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ABSTRACT: Line transect analysis is a census 
method that has been used to derive estimates of 
dolphin school abundance from sightings data col- 
lected by observers on tuna purse seine vessels. The 
method is based 01: the assumption that movements 
of the sighting platform ( tuna vessel) and sighted 
objects (dolphin schools) are random with respect 
to each other. In practice, neither schools nor ves- 
sels move randomly. Stratification of sightings 
data has been used to alleviate partially the effects 
of this nonrandomness, but the effectiveness of this 
stratification cannot be tested with data from com- 
mercial vessels because the movements of the ves- 
sels cannot be controlled. 

As a n  alternative, we have used a relatively simple 
mathematical simulation model to investigate the 
severity of bias introduced into school abundance 
estimates by nonrandom movements of schools and 
vessels, and by the data stratification procedure. 
Simulations show that nonrandom movements on a 
scale of a fen  hundred miles, coupled with the data 
stratification procedure, can lead to overestimates 
of dolphin school abundance by as  much as a factor 
of two. These results focus attention on the need to 
understand patterns of dolphin school distribution 
in smaller scales of space and time than have been 
studied previously, and to  develop data stratifica- 
tion methods more robust against the effects of 
small-scale nonrandomness. 

The National Marine Fisheries Service (NMFS)  
monitors mortality of dolphins involved in fish- 
ing operations by the United States purse seine 
fleet for yellowfin tuna, Thu~i)zzis albacares, in 
the eastern tropical Pacific Ocean (ETP), to de- 
termine whether mortality has exceeded an 
annual quota implemented by an act of the U.S. 
Congres s .  T h e  quo ta  leve ls  depend upon 
whether dolphin populations are thought to be 
increasing or decreasing in number, relative to  
population levels during previous years. 

The most effective method currently available 
for detecting trends in relative abundance is an- 
alysis of population abundance estimates collect- 
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ed over a period of 5-15 years. The most effec- 
tive method currently available for making these 
abundance estimates is line transect analysis of 
dolphin school sightings data (Holt 1987; Buck- 
land and Anganuzzi 1988). Two data sources are 
available for these line transect estimates of 
abundance: 1) data collected by observers dur- 
ing research surveys (RSOD-Research Survey 
Observer Data) and 2) data collected by obser- 
ve r s  du r ing  commercial fishing opera t ions  
(TVOD-Tuna Vessel Observer Data). N M F S  
has used RSOD because research surveys can be 
designed specifically to satisfy the assumptions 
required by line transect analysis (Smith'). 
However, research surveys are very expensive 
and are becoming more so. This expense causes 
RSOD to be sparse relative to TVOD and possi- 
bly unavailable in the future. 

TVOD are a potential solution to these prob- 
lems, having three significant advantages over 
RSOD: TVOD are much more abundant, are rel- 
atively inexpensive, and are  likely to  continue 
being collected as  long as  fishermen set on and 
kill dolphins. Observer-days from tuna vessels 
account for roughly 95% of the annual observer 
effort in the ETP, while observer-days from re- 
search vessels account for only 5%. TVOD are 
inexpensive relative to RSOD because TVOD 
are  collected by the  observers in addition to  
monitoring dolphin mortality, the latter being 
the main reason the observer program was ini- 
tiated. This monitoring program has been in 
operation for the past 14 years, will continue into 
the foreseeable future, and monitors about 30% 
of trips by purse seiners (both U.S. and non- 
U S .  vessels) each year in the ETP'. Ideally, 
TVOD could be used in place of RSOD to  moni- 
tor changes in abundance of dolphins. 

'Smith, T. D. 19%. Estimates of sizes of two popula- 
tions of porpoise ( S / e v e / / n )  in the eastern tropical Pacific 
Ocean. Admin. Rep.  No. LJ-75-67, Southwest  Fish.  
Ce;t.. Natl. Mar. Flsh. S e n . ,  NOAA, La  Jolla, CA. 

-Inter-Amencan Tropical Tuna Commission, Annual Re- 
ports 1980-1988, Scripps Institution of Oceanography. La 
Jolla. CA 9203X. 
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methods of line transect analysis to estimate 
dolphin abundance from TVOD (Buckland and 
Anganuzzi 1988) raised serious but unanswered 
questions about the effects of these factors on 
the abundance estimates derived. 

The philosophy behind building a relatively 
simple model was that  biases shown to be 
troublesome and methods shown to be inade- 
quate in a simple computer model are likely to be 
even more troublesome and inadequate in the 
real world. I t  is both more efficient and more 
economical t o  investigate these biases and 
methods first with a simple simulation model, 
prior to developing expensive field experiments. 
We have specifically applied the  t ene t s  of 
Occam’s Razor in developing this model. making 
it as simple as possible while still incorporating 
the major processes and features contributing to 
the TVOD data collection process. In this study, 
we focused only on estimating abundance of dol- 
phin schools. leaving questions about abundance 
of i u d i ~ i d t t d  dolphins for a later day. We also 
assumed that data were collected without arti- 
facts, leaving also that problem for a later set of 
simulations. Both of these omissions are ex- 
amples of factors that probably have strong ef- 
fects on analyses of TVOD, but which are at this 
stage unnecessary refinements to the simulation 
model. Such refinements could be added later if 
no problems were identified during simulations 
with the early, most simplified versions of the 
model. 

This paper presents results of testing one 
hypothesis about one of the most fundamental 
factors suspected to affect seriously line transect 
estimates of dolphin abundance derived from 
TVOD. Specifically. we tested the effect of non- 
random clustering by dolphin schools on abun- 
dance estimates. As part of this analysis we 
tested also the effects of three types of data 
stratification prior to line transect estimation of 
school abundance: 1) no stratification. 2) 
stratification by raw encounter r a t e  per  1” 
square, and 3) stratification by smoothed en- 
counter rate per 1” square, using the smoothing 
and interpolation algorithm developed by the 
Inter-American Tropical Tuna Commission for 
deriving estimates of dolphin abundance from 
line transect analysis of TVOD (Buckland and 
Anganuzzi 1988). We were primarily interested 
in the third type of stratification, because the 
properties of the smoothing algorithm are poorly 
understood. The other two stratifications were 
conducted to provide a basis for comparison with 
the smoothing procedure. 

Reluctance to use TVOD to monitor the rela- 
tive abundance of dolphins stem from concerns 
that TVOD 1) seriously violate some of the fun- 
damental assumptions of line transect analysis 
(Polachek 1983), 2) are subject to serious but 
unquantified and possibly inconsistent biases, 
and 3) may be plagued with artifacts arising 
from the data collection process. Artifacts in- 
clude, for example, differences between RSOD 
and TVOD in the sighting frequencies of various 
dolphin species reported by observers on re- 
search vessels compared to tuna vessels (Barlow 
and Holt3), environmental  factors affecting 
sighting ability (e.g., sun glare, sea state, and 
cloud cover; Holt and Cologne 19871, and shifting 
areas of concentrated search effort (Buckland 
and Anganuzzi 1988). However, problems of this 
type are common to most commercial fisheries 
data and analyses derived from them. It is im- 
portant to determine whether, despite these dif- 
ficulties, useful estimates can be derived from 
such data sets. 

Toward t h i s  end ,  we have  developed a 
relatively simple model simulating the TVOD 
collection process. Our purpose in developing 
the model was twofold: 1) to test the effect of 
suspected biasing factors  on line t ransect  
estimates of abundance and 2) to test  new 
methods of abundance estimation prior to con- 
ducting expensive field tests. There are two 
unique advantages of simulation modeling in 
this context. First, we are simulating dolphin 
abundances and vessel movements within the 
model itself; therefore, we have available the 
“truth” against which to compare our model- 
generated estimates of abundance. Second, we 
have the capability of investigating effects on 
estimates that are due to combinations of bias- 
ing factors which may not have occurred during 
the years we happen to have been collecting 
data, but which can be expected to occur. Bias- 
ing factors include, for example, small-scale 
nonrandomness in school and vessel movements 
and spatial distributions, choice of data stratifi- 
cation method, changes in fishing objectives, 
practices, and areas of concentrated search, and 
changes in sighting protocol and recording pro- 
cedures. We chose to focus first on the effects of 
nonrandomness and on t h e  method of da t a  
s t ra t i f icat ion because r ecen t ly  developed 

‘Barlow. J. .and R. S. Holt. 1986. Geographic distribu- 
tions of species proportions for dolphins in the eastern tropi- 
cal Pacific. Admin. Rep. No. LI-84-2i. Southwest Fish. 
Cent., Natl. Mar. Fish. Sew.. NOAA. La Jolla. CA. 
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THE MODEL 
Model Structure 

This section presents a general description of 
model structure. A detailed technical explana- 
tion of the model can be found in Kleiber and 
Edwards4. The model (TOPS: Tuna-vessel Ob- 
server Program Simulator) simulates the move- 
ments of 75 tuna purse seiners and either 2,500 
or 1,250 dolphin schools within a 1,200 x 1.200 
square nautical mile area. Figure 1 provides a 
graphical comparison of the “study area” simu- 
lated by the model, to the entire area within 
which the tuna-dolphin association is exploited 
by the purse seine fleet. Twenty-five hundred 
dolphin schools is the nominal number of schools 
expected within a 1,200 x 1,200 nmi area of the 

‘Kleiber, P. IL, and E.  F. Edwards. 1988. A model of 
tuna vessel and dolphin school movement in the eastern trop- 
ical Pacific Ocean: technical description of the model. 
Admin. Rep. No. LT-88-26, Southwest Fish. Cent., Natl. 
Mar. Fish. Serv., NOAA. La Jolla. CA. 

ETP, based on Holt’s (1985,’.‘; 1987) estimates of 
the total number of dolphins, average size of 
dolphin schools, and species proportions for the 
ETP, prorated from the entire ETP to an area 
1,200 x 1,200 nmi. Simulations were also run 
with half this number of schools to investigate 
the ability of abundance estimates derived under 
different conditions to reflect changes in actual 
abundance in the model. Number of vessels is 
based on reported size of the ETP purse seine 
fleet, assuming about 50% of the fleet will be 
fishing a given area of this size a t  any one time 
(see IATTC Annual Reports 198347). 

All dolphin schools are assumed to be identical 
(i.e., are replicates); all schools include only the 

’Holt. R. S. 19%. Estimates of abundance of dolphin 
stocks taken incidentally in the eastern tropical Pacific yel- 
lowfin fishery. Admin. Rep. No. W-85-16. Southwest 
Fish. Cent.. Natl. Mar. Fish. Serv.. NOAA, La Jolla. CA. 

‘Holt, R. S. 1985. Estimates of population size of dol- 
phins in the eastern tropical Pacific using line transect 
methods. Admin. Rep. No. LI-85-20, Southwest Fish. 
Cent.. Natl. Mar. Fish. Serv.. NOAA, La Jolla, CA. 

FIGI.RE 1.-Approximate estent of the eastern tropical Pacific Ocean (ETP) tuna purse seine fishery. Boxes enclose two areas 
the size of the area simulated by TOPS (1.200 x 1.200 nmi). indicating relative sizes of the entire fishery area compared to  the 
area encompassed by the simulation. 

861 



FISHERY I3L‘LLETIN V O L  8;. NO. 4 ,  19x9 

northern offshore stock of spotted dolphins, 
Stenella a t t emata ,  all have the same number of 
animals, all are equally visible, and all move in- 
dependently of each other. All vessels are as- 
sumed to be identical also; they are the same 
size, a r e  equally adept  a t  sighting dolphin 
schools, and do not communicate with each 
other. Dolphin schools move at  speeds varying 
between 0.5 and 2.4 knots, depending on condi- 
tions of the local environment (see below). All 
vessels move a t  15 knots continuously. Speeds 
are based on reported averages for dolphin 
schools (Perrin 1979) and for vessels (vessel 
activity records, NMFS data bases). Vessels are 
assumed t o  chase and set upon all sighted 
schools. Vessels that have set on a school are 
“removed” from the simulation for 5 hours, sim- 
ulating the average time to chase, set, collect 
tuna, release dolphins, and get back under way. 
Sighted schools are removed from the position of 
sighting and replaced randomly within 0 to 50 
nmi of the sighting, simulating a variable ”rest“ 
period of 0 to 24 hours between one set and the 
next for sighted schools. 

Dolphin schools move in response to the local 
height and gradient of an “environmental topog- 
raphy”. The topography is a grid of equally 
spaced peaks of good habitat interrupted by val- 
leys of low-quality habitat. Habitat quality vanes 

between a value of 1 at the peaks for optimum 
habitats to  0 at the least favorable habitats mitl- 
way between peaks. Topographies are generated 
as a function of sine waves in two-dimensional 
space and are either stationary or made to slide 
from right to left at  1 knot. Two combinations of 
peak spacing and peak shape were used for the 
simulations reported here: 1) a simple topogra- 
phy of 4 equally spaced peaks with relatively 
gentle slopes (Fig. Za), and 2) a more complex 
topography of 16 equally spaced peaks with rela- 
tively steep slopes (Fig. 2b). 

These choices for peak number generate  
spaces between peak tops of 300 and 600 miles. 
These spacings were chosen based on approxi- 
mate  distances between clusters of dolphin 
school sightings from research vessel data‘. 
Peak steepness was chosen to simulate either 
slow spatial changes in environmental conditions 
(gentle slope) or rapidly changing conditions 
(steep slope) such as those which pertain a t  
ocean fronts (Owen 1981). 

Spacings of 600 miles between gently sloping 
peaks generates distances of 300 miles between 
maximum and minimum values of the environ- 

‘R. S. Holt. Southwest Fisheries Center, National Marine 
Fisheries Service. NOAA. P.O. Box 271. LaJolkd. CA 92038, 
pers. commun. July 1987. 

SIMPLE TOPOGRAPHY a 

FICURE 2 . 4 e o m e t r i c  configuration of the simple environmental 
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mental topography. representing a 300 mile 
gradual gradient from "best" to "worst" condi- 
tions (Fig. 2a). In the complex. steep environ- 
ment the precipitous slopes generate a distance 
of only about 75 miles between maximum and 
minimum values for environmental quality, the 
slopes being separated by a "desert" of unfavor- 
able habitat about 150 miles a i d e  (Fig. 2b). 

These  two topographies  were  chosen t o  
bracket a range of reasonable possibilities for 
patterns in environmental characteristics that 
may cause nonrandom clustering of dolphin 
schools. The factors of peak gradient and peak 
spacing (number of peaks) are confounded here 
because we tested only the two topographies, 
simp1e:gentle and comp1ex:steep. Gentle gradi- 
ents are confounded with few peaks; steep gradi- 
ents a re  confounded with many peaks. We did 
not test the other two possibilities (simp1e:steep 
and complexgentle) because these are both 
intermediate topographies that would have gen- 
erated intermediate results. In the interest of 
simplicity, we restrict this simulation study to 
the two extreme cases. 

The rate at  which the topography moved ( 1  
knot) was chosen to  simulate movement of major 
habitat features affecting dolphin school move- 
m e n t s .  Because  d i r e c t  ident i f ica t ion  and  
measurements of such features have yet to be 

made. the choice of rate \vas based on reported 
speeds of major ocean currents in the eastern 
tropical Pacific and apparent seasonal move- 
m e n t s  of major  concent ra t ions  of dolphin 
schools. Reported current speeds include 0.1 to 
0.3 knots for the core of the Pacific North Equa- 
torial Current bordering the fishery area on the 
north (Seckel 19751, 1.2 to 2.4 knots for the equa- 
torial undercurrent underlying the fishery area 
(Wyrtki 1966), and 1.2 to 2.4 knots for maximum 
speed of the Equatorial Countercurrent surface 
waters encompassing a majority of the fishing 
area (Wyrtki 1966). School sightings data from 
research ships indicate that major concentra- 
tions of dolphin schools may move seasonally 
between distant a reas  a t  approximately 0.3 
knots (200 nmi/mo)'. 

Our choice of 1 knot was based on the assump- 
tion that the mechanismk) responsible for ag- 
gregating dolphin schools are most probably 
related to distributions of prey and water mass 
signatures indicating presence or absence of the 
prey. Dolphins in the E T P  consume small (10-50 
cm) fish and squid (Perrin e t  al. 1973). This 
mobile prey base will in turn be responding to 

"S. B. Reilly. Southwest Fisheries Center. National Mar- 
ine Fisheries Service. XOAA. P.O. Box 271. La Jolla, CA 
92038, pers. commun. December 1987. 

b COMPLEX TOPOGRAPHY 

topography (a) and the complex topography (b). 
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movements of its own prey base of smaller ani- 
mals. We reasoned that it is unlikely that this 
food chain is being swept along as rapidly as the 
maximum current speeds, but, especially on 
smaller scales, the distributions of prey and 
predator are probably moving faster than the 
speeds apparently characteristic of large-scale 
seasonal movements. We chose 1 knot as a con- 
servative approximation. It is possible that 
dolphin aggregating mechanisms move, over- 
all, more slowly than 1 knot, but probably not 
faster. Thus by comparing simulation results 
from nonmoving topographies versus topog- 
raphies moving at 1 knot, we have tried to 
bracket the range of responses likely to occur in 
the real system. 

In our model, dolphin schools were made to 
respond to  these topographies by adjusting 
their speed according to the quality level and by 
adjust ing the i r  d i r e c t i o ~  according to  t h e  
gradient in quality experienced during the pre- 
vious time step. The range of speeds chosen for 
dolphin schools (0.5 to 2.4 knots) was based on 
average observed cruising speeds of dolphin 
schools in the  ETP’. In  the model, dolphin 
speed is fastest a t  the lowest quality levels and 
slowest at the highest quality levels. Direction 
choice is stochastic with probabilities biased in 
the  forward direction when the gradient is 
posit ive (conditions improving) and in the  
reverse direction when the gradient is negative 
(conditions deteriorating). Thus the rules for 
school speed and direction cause schools to 
circle slowly in “favorable” areas (i.e.. on the 
peaks) and to move rapidly straight ahead in 
“unfavorable” areas (i.e., the valleys between 
peaks). 

Vessel movements were controlled by each 
vessel’s history of dolphin school sightings, 
through a “sightings memory” variable. The 
value of the variable increases by one unit each 
time a school is sighted and it decays constantly 
by a given proportion with each time step.  
Thus, the value of the variable will be high 
when a vessel is  in a “good” area (i.e., has seen 
lots of schools) and will be low when the vessel 
is  in a “bad” area (schools are few). Vessel 
direction is stochastic and affected by the value 
of this “sightings memory” variable. When the 

’Hedgepeth, J. 1985. Database for dolphin tagging 
operations in the eastern tropical Pacific. 1969-1978. with 
discussion of 1978 tagging results. Admin. Rep. No. LJ- 
85-03. Southwest Fish. Cent., Natl. Mar. Fish. Serv.. 
NOAA, La Jolla. CA. 
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value is high. direction choice is biased in the 
reverse direction; i.e.. the vessel is most likely 
to turn apprcvimately 180 degrees. When the 
value is low. small angles are much more likely 
to be chosen; i.e., the vessel will tend to con- 
tinue moving forward. Each vessel maintains its 
own sightings variable independent of t he  
sightings variables of other vessels, so that each 
vessel moves independently of all other vessels. 

Gene ra t ion  of Simula t ed  TVOD 
Each simulation began with totally random 

distributions of both vessels and dolphin schools. 
Nonrandom spatial distributions of vessels and 
schools then developed as a function of the envi- 
ronmental topography and of the movement 
rules for schools and vessels. Each simulation 
continued for 600 time steps of 1 histep. 

Estimates of school abundance were based 
only on TVOD collected during the last 200 
steps. By this time, the model had in all cases 
settled into a quasi-steady state (Fig. 3). TVOD 
for each vessel, collected during each of these 
last 200 steps, included vessel number, total 
number of miles searched during that step, posi- 
tion of the vessel at  the end of the step, and 
presence or absence of a school sighting. Only 
one school could be sighted per vessel per time 
step. 

TVOD were “collected” for all dolphin schools 
moving within 2 nmi of any vessel. Two nautical 
miles is the effective strip width found com- 
monly with line t ransect  analyses  of r ea l  
TVOD.’” All vessels were assumed to carry 
observers. Observers were always on duty col- 
lecting data  (i .e. ,  were never “off effort”). 
Vessels searched continuously (Le., did not stop 
at “night”). 

Data Analyses  

TVOD were aggregated subsequently into 1” 
squares prior to abundance estimation. One- 
degree squares are the smallest geographic sub- 
division that retains, with real TVOD, sufficient 
data for line transect analysis (Polachek 1983; 
Buckland and Anganuzzi 1988). 

Four replicated simulations were conducted 
for each of eight different cases representing two 

“’M. Hall. Inter-American Tropical Tuna Commission, c/o 
Scripps Institution of Oceanography, La Jolla. CA 92093. 
pen. commun. 



EDWARDS and KLEIBER NONRAKDO31SESS ON LINE TRANSECT ESTIhI.ATES OF DOLPHISS 

REPLICATE SIMULATIONS 
STATIC DVNAYIC 

Simple, Gentle :(2, I )  

om0 

1250 1260 

O J  I 
0 520 m o o  320 mo 

Complex, Steep:(4, 5 )  
, mm, 

12 1250 

04 . . 1 
0 320 m o o  320 (yx, 

TIME (hours 10) 

FICCRE 3.-Time course of total school abundance estimates derived from unstratified 
TVOD. Estimates were derived during each of 600 time steps for 4 replicated runs of 8 
different starting conditions. The cases differed in environmental topography (simple. 
gentle r s .  complex. steep). in whether the topography was static or dynamic (sliding le!? 
at  1 knot). and in underlying abundance of dolphin schools (1.250 or 2,tSO). Numbers in 
parentheses (2 .  1: 4. 5 )  are parameters used in the equations generating the topog- 
raphies. 

levels for each of three factors. The factors and 
levels included 1) complexity of the environ- 
mental topography (simple, with 4 gently sloping 
peaks vs. complex, with 16 steeply sloping 

peaks), 2) topography dynamics (static vs. 
moving at 1 knot) and 3) dolphin school abun- 
dance (2,500 vs. 1,250 schools). Topography 
movement was implemented by causing the grid 
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of peaks and valleys to slide uniformly sideways 
from “right” to “left”. 

Stratification Schemes 
TVOD collected under each of the eight cases 

were  subjected t o  three  types  of stratifica- 
tion: 1) none, 2) raw encounter rate, and 3) 
smoothed encounter rate. 

In the case of no stratification, school abun- 
dance was estimated simply as  

(TEIAS) * (TA) (1) 

where TE is total number encounters by all ves- 
sels during time steps 400 to 600, AS is total area 
searched during that time, and TA is total area 
simulated (1,200 x 1,200 nmi). In this case, all 1” 
squares were treated as a single group or stra- 
tum. 

In  stratifying by r aw encounter ra te .  en- 
counter rates (schools encountered per nautical 
miles searched during the last 200 time steps) 
were calculated for each 1” square. The squares 
were subsequently ranked in ascending order of 
encounter ra te ,  and grouped into 01)  strata.  
Strata were demarcated on the basis of including 
at least (nz) schools (encounters) per stratum. 
Both ( ? I )  and (ni) were calculated using an algor- 
ithm developed by the Inter-American Tropical 
Tuna Commission for their line transect analyses 
of dolphin abundance in the E T P  (Buckland and 
Anganuzzi 1988). School abundance was then 
estimated for each stratum separately. Total 
school abundance in the entire 1,200 x 1.200 nmi 
area was then estimated simply as the sum of 
these estimates per stratum. 

In stratifying by smoothed encounter rate, en- 
counter rates in each 1” square were smoothed 
according to  the algorithms developed by Buck- 
land and Anganuzzi (1988). Squares were then 
ranked and assigned to strata based on these 
smoothed encounter  r a t e s .  This smoothing 
algorithm generally creates strata composed of 
contiguous areas of squares, arrayed in decreas- 
ing order from area of apparent high density to 
areas of lower density. I t  is not uncommon, how- 
ever, for some squares in a given strata to be 
scattered in areas isolated from the majority for 
that stratum. 

The smoothed encounter rates generated by 
the algorithm were used only during this stratifi- 
cation step; school abundances were estimated 
for each s t ra tum using the  raw (actual) en- 
counter rate. Total abundance of dolphin schools 
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was then estimated as the sum of the estimates 
for each stratum. 

Estimates Derived 
Two types of estimates were derived from 

these simulated TVOD: total abundance of dol- 
phin schools in the entire simulated area, and 
charige in school abundance from one sampling 
period to another, where this change was esti- 
mated simply as the ratio of school abundance 
estimates derived under two different sets of 
initial conditions in the model. Thus, school 
abundances were estimated first, and change 
es t imates  derived subsequently from these  
abundances. These estimates of change were 
calculated as a very simple analogy to a trend 
estimate, extending in this case over two sam- 
pling periods instead of over series of estimates. 
This two-sample change estimate is only a rough 
approximation to a trend estimate tlerivetl from 
a series of measurements (Gerotlette 1987). 
However. conclusions about the effects of incon- 
sistent biases on this clia)/ge estimate will be 
valid for t r s d  estimates also, except for the 
unlikely case in which effects of various inconsis- 
tent biases cancel each other out, so that the 
trend estimate reflects the actual trend, but only 
fortuitously. 

Change estimates were derived under two 
conditions. Under the first condition the esti- 
mate was simply the ratio of the abundance 
estimate when true density was 1,250 schools 
(low density) to the estimate when the t rue  
density was 2,500 schools (high density). All 
other conditions in the  model remained the  
same. This simulates the situation of consistent 
biases. 

Under the second condition, the trend esti- 
mate was the ratio of one low-density estimate to 
one high-density estimate, but the ratio was con- 
structed by selecting abundance estimates from 
cases which differed in other factors in addition 
to differing in dolphin abundance. This simulates 
the situation of biases being inconsistent from 
one sampling period to the next. Three ratios 
were selected from the many possibilities, to  
simulate three reasonable scenarios in the real 
ETP  and to bracket a range from mild to severe 
inconsistencies. 

The first of the three ratios was an estimate of 
abundance change in the simple environment, 
where in one case the environment was static 
during the sampling period and in the other the 
environment was moving at  1 knot. The second 



ratio \vas an es t imate  of' abundance change 
coupled u i th  a change in the environment from 
sim ple to  com ple x ( environment s r e  ma i nin p 
static in both cases). The third ratio \vas an esti- 
mate of abundance change coupled with a change 
from a simple antl static environnient to a coni- 
ples antl moving environment. These t h l w  c a w  
simulated ratio estimates of abundance changes 
from, for example. one year to the next. where 
conditions in the environment have also changed 
between years. 

RESULTS 
L)evelopment of Nonrandom 
Distributions 

Relatively similar dynamics occurred within 
the four replicated runs of each of' the eight 
cases (Fig. 3) .  In all cases. nonstratifietl esti- 
mates of total school abundance. calculatetl for 
each of the 600 time steps. t1evelol)etl propes- 
sively positive biases. Early (luring each simula- 
tion. estimates were relatively accurate. But as 
schools antl vessels became propessively non- 
randomly distributed (F ig .  8a-hj. estimates 
de te r iora ted  owing to  the  concentration of 
search effort by tuna vessels in the areas where 
dolphin school were prevalent and to  the con- 
comitant avoidance by vessels of areas with few 
schools. 

Although positive bias developed in all cases. 
the degree and progression of bias was strongly 
influenced by environmental topography. both 
configuration antl dynamics. Relatively little 
bias developed i n  cases ivhere the topopaphy 
was relatively noncomplex (Fig. 3a. c) or \vas 
moving at  1 knot (Fig. 3b, (1. f. h). Very large 
biases developed in cases where the topography 
was complex antl static (Fig. 3e. g). 

School Abundance Estimates 
Nonstratifietl estimates of total school abun- 

dance, calculated from TVOD collected during 
the last 200 time steps, show the positive bias 
indicated in the time courses shown in Figure 3. 
The degree of positive bias in unstratified esti- 
mates was not constant, but varied with model 
conditions (Fig. 4). Bias was least for the case of 
a simple, moving environment. slightly higher 
for the complex, moving environment, slightly 
higher again for the simple, static environment, 
and dramatically higher for the complex, static 
environment. 

Estimates of school abundance based on strati- 
fication by raw encounter rate were in all cases 
relatively accurate. although estimates tended 
to be negatively biased for the cases of a simple 
environment (Fig. 1). 

Estimates based on stratification by smoothed 
encounter ra te  also tentled to be negatively 
biased for the cases of a simple environment 
(Fig. 1). The case of a complex, moving environ- 
ment led to a slight positive bias in abundance 
estimates. But the complex. static environment 
led to pronounced overestimates of abundance 
that rivaled results from the unstratified an- 
alyses-. 

Reducing the underlying density of' schools by 
half. from 2.500 to 1.250 schools. was mirrored 
by decreases of approximately one half in school 
abundance estimates (Fig. 4) .  Patterns of over- 
or underestimation under various model condi- 
tions remained consistent over both tlensitites. 
For example, the most severe bias occurred in 
both cases under conditions of a complex, static 
environmental topography. 

Change Estimates 
When change estimates were derived by com- 

paring cases in which only the underlying den- 
sity of schools \vas changed (i.e., when biases 
remained consistent between sampling periods) 
the estimates based on raw or smoothed en- 
counter rate stratification were very accurate 
(Fig. 5). Estimates based on unstratified data 
were strongly biased but analyses of real TVOD 
a re  never conducted on unstratified data,  so 
th i s  case is useful only as an  indication of 
improvement in estimation achieved by strati- 
fying. 

Inconsistent biases produced a dramatically 
different result. Even relatively small changes in 
underlying model conditions produced moderate 
to large biases in the change estimates. Also, 
these biases were neither consistently positive 
nor consistently negative, even within a single 
set of comparisons (Fig. 5). 

DISCUSSION 
School Abundance Estimates 
Stratification 

Overestimates were derived from nonstrati- 
fied data in all cases because vessels (and there- 
fore observers) spent more time (expended more 
effort) in areas where dolphin schools were abun- 
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FKXRE 4.-Estimated vs. actual school density (total number of schools in 
simulated area) under 8 different rases for model conditions antl under 3 types 
of data smulation for each condition. Each set of 1 columns i? a set of -I 
replicated runs for a given case. The cases differed in 1)  environmental to- 
pography (simple. gentle ys, complex. steep). 21 \vhether the topopraphy was 
static or dynamic (sliding left at 1 knot). ant1 3) actual abundance of dolphin 
schools (1.250 or 2.500). Sumbers in parentheses (1. 1. 1. 51 are parameters 
used in equations generating the topographies. Two antl 4 refer to  the number 
of peaks arrayed along each axis of the spatial plane, generating a regular 
square prid of peaks. One and 5 are values of the parameter controlling peak 
slope: 1 generates a padual  slope, 5 generates a precipitous slope. Heavy 
lines across the figurer indicate the true density (abundance) of schools in each 
set of simulations. Data treatments include A )  no stratification before estimat- 
inp school abundance. B)  stratification of 1" squares based on observed (raw) 
encounter rates per square, antl C )  stratification of I" squares based on 
smoothed encounter rates per square. 

dant, and avoided areas where schools were few 
(Fig. 6). Overestimates of average school abun- 
dance per 1" square resulted from this pattern of 
effort because few samples from low density 
squares contributed to the average. Overesti- 
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mates of total school abundance then followed 
directly by extrapolating this overestimate to 
the entire area. 

Overestimation of school abundance was espe- 
cially pronounced for the case of a complex, 
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Fii;r HF >.--Comparisons of estimated versus actual change c"trentl"1 in 
school abundance from one sampling period to another. Change> in abun- 
dance were estimate(! ae the ratio of school abundance (estimated or ac- 
tual) under one set of model conditions (SD,) to school abuntlance (esti- 
mated or actual) under some other set of conditions ISD,). Lo antl HI refer 
to actual abundance of school.. (Lo = 1.260 schools. Hi = 2.500 schools). S 
antl SS refer to topography dynamic.< (S = topography sliding aitleways at 
1 knot (dynamic,. ?;S = static topography). Number in parenthesei refer 
to parameters generating topopraphies. T\va antl 4 refer to number of 
peak> along each axis. One antl 5 refer to peak gradient (1 = platlual slope. 
5 = precipitous slope). Three change estimates. resulting from three tlif- 
ferent type5 of data stratification. were generated for each comparison: 
A )  no stratification before estimating school abundance. BI stratification of 
1' squares based on observed (raw) encounter rate. per square. antl C )  
stratification of 1' squares based on smoothed encounter rates per 
square. Comparisons are espressed as (1 - (Estimated changejactual 
change))'100. so that differences appear as  percentages. Differences are (1 
when estimated changes equal actual changes. 

static environment because this condition led to 
very concentrated clumping of schools within a 
few 1" squares. Vessels concentrated most of 
their effort in these few squares with very high 
density. Overestimates were less pronounced in 
the cases of a simple environment because here 
the areas of higher density were much more dif- 
fused and not so different from areas of low den- 

sity. The gradient of increasing density toward 
the  topographic peaks built up much more 
slowly. so tha t  vessels sampled many more 
squares with relatively low density than had 
been the case for the complex, static environ- 
ment. The overestimate of abundance was rela- 
tively lower for the case of the complex. dynamic 
environment for essentially the same reason; the 
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FICVRE &--Tracks of simulated purse seine vessels after 400 time steps during a slmulation with a complex. static environmental 
topography. Vessel movements are concentrated near peaks in the topography. in response to the high density of dolphin schools 
in these areas 

characteristics of the environment produced 
many more squares with relatively low densi- 
tites. But here the process generating these 
relatively low-density squares was very dif- 
ferent from the simple environment case. In the 
complex, moving environment the peaks were 
moving at  1 knot. Aggregating the data from the 
last 200 time steps generated a smeared version 
of the underlying 16-peak array. Integrated over 
the entire period of data collection, the areas of 
dolphin concentration appear as bands across the 
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simulated area, rather than as individual peaks 
(Fig. 7). The dolphin schools spread themselves 
out over a larger number of squares than in the 
static case, producing lower estimates of aver- 
age density per square. 

Stratification By Raw Encounter Rate 

Estimates derived from stratification by raw 
encounter rate were relatively unbiased in all 
cases because in these simulations we “collected” 



an unrealisticall\. large numbei. of T1701) \vith 
unrealistically complete coverage of the s in -  
ulated area. Of the four huntlretl 1" squares i n  
our 1,200 x 1,WJ nnii area. 110 more than six 
went unsampletl during any simulation. As a re- 
sult. encounter rates in each square reflected 
very accurately the true school density in each 
square. Stratifying by these encounter rates. 
deriving a different estimate of average school 
density for each stratum. taking the weighted 
average of these estimates. antl then extrapolat- 
ing this weighted average to the entire area pro- 
duced quite accurate estimates of total school 
abundance. 

The slight negative bias in the cases of a sim- 
ple environment may be due to a curious effect 
that was not obvious until we made a movie of 
vessel antl school movements generated by 
TOPS for a simulation o f the  simple moving to- 
pography. It appears in this movie that vessels 
tend to undersample the areas of highest density 
in the center of the grxlual peaks. because the 
vessels encounter enough schools along the  
periphery to keep them from turning into these 
high density. central areas. Undersampling the 
highest densities of course will lead to an under- 
estimate of the average density per square antl 
thus to an underestimate of total abundance. 

This avoidance of peak centers did not occur 
with the complex, static environment used in our 
simulations. apparently because most of the 
peak area in this topography occurred within 
only a few squares (Fig. 2b). Vessel speed was 
apparently sufficient to carry most vessels into 
the highest density areas before the effects of 
sightings caused the vessels to slow down. 

Stratification by Smoothed and 
Interpolated Encounter Rate 

Given the  apparent accuracy of estimates 
derived under the  stratification by raw en- 
counter rate, it would seem irrelevant to proceed 
to the more complicated and sometimes ineffec- 
tive stratification by smoothed encounter rates. 
However, real world tuna vessels never sample 
the E T P  as completely as the simulated vessels 
sampled the TOPS environments. In most years, 
fewer than half the vessels carry observers, the 
fleet as a whole samples less than half the entire 
ETP, and the sampling that is done tends to  be 
concentrated seasonally in variable geographic 
a reas  (Buckland and Anganuzzi 1988). This 
leaves many 1" squares unsampled. 

For management purposes, we cannot assume 

that squ;ires with no effort contained no dol- 
phins; therefore. \ve are left with the necessity of 
estimating tlensitier i n  those unsampletl areas. 
l ye  have to fill in  the holes someho\v, so an inter- 
polation method. either a more robust method 
than used to date. or some new method. is re- 
quired. 

In  most of the TOPS simulations. Buckland 
antl Anganuzzi's (19811) smoothing antl interpola- 
tion routines worked quite well, with accuracy 
rivaling that of the raw encounter rate stratifica- 
tion. The very poor performance of the smooth- 
ing algorithm in the case of a complex, static 
environment. however. is troubling because we 
have no (lata from the field to determine whether 
or not such topopaphies exist in the ETP.  We 
suspect that such topographies do exist because 
the parameters used in the TOPS model were 
chosen specifically to be reasonable. In partic- 
ular. the distances between peaks were chosen 
to bracket the apparent distances between clus- 
ters of tlolphin schools as indicated by siphtings 
from research vessels. Also, the movement 
rates by vessels. schools. antl topography were 
specifically selected to approximate observed 
rates.. 

The severe bias in the complex static case 
arises owing to an interaction between the effec- 
t i v e  sampl ing  f requency  (in th i s  ca se ,  1" 
squares),  the peak topography. and the  me- 
chanics of the smoothing algorithm. The algor- 
ithm works by calculating. for each square, a 
smoothed encounter ra te  that  is a weighted 
average of encounter rates for all squares within 
a radius of at least four squares.  Thus the  
smoothed rate in each square is affected by rates 
across a diameter of at  least eight 1" squares, or 
a distance of at least 480 nmi (8  x 60 nmi). In the 
case of the complex. static topography, this mini- 
mum distance is greater than the distance be- 
tween peaks (300 nmi). Also, the relatively pre- 
cipitous peaks encompass only 3 or 4 squares and 
a r e  separated by low-density a reas  several  
squares across. The smoothing algorithm tends 
to "fill in" these low-density areas, elevating ap- 
pa ren t  encounter  r a t e s  in t h e  in te rvening  
squares and causing squares to be assigned to 
strata out of proportion to the true densities of 
dolphin schools in the squares. 

It is possible that the relatively precipitous 
slopes of the peaks in the complex environment 

"R. S. Halt, Southwest Fisheries Center, National Mar- 
ine Fisheries Service. NOAA. P.O. Box 271. La Jolla. CA 
92038. pers commun December 198i 
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a SIMPLE, STATIC 

b SIMPLE, SLIDING 

FIGURE i.-Average number of sightings of dolphin schools per 1" square during the last 200 
a) simple, static, b) simple. sliding. 
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time steps of one simulation for each of the four types of environmental topography 
c) complex, static, and d) complex. sliding. 
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are unrealistic, but in fact these slopes extend 
over at  least two 1" squares (Fig. 2b). This is a 
distance of at  least 120 nmi. Conditions change 
across ocean fronts in distances much shorter 
than this, and ocean fronts a re  aggregating 
mechanisms for many marine biota (Owen 1981). 
Of course, such fronts are never static and the 
smoothing algorithm worked quite well in the 
complex, dynamic environment,  apparently 
owing t o  the  smearing effect discussed pre- 
viously. However, as in the previous case, we 
have as yet insufficient data to  identify the con- 
ditions actually pertaining in the real ETP. 

The major point is that the simulations have 
shown that clustering characteristics on rela- 
tively small scales (10s to  100s of miles) can 
seriously bias estimates of abundance derived 
via the smoothing algorithm, which is a problem 
because as yet we know almost nothing about 
clustering on this scale in the real ETP. The 
model results indicate strongly that future re- 
search should be focused either on resolving this 
lack of information or on developing alternative 
analyses that are not as sensitive as this smooth- 
ing algorithm to these small-scale spatial effects. 

Change Estimates 
These demonstrated problems with estimating 

school abundance are serious but in real-world 
analyses could perhaps be ignored; the next set 
of dolphin quotas will be determined not on the 
basis of estimated absolute abundance at  some 
point in time but rather on the basis of esfiutafed 
changes in abundance (Holt et  al. 1987). This is 
an advantage in the estimation process because 
as long as  nothing other than dolphin abundance 
changes from one sampling period to the next 
(Le., as long as biases remain consistent), then 
accurate estimates of those changes in abun- 
dance can be derived from TVOD. 

However,  we know almost as  little about 
whether biases truly remain constant (consis- 
tent) in the ETP, as  we know about small-scale 
spatial distributions of dolphin schools. I t  is ob- 
vious from Figure 5 that even relatively small 
changes in bias can lead to considerably inac- 
curate estimates of change and, by implication, 
estimates of trend. A change as simple as mov- 
ing from a static to a slowly moving environment 
produced an overestimate in the ratio estimate 
of almost 209 (Fig. 5. Lo(2, 1)S/Hi(2, 1)NS). Not 
even the direction of bias remained consistent, 
changing from positive in some cases to negative 
in others. 

The ratio estimate based on a simple static 
environment during one sampling and a complex 
static environment during the other period (Fig. 
5) is of particular interest, because an effect of 
this type may be the basis for the anomalous and 
biologically unlikely d ip  in Buckland and  
Anganuzzi's (1988) estimates of abundance for 
northern offshore spotted dolphin, S f e w l l a  af -  
temmta during 1983 (Fig. 8), the year of an ex- 
ceptionally strong El Nino. Our simulation re- 
sults in this case lead to a potentially testable 
hypothesis about a factor that may have signifi- 
cantly affected analyses of real TVOD. Prelimin- 
ary analyses of apparent differences in distribu- 
tions of dolphins during El Nino versus non-El 
Nino years support the hypothesis that changes 
in spatial distributions led to inconsistent biases 
and thus to inaccurate trend estimates during 
these years." 

SUMMARY 
The results from these simulations a re  useful 

in a general sense; they show that significant 
biases can develop within the  simple model 
structure used here. The quantitative results are 
specific to the parameter values and movement 
rules chosen for these particular simulations and 
are neither intended nor assumed to mirror spe- 
cific distributions of either vessels or dolphin 
schools in the real environment of the ETP. Al- 
though parameter values controlling rates and 
abundances a re  "correct" to  the  best of our 
knowledge. choosing different parameters for 
the functions controlling dolphin responses to  
the  environment, or vessel responses to  dol- 
phins, would probably change both the rates and 
spatial characteristics of pattern development 
and thus estimates of abundance derived. 

Other clustering patterns could have been 
used, and other results generated. However, our 
purpose at  this stage was not to generate a cata- 
logue of patterns and responses. Our purpose 
was to test the effects of varying a simple but 
reasonably realistic (in terms of rates and spac- 
ings) aggregating pattern for dolphin schools, 
using the results to determine whether any in- 
sight could be gained into the problem of esti- 
mating abundance of dolphin schools in the real 
world. using real TVOD. 

Indeed, we found that our simplified simula- 

"S. B. Reill!. Southwest Fisheries Center. National Mar- 
ine Fisheries Service. NOAA. P.O. Box 271. La Jolla. CA 
Y2038. p e n .  cornmun. 
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tion approach identified two critical problems 
that must be addressed if TVOD are to an effec- 
tive source for estimates of dolphin abundance or 
changes in abundance in the eastern tropical 
Pacific Ocean. These critical problems are 1) the 
effect of small-scale nonrandomness of dolphin 
schools, and 2) the interactions between these 
small-scale patterns (sampling frequency and 
smoothing algorithms) on estimates of school 
abundance or change in abundance derived from 
line transect analysis of sightings data. Research 
effort should now be directed toward identifying 
and characterizing school distributions within 
these smaller spatial (and temporal) scales, and 
toward improving t h e  efficacy of exis t ing 
methods or developing new methods for analyz- 
ing TVOD. 
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