimating the variance of M, we considered that it 
might arise from two sources. The first source is measurement 
error, our inability to measure the mean of M precisely. As our 
WA uses a single estimate of M for all years (as do all VPA 
methods we are aware of), any measurement error affects all 
years of the analysis simultaneously. This means that, to model 
measurement error, only one partial derivative with respect to 
M must be computed for each year’s biomass estimate (B,). 

The second source of variance in M is process error, the 
year-to-year variability in a quantity (M) not estimated every 
year. Although process error can be autocorrelated, we assumed 
the simplest case, i.e. that process error would affect the value 
of M in each year of the analysis independently. To model such 
process error, one must compute for each year’s biomass esti- 
mate a sepmte partial derivative with respect to.M for each 
year whose data contribute to the biomass estimate. 

We assumed for simplicity that the contributions of the two 
sources to the variance of M were equal. For computational 
purposes, then, we split M into two equal components: a “low- 
frequency” component (subject to measurement error) and a 
“high-frequency” component (subject to process error). The 
variance of M was divided between the two components, also. 
Thus, we write 

(13) M = Mo + M,. 
Here, Mo is the low-frequency component of natural mortality, 
Le. the component whose variance, arising from measurement 
error, affects all years at once. In contrast, MI is the high-fre- 
quency component, i.e. the component whose variance, arising 
from process error, affects each year separately. 

We estimated M to have a coefficient of variation of about 
25%, i.e. we believed a 95% confidence interval from M = 
0.25 to M = 0.75 to be approximately correct. This gives an 
estimated variance of 0.0156, which we rounded to 0.016. To 
explore the implications of the two sources of variance in M, 
we repeated our analysis for three scenarios: the first had all 
the variance (0.16) in Mo, the second had all the variance in 
MI, and the third had the variance divided equally between 
them. 

Variance of Terminal F 
The required estimate of the terminal F (F4+ in 1969) was 

set at 1 .O (Parrish and MacCall 1978). with estimated variance 
of 0.5. The estimated variance, while somewhat arbitrary, does 
reflect the variance found in the distribution of fishing mortality 
values observed over the years (F’anish and MacCall 1978; 
MacCall et al. 1985); it also reflects our opinion of the uncer- 
tainty in this estimate of F. Because we used Murphy’s linkage 
method, the value of terminal F was much less important than 
in nonlinked cohort analyses. 

Covariances 
Except as explained above for the weights at age, covariances 

among the VPA input quantities were not calculated directly. 
We assumed that the covariances between different quantities 
(e.g. Cov[F,M or Cov[w,, C,]) were zero. Since the catches at 
age were treated as proportions, their covariances within a given 
year would be negative. This fact was treated numerically, while 
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TABLE 1. Index to VPA biomass and variance estimates, identified by 
computer run number. Mo is the component of natural mortality whose 
variance acts on all years togethw, M, is the component of natural 
mortality whose variance acts on each year inde.pendently (equation 
13). Run 22 is used in the text as the base for comparisons. 

Run MO M.3 M ,  MI FTC 
number mean variance mean variance mean 

100- 
bp 
v 

20 0.5 0.016 0.0 0.0 1 .o 
21 0.0 0.0 0.5 0.016 1.0 
22 0.25 0.008 0.25 0.008 1.0 
23 0.25 0.008 0.25 0.008 1.25 
24 0.25 0.008 0.25 0.008 0.9 

Run 20 m(b) 
-Run 21 . 

Run 22 7 

.. 
1925 1930 1935 1940 1945 19% 19% 1960 lS65 1970 

Year 
FIG. 2. Biomass and variance estimates for the mackerel, Scornbcr 
jqponicur. (a) Biomass estimates with approximate 95% confidence 
intervals from run 22; (b) coefficients of variation (CV’s) of biomass 
estimates from runs 20 and 21. CV’s from run 22 were in between, 
somewhat closer to run 20. Runs differ in their assumptions about the 
variance of natural mortality (Table 1). 

estimating the partial derivatives (equation 7) of catch at age, 
by taking the temporary 1% increase in each C, from the other 
catches in the same year. When C,, was temporarily increased 
by 1%. the other catches were temporarily reduced (in propor- 
tion to their contribution to the total catch for the year) so that 
the total catch remained the same. Thus, although few of the 
covariance terms in equation 1 were computed explicitly, most 
of the covariances were taken into account. 

Sensitivity Factors 
During the analyses, it k a m e  apparent that the partial deriv- 

atives of the biomass estimate with respect to the input quan- 
tities (aB/aX,), which were computed to accomplish the delta 
method, were of interest as indicators of the sensitivity of the 
WA biomass estimates to the values of the input quantities. 
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Furthermore, the derivatives can be transformed into dimen- 
sionless sensitivity factors by scaling them: 

where S,, is our notation for the sensitivity in year i of the bio- 
mass estimate B, to the input factor x,. The interpretation of the 
S,, is that for a given percentage change in the corresponding 
x,, the biomass estimate will change by that percentage multi- 
plied by S,,. Such sensitivities are similar to the quantities 
defined by economists as elasticities. (Clark 1976, p. 128). 
Sensitivities were computed for all input factors except the 
weights at age. 

Multiple Biomass Estimates for Each Year 
We made several runs of our VPA algorithm with different 

assumptions about the variance in M. Also, runs were made to 
examine the effects of values of the FTC other than 1 .O. Table 1 
lists the various runs and their parameters. 

Results 

VPA and Variance Estimates 
Figure 2a is a time-series plot of the VPA biomass estimates 

from run 22, with approximate 95% confidence intervals. The 
confidence bounds were calculated as the population estimate 
+2  standard errors; the standard error is the square root of 
equation 6. The very large confidence intervals from 1929 to 
1939 largely result from the poor precision of the estimated 
weights at age during these years. In later years, the CV of the 
estimates is much lower. 

Figure 2b illustrates the CV’s of the VPA biomass estimates 
from runs 20 and 21. (Since runs 20-22 vary only in their 
treatment of the variance of natural mortality, the biomass 
estimates are identical.) The CV’s of run 20 are largest and 
those from run 21 smallest. Run 22 falls in between, but 
somewhat closer to run 20. 

Composition of Variance 
Figures 3a, 3b, and 3c show the time-averaged compositions 

of the variance estimates from runs 20,21, and 22. In preparing 
this figure, we have omitted the highest variance years, 192% 
39. In each case, the largest fraction of the mean variance comes 
from the estimates of M, for which we assumed a CV of approx- 
imately 25%. The other large fraction comes from the estimates 
of weights at age. Smaller fractions come from the catch at age, 
total catch, and the FTC. All other fractions of the variance 
were less than 0.05%. The results for runs 23 and 24 were 
essentially identical to tho% of run 22. 

Effects of F Transfer Coefficient 
We found that the variance of the FTC was relatively unim- 

portant in establishing the total variance (Fig. 3), contributing 
at most 2.3% of the total in years after 1935. The mean value 
of F, for these years was 1.01. In earlier years, however, when 
the mean value of F, was only 0.16, the FTC contributed up to 
12% of the total variance. Changing the value of the FTC had 
little effect on the biomass estimates except in the initial years 
with low F (Fig. 4). This small effect is in agreement with the 
low sensitivities to FTC (<I%) that we found when F was 
moderate or high. 

543 



CATCH 

TOTAL 

-5 

544 

O i i  

F TRANSFER COEFFICIENT IO.LU1 7 mi F TRANSFER COEFFICIENT (1.0XI lbl  

TOTAL CATCH 13 7 U l J  
IC) 1 F TRANSFER COEFFICIENT 10 6%) 

FIG. 3. Variance composition for runs 20, 21, and 22. Results of runs 23 and 24 are extremely similar to those of run 22. 

-30 

-60 
1925 1935 

lot------ 

-10: 
1935 1945 1955 l !  

Year 
i5 

FIG. 4 .  Biomass estimates from runs 23 (lower curves) and 24 (upper curves), which have FTC values 
of 1.25 and 0.90, respectively. Plots are of percentage differences from run 22. To illustrate the different 
scales, the 1935 values are shown in both panels. 
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TABLE 2. Dimensionless sensitivities (Sa, quation 14) of VPA bio- 
mass estimate in 1955 to various input quantities. Sensitivities are for 
run 22 and vary in other years and runs. Factors less than 0.01 are not 
shown. 

Input Sensitivity of 1955 biomass 
quantity, x, es& to this quantity 

Low-frequency M (Mo) 0.359 
High-frequency M (M,) in 1955 0.178 
M,, 1956 0.109 
M,, 1957 0.045 
M,, 1958 0.016 
Total catch, 1955 0.291 
Total catch, 1956 0.332 
Total catch, 1957 0.269 
Total catch, 1958 0.079 
Total catch, 1959 0.015 
Total catch, 1960 0.010 
Catch (1955, age 3) 0.033 
Catch (1956, age 2) 0.056 
Catch (1956, age 3) 0.128 
Catch (1956, age 4) 0.047 

Catch (1957, age 4) 0.070 

Catch (1958, age 4) 0.032 
Catch (1958, age 5) 0.037 
Catch (1959, age 5) 0.024 

Catch (1957. age 3) 0.060 

Catch (1957, age 5) 0.060 

Catch (1960, age 5) 0.012 

TABLE 3. Dimensionless sensitivities (S*, quation 14) of VPA bio- 
mass estimates to various input quantities. Sensitivities are means for 
the years 194045; those less than 0.01 or related to catch at age are 
not shown. 

Input 
quantity, *I 

Low-frequency M (Mo) 
Low-frequency M (Mo) 
High-frequency M (M,), year i' 
High-frequency M, year i + 1 
High-frequency M, year i + 2 
Total catch, year i 
Totalcatch,yeari + 1 
Total catch, year i + 2 

Mean sensitivity of biomass 
estimates to this quantity 

0.360. 
0.821b 
0.1764 
0.108'.d 
0.062*.6 
0.360 
0.272 
0.185 

'Assumes that natural mortality and its variance are divided evenly 

bAssumes that natural mortality and its variance are entirely in the 

'Year i is the year of the estimate. 
dIf natural mortality were entirely in the high-frequency component, 

between low-frequency (M.) and high-frequency (M,) components. 

low-frequency component (Mo). 

this sensitivity would be approximately doubled. 

Sensitivity Factors 

Using equation 14, we computed sensitivities to each input 
quantity for each year's biomass estimate. Table 2 shows the 
sensitivities for run 22 in 1955, which is considered typical. 
Factors less than 0.01 are not shown. 

For run 20, the sensitivity to Mo is approximately doubled 
from Table 2. For run 21, the sensitivity to M, is approximately 
doubled from Table 2. 

Table 3 shows mean sensitivities for the years 194065. Sen- 
sitivities to specific catches at age are omitted from the table; 
such sensitivities are in general small (<0.05) and vary from 
year to year. Of them, the greatest sensitivities are to catches 
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Year 

approximately halved. 

at age 5, probably because thm are the heaviest fish and 
because numbers at age 5 are magnified by the backwards VPA 
algorithm. Table 3 reveals that, as expected, VPA biomass esti- 
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FIG. 8. Sensitivity of biomass estimates to high-frequency component 
of natural mortality (M,). Upper curve: M, in the year of estimate; 
lower curve: M, in the following year. All natural mortality is assumed 
to be in M,; if half were in the low-frequency component, sensitivities 
would be approximately halved. 
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FIG. 9. Effect of fishing mortality (0 on the sensitivity of biomass 
estimates to the high-frequency component of natural mortality (M,) 
in the year of estimate or in the following 2 yr. The smoothed F values 
on the x-axis are means of F in the year of the estimate and in the next 
3 yr. Regression lines for each year are shown. As in Fig. 8, all natural 
mortality is assumed to be in MI. 

mates are highly sensitive tow, however, the hlghest sensitivity 
under the present assumptions was less than unity. 

Figure 5 is a time plot of sensitivity to total catch in the year 
of the estimate. The sensitivity is less than 0.05 in 193CL-32, 
when exploitation was very light, but rises to around 0.4 in 
later years. Figure 6 shows the same sensitivities plotted against 
smoothed estimated fishing mortality (0. The two tend to 
covary, even when the data are broken into pre-1940 and post- 
1939 groups. The years with highest estimated F were most 
sensitive to the value of catch. 

Figures 7-9 describe the sensitivity of the biomass estimates 
to the estimate of M. Figure 7, a time plot of sensitivity to the 
low-frequency component (Mo) of natural mortality, demon- 
strates the very high sensitivities (nearly 4.0) in the years when 
the stock was lightly exploited. The sensitivities later fall to 
around 0.75. Figure 8 is a similar time plot of sensitivity to the 
high-frequency component (MI) of natural mortality. The sen- 
sitivity is higher to M, in the same year as the estimate, but also 
significant to MI one year later. The shape of the two curves is 
nearly the same. Figure 9 demonstrates that, as expected, the 
sensitivity to MI depends on the intensity of exploitation. With 
higher values of F, the sensitivity to the value of MI decreases. 
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DiScUSSiOU 

We wished to estimate the variance of VPA biomass esti- 
mates so that the variances could be used in correcting a stock- 
recruitment model for the so-called “errors in variables” prob- 
lem (Draper and Smith 1981). This problem, which arises when 
error is present in the predictor variable of a regression model, 
results in biased parameter estimates and can obscure stock- 
recruitment relationships (Walters and Ludwig 1981). How- 
ever, knowing the variance of the biomass estimates is also val- 
uable because it allows confidence bounds to be drawn about 
the population estimates (Fig. 2) and hypotheses about popu- 
lation sizes to be tested statistically. Since the composition of 
each variance estimate is also known (Fig. 3). the relative 
importance of better knowledge of each input quantity can be 
judged. This could prove useful in planning an efficient mon- 
itoring program for a stock. 

Our variance estimates were slightly biased downward by the 
cohort analysis algorithm we used, which was selected to reflect 
the seasonal nature of the fishery (see Cohort Analysjs above). 
In this algorithm, values of k (which depends upon M) were 
estimated separately and not changed when computing deriv- 
atives with respect to M. To have done otherwise would have 
been computationally impractical. However, a numerical inves- 
tigation of the bias revealed it to be generally quite small. In 
the years after 1945, the bias was approximately 1 or 2% in the 
CV of biomass, Le. a CV reported as 20% was probably about 
21%. 

The sensitivities we computed reveal the importance of errors 
in the inputs in an easily interpreted way. By using the sensi- 
tivities, one could estimate the probable error in the biomass 
estimate for a past year when M (for example) was thought to 
be unusually high or low. Also, such sensitivities can be used 
for an objective and uniform analysis of any model. Being 
dimensionless, they provide a scale-free expression of the rela- 
tionship of a model to its input factors. 

Omission of Recent Years from Calculations 
In general, the variance in VPA estimates is highest for the 

most recent years, when cohorts have been fished for few years 
and the effect of error in the estimate of terminal Fis not reduced 
by convergence. However, Fig. 2 shows no such effect. This 
is because we restricted our analyses to those years which per- 
mitted running the analysis with only one estimate of terminal 
F: the F,+ in 1969. Thus, although our data ran through 1969 
(the final year of data available before the collapse of the stock), 
our “historical” estimates of population biomass and its vari- 
ance tun only through 1%5. The variances of “current” VPA 
estimates (those nearer the final year of data) would of come 
be higher. Also, estimates of such variances would be much 
less precise; the variance of a “current” VPA estimate is almost 
entirely a function of the variances of M and the terminal F for 
the cohort, both typically quite high. 

Further Applications of the Method 
The delta method is a valuable tool for estimating the vari- 

ances of complex models. We have applied it to VPA biomass 
estimates, but it could be used equally well on other quantities 
estimated by VPA. For example, the variances of full iterative 
VPA could be estimated, although the computations would be 
more lengthy. Also, the same methodology could be used to 
estimate the variances of fishing mortalities or population sizes 
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in numbers arising from VPA. A further potential application 
wuld be the estimation of the variances of the parameters of 
“separable” VPA (Doubleday 1976; Deriso et al. 1985), in 
which the matrix of F‘s is estimated as a series of additive year 
and age effects. Finally, we expect that as fishery scientists 
become increasingly concerned with correcting for the effects 
of errors in variables, the delta method will prove an especially 
useful addition to the analytical toolbox. 
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