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ABSTRACT 
Three approaches are examined for estimating reproductive rates from data on multiple resighting of distinctly marked animals. The 
three approaches correspond to parameter estimation for three population growth models. Two of the approaches. parameter 
estimation for the Leslie matrix and geometric serin models. are based only on known-aged individuals. A third approach. the 
birth-interval model. is developed making fuller rue of available information. The birth-interval approach uses only known-aged 
individuals to estimate the first-binh ogive and uscs all females with previous births to estimate the probabilities associated with 
various birth intervals. A Monte Carlo simulation is rued to examine the bias and precision of the three methods p e n  the quantity of 
data that is usually available in a multiple resighting study. All three approaches appear capable of giving unbiased estimatn of 
population growth rate. The variance d a t e d  with such estimates is greatest for the Leslie model. leu for the geometric series 
model and least for the birth-interval model. 

INTRODUCTION 

The number of repeated sightings of individually-identified 
cetaceans continues to increase. Many examples, including 
both large whales and delphinids, are discussed in this 
volume. Some studies will won have 20 years of 
continuous data including records of thousands of sightings 
of identified individuals from particular populations. In 
many cam. the presence or absence of a calf is noted when 
observations are made. Thus, these sighting records 
include potentially valuable information on cetacean 
reproduction. In this paper. I examine methods for 
calculating reproductive rates from repeated sightings of 
known individuals. 

The more obvious approaches used to estimate 
reproductive rate from resighting data tend to be biased. 
For example. one approach is to calculate the average 
number of mature females that give biah in a given year. 
Typically, the only measure of maturity b the presence of a 
calf in close proximity to the female. Ifthe first observation 
of a particular cow with a calf were included in calculating 
an average birth rate for the population, that rate would be 
biased upwards. If the first observation were excluded, 
average birth rate would be biased downwards. A second 
approach is to calculate an average calving interval. 
Typically, these estimates arc also biased. Mean calving 
interval is affected by a downward bias because one cannot 
expect to observe calving intervals that terminate after the 
study period. Mean calving interval is affected by an 
upward bias because some birth eventS will be missed 
(assuming some cows are not seen every year). The intent 
of this paper is to develop methods for estimating 
reproductive rates that are robust and unbiased. 

I examine three methods for estimating reproductive 
rates from resighting data. (For this work, resighting data 
is defined as records of repeated sightings of distinctly 
marked individuals for which the presence or absence of a 
calf is unambiguously noted.) The first method is based on 
estimating the reproductive parameters of a Leslie matrix 
model. The second is based on estimating parameten for a 
geometric series model. Both use information collected 

only from known-aged individuals. Because most 
individuals in a resighting study will not be of known age, 
these methods do not utilise all sources of information and 
migtrr, therdore, be expected to be relatively imprecise. If 
parameters are correctly estimated, both are unbiased. I 
also present a thud method which more fully utilises 
available information. This new approach (termed the 
birth-interval model) is compared to the other two 
approaches with res- to bias and precision. 

METHODS 
Reproductive rates have no clear meaning outside of the 
specific model to which they apply. There is no single 
definition of the reproductive rate of a population. 
Although one can invent statistics that are measures of 
reproductive output, it is difficult to judge biasor precision 
in the estimation of reproductive rate except in the context 
of a particular model. Methods for estimating reproductive 
parameters of three population growth models are 
presented below. The accurate estimation of population 
growth rate is the basis of measuring bias and precision. 
Bias and precision are evaluated using Monte Carlo 
simulations. 

For all t h m  models, it is assumed that mean survival 
rates of mature and immature individuals can be estimated 
from the same resighting data (Buckland. 1990). 

LcdicMht.modcl 
The Leslie matrix model is commonly used to model 
growth in age-structured populations. Details of the model 
are presented by Leslie (1945) and in most texts on 
population biology (e.g. Keyfiu, 1977; Pielou. 1977). In 
brief. the model is based on an age-structured projection 
matrix. When a vector of age specific population size is 
multiplied by this matrix. the result is the predicted vector 
of age-specific abundances one time unit later. Typically 
only females are modelled; however, because sex may not 
be known for the majority of individuals in a resighting 
study, I model males and females combined. 
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Table 1 

P a n m e t e n  ued to construct the three population growth models 
mnaidercd here. Pa rawcen  rub.cnpced with x or t arc vaton. 

Model Parametar  Definition 

Lcslie Matrix Sutvival rate o f a g e s l r u x  
Fecundity rate of age& X 

Geometric &ria u First sauaUy mature age c l r u  
S u r m l  from birth to age dur 
Mean suNivpl rate of mtu~ age dyvr 
Mean fecundity rate of rmture age cluvr 

Fecundity ralc of age-class x for 
fcmpla without prior births 
M a n  fecundity at 1 time pcriodr after 
a prcviour birth 

9 
la 
p 
m 

Birth-Interval p, Sulvival rate of age-clru X 

p, 

8, 

The non-zero elements of the Leslie matrix include 
age-specific survival rates (in the first sub-diagonal) and 
age-specific fecundity rates (in the first row) (Table 1). The 
survival rates represent the probability of surviving from 
the beginning of one age class to the beginning of the next. 
The fecundity rate represents the expected number of 
offspring produced per individual of a given age at time t 
and which survive until one time unit later, at time t+l .  
The components of fecundity thus include reproductive 
rates and survival rates (the mother must survive from 
some arbitrary census time to parturition time and the 
offspring must survive from birth to the next census time). 

I use here a formulation of the Leslie model that assumes 
census immediately after parturition. Thus, the only 
significant component of survival in the fecundity term is 
the survival of the mother from census to parturition. Let 
the first age class be called age class 1 and include 
individuals which are essentially newborns (remembering 
that births occurred immediately before census). This 
convention conforms to a formulation recommended by 
Goodman (1982). 

Fecundity rates can be estimated from resighting data 
using known-aged individuals. I assume that cows and 
calves are observed together shortly after parturition. A 
crude birth rate. b,, at age x is calculated as the number of 
calves observed with presumed mothers of age x, divided 
by all individuals (males and females) of age x. The 
fecundity rate, f,, is then estimated as the product of the 
survival rate of females at a given age and the crude birth 
rate of the next age class: 

fx = P. bx+i (1) 
The population growth rate, e'. is estimated as the one 
real-number solution to the discrete-time formulation of 
Lotka's equation 

x- I 

1=1 
where 1. = ll pi = survivorship from birth to age x 

(Goodman, 1982). This rate is equivalent to the dominant 
Eigen value of the Leslie matrix. 

Geometrk series model 
The geometric series model can be thought of as a 
collapsed form of the Leslie model. The model is named 
after an arithmetic identity that allows considerable 

Age Age Age Age Age 
class class class class Class 
a a+ 1 a+2 a+3 a+4 
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Fig. I .  Illustration of the Markovian method used to  estimate Leslie 
matrix fecundity parameten from first-birth and birth-interval 
probabilities. Each node represcnu a decision point. At each node. 
the probability of having a calf, Y. or not having a calf. N. is given 
by either the first-birth probability. MP. for that age class (if no 
prior birth) o r  the birth-interval probability corresponding to the 
time. t. since the previous birth (Bl=t). The probability of reaching 
each no& is the product of all probabilities leading up to that node. 
The probability of giving birth for each age class is the sum of the 
probabilities of all nodes which result in a birth in that age class. 

simplification in estimating population growth rates. The 
number of parameters is reduced to 4 (Table 1): the age at 
sexual maturation, (I; the survivorship from birth to that 
age. I.; the mean survival rate of mature animals, p; and 
the mean fecundity rate of mature animals, m. Goodman 
(1984) provides a more detailed description of this model. 
Given the parameters for a Leslie model, it is possible to 
derive the parameters for the geometric series model. 
Typically, however, parameters are estimated 
independently of the Leslie model, and, because fewer 
parameters are needed. the geometric series model may 
perform better when sample sue is limited. The population 
growth rate. e', is estimated as the solution to the equation 

(3) era - p.e<a-l) - m.1, = 0 

(Goodman, 1984). 
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Again. the reproductive parameters r f  this model can be 
estimated from resighting data using known-aged 
individuals. The age at sexual maturation is simply one less 
than the age class of the youngest individual known to have 
given birth. The mean crude birth rate is the total number 
of calves born to known-aged individuals divided by the 
total number of known-aged individuals in age classes 
greater than or equal to the age of sexual maturation. The 
mean fecundity rate is estimated as this mean crude birth 
rate multiplied by the mean survival rate of mature 
females. 

Birth-interval model 
A third model. the birth-interval model, is developed here 
specifically to deal with the problems encountered using 
resighting data to estimate birth rates. The reproductive 
terms include two vectors (Table 1). The first vector, fix, 
gives the probability that an individual of age x which has 
not given birth previously will give birth at age x+l. The 
second vector, y,, gives the probability of giving birth t 
years following the preceding birth. The first-birth 
probabilities, fix, are estimated only from known-aged 
individuals. The birth-interval probabilities. y,, are 
estimated from all individuals which have given birth 
previously. Given estimates for these two sets of 
probabilities, the fecundity terms of a Leslie matrix can be 
estimated using Markov probability chains (Fig. 1). At this 
stage, population growth rates can be estimated as 
described above for the Leslie matrix. 

First-birth and birth-interval probability vectors are 
estimated using iterative maximum-likelihood procedures. 
Birth-interval probabilities are estimated first. Calves are 
defined as young-of-the-year. An individual which is seen 
with a calf in one year can be classified in subsequent years 
as being in one of three states: (1) seen with adifferent calf: 
(2) seen without a calf; or (3) not seen at all. This 
information can be tabulated as given in Table 2. The 
probability, Pr(t.j), of being in state j (of the three states 
given above) at time t after the birth of a calf can be 
calculated given estimates of the birth-interval 
probabilities (described above). the probability of being 
seen in a given year, and the mean survival rate. The 
likelihood of obtaining the aggregate sample is the product 
of the likelihoods of each individual observation. The 
likelihood function is thus 

- 3  

t-1 j-1 
L= ll n(Pr(t,j))n(*i) (4) 

where 
t = time since previously seen with calf, 
j = observation state at time t and 
n(t.j) = number of individuals observed in state j at time t. 

Tabk 2 

Examples of the data wd 10 eslimalc birth-interval probabilities. 
Values rcprcacnl the number of individuala accn with a calf, e n  
wnthout I calf, or not reen, aa a funalon of time aincc a prmous alf. 

l ime ai- prrviour binh 

0 1 2 3 4 5 6  

No.wilbcalf 195 76 70 70 68 60 61 . . . 
No. without calf 2 3 3 0 2 3 2 2 3 4 2 4 . .  . 
Noc seen 96 95 loo 10s 101 110 . . . 

The probability of being seen in a subsequent year is 
assumed to decrease each year at a rate equal to one minus 
the mean survival rate. Furthermore. it is assumed that the 
mean survival rate and the probability of being seen have 
been estimated using standard mark-recapture techniques. 
The iterative approach to maximum likelihood proceeds as 
follows. First. a 'guess' is made for the binh-interval 
probabilities and the likelihood of the observed aggregate 
sample is calculated. Next. small changes are made to the 
estimates of birth-interval probabilities and the likelihood 
function is re-evaluated. This procedure is repeated until 
the values are found for birth-interval probabilities that 
maximise the likelihood function. In practice, I used the 
simplex algorithm to maximise the natural logarithm of the 
likelihood function. To reduce the number of parameters 
estimated, Pr(t,j) was assumed to be constant for all t 
greater than three. 

Tabk 3 

Eumpla of dam IUUI to estimate tint-birth probabilities. Values 
rcprc~l Ihe number d knom-aged iadividluh seen with or without 
a calf as a funclion of their age. The fin1 reproduclive age cia= u 

denoted as a. 
~~ 

Aoe- 

1 2 . . . a a + l a + 2 .  . . 

N a  with u l f  o 0 . .  . i i s o m . .  
N a w i t h t d  517 424 . . . 112 48 42 . . 

A similar approach was used to estimate first-birth 
probabilities. For each year they are observed, 
known-aged individuals can be classified in one of two 
states: (1) seen with a calf: or (2) seen without a calf. This 
information can be tabulated as given in Table 3. The 
probability of an individual of age x being with a calf, 
Pr(x.1). is given by the crude birth rate, b.. The probability 
of being without a calf, Pr(x.2). is given as the complement 
of this rate, 1 - b,. The likelihood of observing an 
aggregate sample is the product of likelihoods of each 
individual observation. The likelihood function is thus 

- 2  

x-1  j-1 
L= ll n(Pr(x.j))n(=+j) ( 5 )  

where 
x = age of individual 
j = observation state at age x 
n(x.j) = number of individuals observed in state j at age x. 
Again, an iterative approach was used to find the 
maximum likelihood values for first-birth probabilities. 
First, a 'guess' is made for the probabilitiesof having a first 
calf at each age. These first-birth probabilities and the 
birth-interval probabilities estimated earlier are used to 
calculate the expected crude birth rates. The likelihood of 
the observed aggregate sample is calculated. Next. small 
changes are made to the estimates of first-birth 
probabilities and the likelihood function is re-evaluated. 
This procedure is repeated until the values are found for 
first-birth probabilities that maximise the likelihood 
function. Again the simplex algorithm was used to 
maximise the natural logarithm of the likelihood function. 
To reduce the number of parameters estimated for this 
study, Pr(x,j) was assumed to be constant for all x greater 
than a+2. 
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Monte Carlo simulptioas 
Computer simulations were used to test the bias and 
precision of the birth-interval model relative to the more 
familiar Leslie and geometric series models. Simulations 
used full demographic stochasticity in which transition 
probabilities (birth or death) were applied to individuals. 
Initially a sample of n individuals was drawn from a 
population with known first-birth and birth-interval 
probabilities and known survival rates. The age 
distribution of the sample was drawn randomly with 
respect to the stable age distribution of that population. 
For each individual, the simulation program had variables 
to indicate age and sex and, for females, time since the 
previous birth. This initial population was then projected t 
time units into the future. At each time step, the 
probability of dying was evaluated for each individual. At 
each time step. the probability of having an offspring 
survive until the next time step was evaluated for each 
female. New births were distributed randomly among 
males and females. 

A simulation of the process of sighting individuals was 
superimposed on this stochastic population projection. All 
individuals were assumed to have the same probability of 
being seen. At each time step, each individual was 
randomly assigned as being seen or not being seen based on 
this probability. A new calf was classified as being seen if its 
mother was seen. Individuals were classified as 
known-aged only if they were seen as calves. 

Population growth rates were estimated using simulated 
sightings data collected over t years and using the Leslie, 
geometric series and birth-interval models. This process 
was repeated for 40 iterations, and the mean and variance 
in the resulting population growth rates were calculated for 
each of the three models. 

Conditions for the simulations were designed to ave r  a 
feasible range of study conditions. The length of the 
simulated studies, t, ranged from 10 to 20 years. Values for 
the simulated population size, n, ranged from 100 to 200 
individuals. Values for the probability of being seen ranged 

Bmh-intcml Fdainh Suninl F d t y  
l i d A g e  pmtabililia pmtabilitia nm nta 

1 0.75 0.00 0.66 0.00 
2 0.90 0.00 0.74 0.00 
3 0.90 0.00 080 0.00 
4 0.90 0.00 081 0.04 
5 0.90 0.10 om 023 
6 0.90 030 0.91 037 
7 0.90 0.90 0.93 0.36 
8 0.90 0.95 0.94 037 
9 0.90 1.00 0.95 037 
10 0.90 1.00 0.95 037 
11 0.90 1 .OO 0.95 037 
12 0.90 1.00 0.94 037 
13 0.90 1.00 0.92 036 
14 0.90 1 .00 0.89 0.35 
15 0.90 1.00 0.86 0.34 
16 0.90 1.00 0.80 031 
17 0.90 1.00 0.73 0.29 
18 0.90 1.00 0.63 02.5 

m 0.90 1 .00 0.00 0.00 
19 0.90 1 .00 031 0.20 

D 
C-: 

1 3 5 7 9 11 13 15 17 19 
g22 L i o  
E 
n 
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Age class 
Fig. 2. Fecundity rates and survival rates used in simulation studies. 

Fecundity rates are as defined by fint-birth and binh-interval 
probabilities (Table 4) and result in a population growth rate of 
0.998. It IS assumed that the survival rate of age-class 20 is zero. 

Tabk 5 

S-1 n t a  b i n h - i n t d  pdubilitk8, tint-binb prOb.bilitk8, and 
Mi matrix fecundilia wed in sirnulatimu to yield r gnmh ntc  d 
1.025. Fcamditia wae W u ! d  Irom the otha three Waon wing 

Mutari.nprOb.bililyu 

B i r t h - i a t d  F d - W  Survinl Fecundity 
TdAge probabilitia pmbabililia nm nm 
- 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
m 

0.90 
1 .00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1 .00 
1 .00 
1.00 
1.00 
1 .OO 
1 .OO 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .00 

0.00 
0.00 
0.00 
0.10 
0 . 9  
0.90 
0.95 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .00 

0.66 
0.74 
080 
081 
088 
0.91 
0.93 
0.94 
0.95 
0.95 
0.95 
0.94 
0.92 
0.89 
0.86 
0.80 
0.73 
0.63 
031 
0.00 

0.00 
0.00 
0.04 
0.23 
0.40 
0.41 
0.42 
0.43 
0.43 
0.43 
0.43 
0.43 
0.42 
0.40 
039 
036 
0.33 
0.29 
0.23 
0.00 

from 0.5 to 1.0. Birth-interval and first-birth probabilities 
and survival rates were chosen to be representative of a 
stable population of a marine mammal with a Lifespan of 
approximately 20 years (Table 4, Fig. 2). Variations on this 
life table included increasing birth rates to yield a 
population growth rate, e', of 1.025 (Table 5) .  and 
increasing birth and survival rates to yield a population 
growth rate of 1.062 (Table 6).  

RESULTS 

The mean population growth rates estimated from 
simulations are given in Table 7 for each of the three 
models. The expected population growth rate (based on 
the underlying survival and fecundity schedules) and the 
realised mean growth rates of the populations are also 
given. Standard errors in the estimation of population 
growth rates are given in Table 8 for each of the three 
models. 
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Table 8 Table 6 

Survinl rata .  binh-intcrval pmbrbililia, lint-bid prohbilitk and 
Lslie matrix fccunditia d in aimuhtiotu to yield a growth rate of 
1.062 Fecundities w r c  calculated from the other three w o n  using 

h4artovi.n probability chains. 

Binh- intd  Fint-binh Survival Fecundity 
TimdAgc probbilitia probbilitia nto rata 

1 0.90 0.00 0.75 0.00 
2 1 .00 0.00 0.80 0.00 
3 1 .OO 0.00 0.85 0.0) 
4 1 .00 0.10 0.87 0.23 
5 1 .00 0.50 0.89 0.40 
6 1 .OO 0.90 0.91 0.41 
7 1 .00 0.95 0.93 0.42 
8 1.00 1.00 0.94 0.43 
9 1.00 1.00 0.95 0.43 
10 1 .00 1.00 0.95 0.43 
11 1 .00 1.00 0.95 0.43 
12 1 .00 1.00 0.94 0.43 
13 1 .00 1.00 0.92 0.42 
14 1 .OO 1.00 0.89 0.40 
15 1 .00 1 .00 0.86 0.39 
16 1.00 1 .OO 0.80 036 
17 1.00 1.00 0.73 033 
18 1.00 1.00 0.63 0.29 
19 1 .00 1.00 0.51 0.23 
20 1 .00 1.00 0.00 0.00 

Table 7 

Population growth nta estimated from Monte Carlo simulations 
b a d  on three methods for atimating binh ma. Expected grovth 

rata were determined by the undedpg survivll and binh nla 

Expneed Prob. R a l i  Bmh- Mie GeomevK 
growth bnng Study Sample gmmh internl matm rens 
nte rernpnodsue ntc modclmodd modd 

0.998 0.5 10 100 1.003 0.992 1.009 0.997 
20 200 0.995 0.954 0.989 0.993 

1.0 10 100 0.997 0.993 0.984 0.979 
20 200 0.997 0.997 0.993 0.995 

1.025 05 20 200 1.m 1.m 1.024 1.030 
1.0 20 200 l.m 1.m 1.028 1.032 

1.062 0.5 20 200 1.M 1.M9 1.061 1.062 
1.0 20 200 1.054 1.060 1.063 1.063 

In general, biases in the estimation of population growth 
rates are small for all three models. Mean growth rates 
from each of the three models (Table 7) differ from the 
mean realised growth rates by less than the standard error 
of the estimates (Table 8) .  

The precision of the three models in estimating 
population growth rates shows a consistent order. The 
standard errors for the birth-interval model are 
consistently lower than those for the geometric series 
model, which are lower than those of the Leslie matrix 
model (Table 8) .  All methods perform better with higher 
population growth rates. This improved performance is 
probably a result of greater sample size (although all 
simulations started with the same population size, a 
growing population would have more simulated sightings 
over the course of the study). 

Because the simulation study was stochastic, the realised 
growth rates did not exactly equal the growth rate 
characteristic of the underlying life table (Table 7). 
Deviations from the expected growth rates were small, 
however, indicating no systematic biases in the 

Standard ermn of population grcnvth ra ta  atimatcd from Monte 
Carlo airnulatiow bued on three wthcda for atimating binh nta. 
Erpected growth rata were determined by the u"dertymg survinl and 

binh nla. 

Expcc~ed Prob. Real& B i d -  L a l ~  Gcomunc 
p m h  bnng Study Sample gmwch intrml malm ma 

n t e  sern slzc rate model model modd 

0.998 05 10 100 0.017 
20 200 0.010 

1.0 10 100 0.017 
20 200 0.009 

1.025 05 20 200 0.008 
1.0 20 200 0.010 

1.062 0.5 20 200 0.008 
1.0 20 200 0.008 

0.m 0.034 
0.009 0.020 
0.019 0.039 
0.004 0.015 

0.004 0.017 
0.002 0.010 

0.006 0.014 
0.003 0.008 

0.027 
0.015 
0.W 
0.010 

0.015 
0.008 

0.013 
0.007 

construction of the simulation model. It is interesting to 
note that the standard error of estimated growth rates from 
the birth-interval model is, in most cases. smaller than the 
standard error of the realised population growth rate. 

DISCUSSION 

The purpose of this paper was to test the relative bias and 
precision of three methods for estimating reproductive 
rates from individual resighting data. The simulation study 
was not intended to estimate accurately the precision that 
should be expected in the application of these methods to 
data collected in the field. Survival rates were assumed to 
be known in the simulation and would have to be estimated 
if these methods were applied to field data. Simulations 
did, however. cover a range of sample sizes and study 
durations that are attainable or have been attained in field 
studies. 

Leslie mafrix model 
The assumptions of the Leslie matrix model are the least 
restrictive of the three models considered here. The 
primary assumption (common to all three models) is that 
the sample of individuals that are sighted is representative 
of the population being studied. Estimation of 
reproductive rates for the Leslie model does not require 
any implicit assumptions about the age distribution of the 
population. This advantage may be outweighed by the 
restrictive numbers of known-aged individuals available 
for the estimation of reproductive rates. Ages that are 
greater than the study period will not be represented at all. 
Given the longevity of cetaceans, very long-term studies 
may be necessary in order to estimate accurately 
fecundities for all age classes using the Leslie model. 

Geometric series model 
The geometric series model shares a common weakness 
with the Leslie model: birth rates for both are based on 
small samples of known-aged individuals. Furthermore. 
when estimating mean birth rate for the geometric series 
model there is an explicit assumption that the population 
has a stable age distribution. If. after maturation, birth 
rates change appreciably with age and if the age 
distribution is not stable, the estimation of asymptotic 
population growth rate will be biased. This bias may be 
small, however, and the lower variance of the geometric 
series model would make it preferable to the Leslie model 
in most applications. 
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Birth-interval model 
In estimating birth-interval probabilities, it is assumed that 
the sample has a stable age distribution. If not, and if 
birth-interval probabilities change with age, the resulting 
estimate of population growth rate will be biased. In 
addition to this assumption (which was the same for the 
geometric series model) there is the additional assumption 
that the probability of being seen is the same for all 
individuals. Based on previous field studies, this is almost 
certainly not true. Although the mean probability of being 
seen may be estimated very accurately, individual 
heterogeneity in sighting probability can lead to serious 
biases. (This is separate from the assumption that the 
probability of being seen is independent of the presence of 
a calf, an assumption that was common to all methods.) 
Additional work is needed to determine whether sighting 
heterogeneity would bias the estimation of birth-interval 
probabilities. If this bias is present, it is probably small. 
The birth-interval model is still likely to be the best 
approach for estimating reproductive rates from resighting 
data. 

Simulation studies 
The simulation studies here do not account for all sources 
of error and imprecision that are likely to be encountered 
in estimating growth rates from field data. First (and 
probably most importantly). I assumed that survival rates 
were known. Because I wanted to measure the accuracy in 
estimating reproductive rates, I did not want to add this 
additional source of random error. Methods for estimating 
age-specific survival rates from resighting data have not 
been examined in depth. It is likely that some method of 
estimating an aggregate survival rate for all age classes 
(Buckland. 1990) may have to be incorporated into the 
models presented here. If age-specific rates are not 
available. estimates of population growth rates may be 
sensitive to departures from a stable age distribution. 

These simulation studies may also have overestimated 
the number of known-aged individuals that could be 
obtained in any field study. I assumed that any individual 
seen as a calf could later be identified as a known-aged 
individual. It is likely that many young animals have no 
distinguishing marks and thus would not be remgnised as 
adults. This would affect all three models, but would affect 
the Leslie and geometric series models more because they 
are entirely dependent on known-aged individuals. 
No attempt was made to analyse the effect of deviations 

from a stable age distribution on the estimation of 
population growth rate. Such deviations would affect each 
model differently. Also, changes in reproductive rates with 
age were not explicitly modelled. The number of 
permutations needed to simulate these effects is 
overwhelming and beyond the scope of this work. Because 
the Leslie model has fewer assumptions, it would be leu 
affected than would the other models. Whether this 
advantage would outweigh the disadvantages of this 
method would depend on the specific application. 

Future research 
Methods for estimating reproductive rates for each of the 
three modelscould benefit from additional studies. For the 
Leslie model. it is likely that precision can be increased if 

age groups are lumped into larger age categories. This is 
especially true for the older age classes for which the 
sample of known-aged individuals is very small. As age 
classes are combined, however, the assumption of a stable 
age distribution becomes important. Simulation studies 
could be used to examine the trade-offs between greater 
precision and violations of this assumption. 

For the geometric series model. it may be possible to use 
individuals of known-minimum-age to augment the sample 
of known-aged individuals in calculating the mean crude 
birth rates and mean survival rates. This approach could. 
however, lead to biases. By adding individuals whose 
minimum age is greater than the age at sexual maturation. 
the sample may be weighted towards older mature animals. 
This would introduce a bias if birth rates or survival rates 
change appreciably with age. [Mean birth rates and 
survival rates should be estimated as an average of 
age-specific rates that are weighted by the actual number of 
individuals in each age class (Goodman, 1984)). This latter 
source of bias should be balanced. however, against the 
likelihood that older individuals would not be represented 
in the sample at all unless known-minimum-aged 
individuals are included. This approach deserves further 
consideration. 

For the birth-interval model, the largest problem 
(alluded to above) is likely to be heterogeneity in the 
probability of resighting individuals. This problem should 
be examined using simulation studies. 

For all three approaches, simulation studies should be 
extended to include the estimation of survival rates. Only 
then could a realistic appraisal be made of the standard 
error of estimating population growth rates from resighting 
data. Based on the results presented here. the component 
of error due to the estimation of reproductive rates is small. 
The possibilities of estimating population growth rates 
from resighting data should be viewed with considerable 
optimism. 
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