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ABSTRACT

Three app are ined for esti g reproductive rates from data on p ghting of distinctly marked is. The
three approaches correspond to parameter esti for three population growth models. Two of the approaches. parameter
estimation for the Leslic matrix and geometric series models, are based only on known-aged individuals. A third approach. the
birth-interval model. is developed making futler use of available information. The birth-interval approach uses only known-aged
individuals to estimate the first-birth ogive and uses all females with previous births to estimate the probabilities associated with
various birth intervais. A Monte Carlo simulation is used to examine the bias and precision of the three methods given the quantity of

b,

data that is usually available in a multiple resighting study. All three approaches appear

d with such

pable of giving d estimates of
is g for the Leslic model, less for the geometric series

population growth rate. The variance
model and least for the birth-interval model.

INTRODUCTION

The number of repeated sightings of individually-identified
cetaceans continues to increase. Many examples, including
both large whales and delphinids, are discussed in this
volume. Some studies will soon have 20 years of
continuous data including records of thousands of sightings
of identified individuals from particular populations. In
many cases, the presence or absence of a calf is noted when
observations are made. Thus, these sighting records
include potentially valuable information on cetacean
reproduction. In this paper, ! examine methods for
calculating reproductive rates from repeated sightings of
known individuals.

The more obvious approaches used to estimate
reproductive rate from resighting data tend to be biased.
For example, one approach is to calculate the average
number of mature females that give birth in a given year.
Typically, the only measure of maturity is the presence of a
calf in close proximity to the female. If the first observation
of a particular cow with a calf were included in calculating
an average birth rate for the population, that rate wouid be
biased upwards. If the first observation were excluded,
average birth rate would be biased downwards. A second
approach is to calculate an average calving interval.
Typically, these estimates are also biased. Mean calving
interval is affected by a downward bias because one cannot
expect to observe calving intervals that terminate after the
study period. Mean calving interval is affected by an
upward bias because some birth events will be missed
(assuming some cows are not seen every year). The intent
of this paper is to develop methods for estimating
reproductive rates that are robust and unbiased.

I examine three methods for estimating reproductive
rates from resighting data.-(For this work, resighting data
is defined as records of repeated sightings of distinctly
marked individuals for which the presence or absence of a
calf is unambiguously noted.) The first method is based on
estimating the reproductive parameters of a Lesliec matrix
model. The second is based on estimating parameters for a
geometric series model. Both use information collected

only from known-aged individuals. Because most
individuals in a resighting study will not be of known age,
these methods do not utilise all sources of information and
might, therefore, be expected to be relatively imprecise. If
parameters are correctly estimated, both are unbiased. [
also present a third method which more fully utilises
available information. This new approach (termed the
birth-interval model) is compared to the other two
approaches with respect to bias and precision.

METHODS

Reproductive rates have no clear meaning outside of the
specific model to which they apply. There is no single
definition of the reproductive rate of a population.
Although one can invent statistics that are measures of
reproductive output, it is difficult to judge bias or precision
in the estimation of reproductive rate except in the context
of a particular model. Methods for estimating reproductive
parameters of three population growth models are
presented below. The accurate estimation of population
growth rate is the basis of measuring bias and precision.
Bias and precision are evaluated using Monte Carlo
simulations.

For all three models, it is assumed that mean survival
rates of mature and immature individuals can be estimated
from the same resighting data (Buckland, 1990).

Leslie matrix model

The Leslie matrix model is commonly used to model
growth in age-structured populations. Details of the model
are presented by Leslie (1945) and in most texts on
population biology (e.g. Keyfitz, 1977; Pielou, 1977). In
brief, the model is based on an age-structured projection
matrix. When a vector of age specific population size is
multiplied by this matrix, the result is the predicted vector
of age-specific abundances one time unit later. Typically
only females are modelled; however, because sex may not
be known for the majority of individuals in a resighting
study, I model males and females combined.
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Table 1

Parameters used to construct the three population growth model
idered here. Par subscripted with x or t are vectors.

Model Par D

Leslic Matrix Survival rate of age-class x

Fecundity rate of age-class x

»

First sexually mature age class

Survival from birth to age class

Mean survival rate of mature age classes
Mean fecundity rate of mature age classes

Geometric Series

I I - TEadh S Y

Birth-Interval Survival rate of age-class x

B Fecundity rate of age-class x for
*  females without prior births
X; Mean fecundity at t time periods after

a previous birth

The non-zero elements of the Leslie matrix include
age-specific survival rates (in the first sub-diagonal) and
age-specific fecundity rates (in the first row) (Table 1). The
survival rates represent the probability of surviving from
the beginning of one age class to the beginning of the next.
The fecundity rate represents the expected number of
offspring produced per individual of a given age at time t
and which survive until one time unit later, at time t+1.
The components of fecundity thus include reproductive
rates and survival rates (the mother must survive from
some arbitrary census time to parturition time and the
offspring must survive from birth to the next census time).

I use here a formulation of the Leslie model that assumes
census immediately after parturition. Thus, the only
significant component of survival in the fecundity term is
the survival of the mother from census to parturition. Let
the first age class be called age class 1 and include
individuals which are essentially newborns (remembering
that births occurred immediately before census). This
convention conforms to a formulation recommended by
Goodman (1982).

Fecundity rates can be estimated from resighting data
using known-aged individuals. [ assume that cows and
calves are observed together shortly after parturition. A
crude birth rate. by, at age x is calculated as the number of
calves observed with presumed mothers of age x, divided
by all individuals (males and females) of age x. The
fecundity rate, f,, is then estimated as the product of the
survival rate of females at a given age and the crude birth
rate of the next age class:

fx = px bxs1 Y

The population growth rate, er. is estimated as the one
real-number solution to the discrete-time formulation of
Lotka’s equation

It M8

(e x fx=1 2
1

X

x-1
where [, = I1 p; = survivorship from birth to age x

i=
(Goodman, 1982). This rate is equivalent to the dominant
Eigen value of the Leslie matrix.

Geometric series model

The geometric series model can be thought of as a
collapsed form of the Leslie model. The model is named
after an arithmetic identity that allows considerable

Age Age Age Age Age
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Fig. 1. lllustration of the Markovian method used to estimate Leslie
matrix fecundity parameters from first-birth and birth-interval
probabilities. Each node represents a decision point. At each node.
the probability of having a caif, Y, or not having a calf. N, is given
by either the first-birth probability, MP, for that age class (if no
prior birth) or the birth-interval probability corresponding to the
time. t. since the previous birth (BI=t). The probability of reaching
cach node is the product of all probabilities leading up to that node.
The probability of giving birth for each age class is the sum of the
probabilities of all nodes which result in a birth in that age class.

simplification in estimating population growth rates. The
number of parameters is reduced to 4 (Table 1): the age at
sexual maturation, «; the survivorship from birth to that
age, l,; the mean survival rate of mature animals, p; and
the mean fecundity rate of mature animals, m. Goodman
(1984) provides a more detailed description of this model.
Given the parameters for a Leslie model, it is possible to
derive the parameters for the geometric series model.
Typically, however, parameters are estimated
independently of the Leslic model, and, because fewer
parameters are needed. the geometric series model may
perform better when sample size is limited. The population
growth rate, 7, is estimated as the solution to the equation

e@—pere-_m.l, =0 3)
(Goodman, 1984).
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Again. the reproductive parameters ¢f this model can be
estimated from resighting data using known-aged
individuals. The age at sexual maturation is simply one less
than the age class of the youngest individual known to have
given birth. The mean crude birth rate is the total number
of calves born to known-aged individuals divided by the
total number of known-aged individuals in age classes
greater than or equal to the age of sexual maturation. The
mean fecundity rate is estimated as this mean crude birth
rate multiplied by the mean survival rate of mature
females.

Birth-interval model

A third model. the birth-interval model, is developed here
specifically to deal with the problems encountered using
resighting data to estimate birth rates. The reproductive
terms include two vectors (Table 1). The first vector, B,
gives the probability that an individual of age x which has
not given birth previously will give birth at age x+1. The
second vector, v,, gives the probability of giving birth t
years following the preceding birth. The first-birth
probabilities, By, are estimated only from known-aged
individuals. The birth-interval probabilities, vy,, are
estimated from all individuals which have given birth
previously. Given estimates for these two sets of
probabilities. the fecundity terms of a Leslie matrix can be
estimated using Markov probability chains (Fig. 1). At this
stage, population growth rates can be estimated as
described above for the Leslie matrix.

First-birth- and birth-interval probability vectors are
estimated using iterative maximum-likelihood procedures.
Birth-interval probabilities are estimated first. Calves are
defined as young-of-the-year. An individual which is seen
with a calf in one year can be classified in subsequent years
as being in one of three states: (1) seen with a different calif;
(2) seen without a calf; or (3) not seen at all. This
information can be tabulated as given in Table 2. The
probability, Pr(t.j), of being in state j (of the three states
given above) at time t after the birth of a calf can be
calculated given estimates of the birth-interval
probabilities (described above), the probability of being
seen in a given year, and the mean survival rate. The
likelihood of obtaining the aggregate sample is the product
of the likelihoods of each individual observation. The
likelihood function is thus

o 3
L=1 TI(Pr(t,j))nctd @
t=1 j=1
where
t = time since previously seen with calf,
j = observation state at time ¢t and
n(t.j) = number of individuals observed in state j at time t.

Table 2
Examples of the data used to estimate birth-interval probabilities.

Values represent the number of individuals seen with a caif, seen
without a calf, or not seen, as a function of time since a previous caif.

Time since previous birth

¢ 1 2 3 4 5 6

No. with calf 195 76 70 70 68 60 61
No. without calf 2 30 25 2 M4 AU
Not seen 9 95 100 105 101 110

The probability of being seen in a subsequent year is
assumed to decrease each year at a rate equal to one minus
the mean survival rate. Furthermore, it is assumed that the
mean survival rate and the probability of being seen have
been estimated using standard mark-recapture techniques.
The iterative approach to maximum likelihood proceeds as
follows. First, a ‘guess’ is made for the birth-interval
probabilities and the likelihood of the observed aggregate
sample is calculated. Next, small changes are made to the
estimates of birth-interval probabilities and the likelihood
function is re-evaluated. This procedure is repeated until
the values are found for birth-interval probabilities that
maximise the likelihood function. In practice, [ used the
simplex algorithm to maximise the natural logarithm of the
likelihood function. To reduce the number of parameters
estimated, Pr(t,j) was assumed to be constant for all t
greater than three.

Table 3

Examples of data used to estimate first-birth probabilities. Vatues
represent the number of known-aged individuals seen with or without
a calf as a function of their age. The first reproductive age class is

denoted as a.
Age class
1 2 . . . a«aatlat2 .
No. with calf 0o 0 1 s 28
No.without calf 517 424 112 48 42

A similar approach was used to estimate first-birth
probabilities. For each year they are observed,
known-aged individuals can be classified in one of two
states: (1) seen with a calf: or (2) seen without a calf. This
information can be tabulated as given in Table 3. The
probability of an individual of age x being with a calf,
Pr(x,1), is given by the crude birth rate, b,. The probability
of being without a calf, Pr(x,2), is given as the complement
of this rate, 1 - b,. The likelihood of observing an
aggregate sample is the product of likelihoods of each
individual observation. The likelihood function is thus

» 2
L=1 Ti(Pr(xj))=xd &)
x=] j=1
where
x = age of individual
j = observation state at age x
n(x.j) = number of individuals observed in state j at age x.

Again, an iterative approach was used to find the
maximum likelihood values for first-birth probabilities.
First, a ‘guess’ is made for the probabilities of having a first
calf at each age. These first-birth probabilities and the
birth-interval probabilities estimated earlier are used to
calculate the expected crude birth rates. The likelihood of
the observed aggregate sampie is calculated. Next, smail
changes are made to the estimates of first-birth
probabilities and the likelihood function is re-evaluated.
This procedure is repeated until the values are found for
first-birth probabilities that maximise the likelihood
function. Again the simplex algotithm was used to
maximise the natural logarithm of the likelihood function.
To reduce the number of parameters estimated for this
study, Pr(x.j) was assumed to be constant for all x greater
than a+2.
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Monte Cario simulations

Computer simulations were used to test the bias and
precision of the birth-interval model relative to the more
familiar Leslie and geometric series models. Simulations
used full demographic stochasticity in which transition
probabilities (birth or death) were applied to individuals.
Initially a sample of n individuals was drawn from a
population with known first-birth and birth-interval
probabilities and known survival rates. The age
distribution of the sample was drawn randomly with
respect to the stable age distribution of that population.
For each individual, the simulation program had variables
to indicate age and sex and, for females, time since the
previous birth. This initial population was then projected t
time units into the future. At each time step, the
probability of dying was evaluated for each individual. At
each time step. the probability of having an offspring
survive until the next time step was evaluated for each
female. New births were distributed randomly among
males and females.

A simulation of the process of sighting individuals was
superimposed on this stochastic population projection. All
individuals were assumed to have the same probability of
being seen. At each time step, each individual was
randomly assigned as being seen or not being seen based on
this probability. A new calf was classified as being seen if its
mother was seen. Individuals were classified as
known-aged only if they were seen as calves.

Population growth rates were estimated using simulated
sightings data collected over t years and using the Leslie,
geometric series and birth-interval models. This process
was repeated for 40 iterations, and the mean and variance
in the resulting population growth rates were calculated for
each of the three models.

Conditions for the simulations were designed to cover a
feasible range of study conditions. The length of the
simulated studies, t, ranged from 10 to 20 years. Values for
the simulated population size, n. ranged from 100 to 200
individuals. Values for the probability of being seen ranged

Table 4

Survival rates, birth-interval probabilities, first-birth probabilities, and
Leslie matrix fecundities used in simulations to yield a growth rate of
0.998. F dities were calculated from the other three vectors using

Birth-interval ~ First-birth  Survival  Fecundity
Time/Age  probabilities  probabilities rates rates

1 0.78 0.00 0.66 0.00
2 0.90 0.00 0.74 0.00
3 0.90 0.00 0.80 0.00
4 0.90 0.00 0.84 0.04
5 0.90 010 088 0.3
[ 0.90 050 091 037
7 0.90 0.90 093 0.36
8 0.90 0.95 0.94 037
9 0.90 1.00 0.95 037
10 0.90 1.00 0.95 0.37
1 0.90 1.00 095 037
12 0.90 1.00 0.94 0.37
13 0.90 1.00 092 0.36
14 0.90 1.00 0.89 038
15 0.90 1.00 086 034
16 0.90 1.00 0.80 031
17 0.90 1.00 0.73 029
18 0.90 1.00 0.63 025
19 0.90 1.00 051 020
20 0.90 1.00 0.00 0.00

1

Survival rate
05 07 09

03

0.1

3 5 7 9 11 13 15 17 19
Age class
Fig. 2. Fecundity rates and survival rates used in simulation studies.
Fecundity rates are as defined by first-birth and birth-interval
probabilities (Table 4) and resuit in a population growth rate of
0.998. It is assumed that the survival rate of age-class 20 is zero.

Fecundity rate

-

Table S

Survival rates, birth-interval probabilities, first-birth probabilities, and
Leslie matrix fecundities used in simulations to yield a growmth rate of
1.02S. Fecundities were calculated from the other three vectors using

Markovi bability chai
Birth-intervai  First-birth  Survival  Fecundity
Time/Age  probabilitics  probabilities rates rates
1 0.90 0.00 0.66 0.00
2 1.00 0.00 0.74 0.00
3 1.00 0.00 0.80 0.04
4 1.00 0.10 0.84 023
5 1.00 0.50 0.88 0.40
6 1.00 0.90 091 0.41
7 1.00 0.95 0.93 0.42
8 1.00 1.00 0.94 0.43
9 1.00 1.00 0.95 0.43
10 1.00 1.00 0.95 043
11 1.00 1.00 0.95 043
12 1.00 1.00 0.94 043
13 1.00 1.00 092 0.42
14 1.00 1.00 0.89 0.40
15 1.00 1.00 0.86 0.39
16 1.00 1.00 0.80 0.36
17 1.00 1.00 0.73 033
18 1.00 1.00 0.63 0.29
19 1.00 1.00 051 0.23
20 1.00 1.00 0.00 0.00

from 0.5 to 1.0. Birth-interval and first-birth probabilities
and survival rates were chosen to be representative of a
stable population of a marine mammal with a lifespan of
approximately 20 years (Table 4, Fig. 2). Variations on this
life table included increasing birth rates to yield a
population growth rate, ef, of 1.025 (Table 5), and
increasing birth and survival rates to yield a population
growth rate of 1.062 (Table 6).

RESULTS

The mean population growth rates estimated from
simulations are given in Table 7 for each of the three
models. The expected population growth rate (based on
the underlying survival and fecundity schedules) and the
realised mean growth rates of the populations are aiso
given. Standard errors in the estimation of population
growth rates are given in Table 8 for each of the three
models. ‘
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Table 6

Survival rates, birth-interval probabilities, first-birth probabilities, and

Leslie matrix fecundities used in simulations to yield a growth rate of

1.062. Fecundities were calculated from the other three vectors using
Markovian probability chains.

Table 8

Standard errors of population growth rates estimated from Monte

Carlo simulations based on three methods for estimating birth rates.

Expected growth rates were determined by the undertying survival and
birth rates.

Birth-interval First-birth Survival  Fecundity
Time/Age  probabilities  probabilities rates rates

1 0.90 0.00 0.75 0.00
2 1.00 0.00 0.80 0.00
3 1.00 0.00 0.85 0.04
4 1.00 0.10 087 0.23
s 1.00 0.50 0.89 0.40
6 1.00 0.90 0.91 041
7 1.00 0.95 0.93 042
8 1.00 1.00 0.94 043
9 1.00 1.00 0.95 043
10 1.00 1.00 0.95 0.43
11 1.00 1.00 0.95 043
12 1.00 1.00 0.94 043
13 1.00 1.00 0.92 042
14 1.00 1.00 0.89 0.40
15 1.00 1.00 0.86 0.39
16 1.00 1.00 0.80 036
17 1.00 1.00 0.73 033
18 1.00 1.00 0.63 0.29
19 1.00 1.00 051 0.23
20 1.00 1.00 0.00 0.00
Table 7

Population growth rates estimated (rom Monte Cario simulations
based on three methods for estimating birth rates. Expected growth
rates were determined by the underlying survival and birth rates.

Expected Prob. Realized Birth- Leslic Geometric
growth being Study Sampie growth interval matrix  series
rate  seen period size rate  model model model

0998 0.5 10 100 1003 0992 1009 0997
20 200 0995 099 0989 0993
1.0 10 100 0997 0993 0984 0979

20 200 0997 0997 0993 0995

1.025 05 20 200 1024 1023 1024 1030
1.0 20 200 1023 1.025 1028 1032

1.062 05 20 200 1034 1059 1061 1062
1.0 20 200 1054 1060 1063 1.063

In general, biases in the estimation of population growth
rates are small for all three models. Mean growth rates
from each of the three models (Tabie 7) differ from the
mean realised growth rates by less than the standard error
of the estimates (Table 8).

The precision of the three models in estimating
population growth rates shows a consistent order. The
standard errors for the birth-interval model are
consistently lower than those for the geometric series
model, which are lower than those of the Leslie matrix
model (Table 8). All methods perform better with higher
population growth rates. This improved performance is
probably a result of greater sample size (although all
simulations started with the same population size, a
growing population would have more simulated sightings
over the course of the study).

Because the simulation study was stochastic, the realised
growth rates did not exactly equal the growth rate
characteristic of the underlying life table (Table 7).
Deviations from the expected growth rates were small,
however, indicating no systematic biases in the

Expected Prob. Realized Birth- Leslie Geometric
growth being Study Sample growth interval matrix  scries
rate  seen period size rate  model model model

0998 0.5 10 100 0017 0024 0034 0.027
20 200 0010 0.009 0020 0.015

1.0 10 100 0017 0019 0039 0.024

20 200 0009 0.004 0015 0.010

1025 05 20 200 0008 0004 0017 0015
1.0 20 200 0010 0.002 0010 0.008

1.062 05 20 200 0008 0006 0014 0013
10 20 200 0008 0.003 0008 0.007

construction of the simulation model. It is interesting to
note that the standard error of estimated growth rates from
the birth-interval model is, in most cases, smaller than the
standard error of the realised population growth rate.

DISCUSSION

The purpose of this paper was to test the relative bias and
precision of three methods for estimating reproductive
rates from individual resighting data. The simulation study
was not intended to estimate accurately the precision that
should be expected in the application of these methods to
data collected in the field. Survival rates were assumed to
be known in the simulation and would have to be estimated
if these methods were applied to field data. Simulations
did, however, cover a range of sample sizes and study
durations that are attainable or have been attained in field
studies.

Leslie matrix model

The assumptions of the Leslie matrix model are the least
restrictive of the three models considered here. The
primary assumption (common to all three models) is that
the sample of individuals that are sighted is representative
of the population being studied. Estimation of
reproductive rates for the Leslie model does not require
any implicit assumptions about the age distribution of the
population. This advantage may be outweighed by the
restrictive numbers of known-aged individuals available
for the estimation of reproductive rates. Ages that are
greater than the study period will not be represented at all.
Given the longevity of cetaceans, very long-term studies
may be necessary in order to estimate accurately
fecundities for all age classes using the Leslie model.

Geometric series model

The geometric series model shares a common weakness
with the Leslie model; birth rates for both are based on
small samples of known-aged individuals. Furthermore,
when estimating mean birth rate for the geometric series
model there is an explicit assumption that the population
has a stable age distribution. If, after maturation, birth
rates change appreciably with age and if the age
distribution is not stable, the estimation of asymptotic
population growth rate will be biased. This bias may be
small, however, and the lower variance of the geometric
series model would make it preferable to the Leslie model
in most applications.
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Birth-interval model

In estimating birth-interval probabilities, it is assumed that
the sample has a stable age distribution. If not, and if
birth-interval probabilities change with age, the resulting
estimate of population growth rate will be biased. In
addition to this assumption (which was the same for the
geometric series model) there is the additional assumption
that the probability of being seen is the same for all
individuals. Based on previous field studies, this is almost
certainly not true. Although the mean probability of being
seen may be estimated very accurately, individual
heterogeneity in sighting probability can lead to serious
biases. (This is separate from the assumption that the
probability of being seen is independent of the presence of
a calf, an assumption that was common to all methods.)
Additional work is needed to determine whether sighting
heterogeneity would bias the estimation of birth-interval
probabilities. If this bias is present, it is probably small.
The birth-interval model is still likely to be the best
approach for estimating reproductive rates from resighting
data.

Simulation studies

The simulation studies here do not account for all sources
of error and imprecision that are likely to be encountered
in estimating growth rates from field data. First (and
probably most importantly), I assumed that survival rates
were known. Because I wanted to measure the accuracy in
estimating reproductive rates, I did not want to add this
additional source of random error. Methods for estimating
age-specific survival rates from resighting data have not
been examined in depth. It is likely that some method of
estimating an aggregate survival rate for all age classes
(Buckland, 1990) may have to be incorporated into the
models presented here. If age-specific rates are not
available. estimates of population growth rates may be
sensitive to departures from a stable age distribution.

These simulation studies may also have overestimated
the number of known-aged individuais that could be
obtained in any field study. I assumed that any individual
seen as a calf could later be identified as a known-aged
individual. It is likely that many young animals have no
distinguishing marks and thus wouild not be recognised as
adults. This would affect all three models, but would affect
the Leslie and geometric series models more because they
are entirely dependent on known-aged individuals.

No attempt was made to analyse the effect of deviations
from a stable age distribution on the estimation of
population growth rate. Such deviations wouid affect each
model differently. Also, changes in reproductive rates with
age were not explicitty modelled. The number of
permutations needed to simulate these effects is
overwhelming and beyond the scope of this work. Because
the Leslie model has fewer assumptions, it would be less
affected than would the other models. Whether this
advantage would outweigh the disadvantages of this
method would depend on the specific application.

Future research

Methods for estimating reproductive rates for each of the
three models could benefit from additional studies. For the
Leslie model, it is likely that precision can be increased if

age groups are lumped into larger age categories. This is
especially true for the oider age classes for which the
sample of known-aged individuals is very small. As age
classes are combined, however, the assumption of a stable
age distribution becomes important. Simulation studies
could be used to examine the trade-offs between greater
precision and violations of this assumption.

For the geometric series model. it may be possible to use
individuals of known-minimum-age to augment the sample
of known-aged individuals in calculating the mean crude
birth rates and mean survival rates. This approach could,
however, lead to biases. By adding individuals whose
minimum age is greater than the age at sexual maturation,
the sample may be weighted towards older mature animals.
This would introduce a bias if birth rates or survival rates
change appreciably with age. [Mean birth rates and
survival rates should be estimated as an average of
age-specific rates that are weighted by the actual number of
individuals in each age class (Goodman, 1984)]. This latter
source of bias should be balanced. however, against the
likelihood that older individuals would not be represented
in the sample at all unless known-minimum-aged
individuals are included. This approach deserves further
consideration.

For the birth-interval model, the largest problem
(alluded to above) is likely to be heterogeneity in the
probability of resighting individuals. This probiem should
be examined using simulation studies.

For all three approaches, simulation studies should be
extended to include the estimation of survival rates. Only
then could a realistic appraisal be made of the standard
error of estimating population growth rates from resighting
data. Based on the results presented here, the component
of error due to the estimation of reproductive rates is small.
The possibilities of estimating population growth rates
from resighting data should be viewed with considerable
optimism.
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