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It i s  often important to estimate the abundance of a fish stock when the stock is somewhat depleted. For pelagic 
species this presents great operational difficulties, because adult surveys may be prohibitively expensive and time 
consuming. Here we introduce a method for estimating the spawning biomass of a stock by means of egg or 
larval surveys. In particular, we develop a series of models for presence-absence sampling of eggs or larvae and 
show how presence-absence data can be used to estimate adult spawning biomass. The models are based on an 
underlying probabilistic description of the aggregation of eggs or larvae, a search process, and a description of 
habitat structure. Methodologies are given for estimating the distribution of the size of the spawning biomass 
from presence-absence data. A case study of sardine is  used to justify a number of the assumptions. The methods 
are applied to a 1985 survey for sardine eggs and are compared to an alternative method based on egg production. 

Dans bon nombre de cas, il est important d’estimer I’abondance d’un stock de poissons lorsque ses effectifs sont 
quelque peu rauits. Pour les esp&es Nlagiques, cela entraine des difficult& op6rationnelles majeures, car le 
denombrement des adultes peut Ctre excessivement coirteux et long. Les auteurs ont mis au point une methode 
permettant d‘estimer la biomasse des geniteurs d‘un stock par la presence ou I’absence de leurs oeufs ou de leurs 
larves. A cette fin, ils ont 6labor6 une serie de modeles et demontrent comment I’on peut se servir de donnks 
relatives a la presence ou a I’absence des wufs ou des larves de poisson pour estimer la biomasse des geniteurs 
adultes. Les modeles reposent sur un calcul probabiliste du rassemblement des oeufs ou des larves, une methode 
de recherche et une description de la structure de I‘habitat. Les auteurs donnent des techniques pour estimer la 
repartition de la biomasse des gkniteurs d’apr&s les donnees sur la presence et I’absence des oeufs ou des larves. 
lls ont recours a une etude relative aux sardines pour justifier un certain nombre d’hypotheses. I ls  appliquent 
leurs mkthodes a une etude au sujet dwufs de sardine datant de 1985, et les comparent a une autre methode 
d’estimation reposant sur la production d’oeufs. 
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ery often, fisheries managers must estimate the adult 
biomass of pelagic stocks. When the stocks are depleted, V direct assessment of adult population levels is not only 

difficult, but may be highly inaccurate (Hewitt et al. 1984). In 
such situations, an alternative is the survey of egg or larval 
populations as a means of estimating adult biomass (Lasker 
1981). The interpretation of data from egg or larval surveys, 
called plankton surveys in this paper, is complicated by the 
patchy and highly aggregated nature of eggs and larvae (Smith 
1978). A method based on egg production (Santander et al. 
1982; Hewitt 1984; Hewitt et al. 1984; Lasker 1985; Wolf and 
Smith 1985; Wolf et al. 1987) has been proposed as a means 
of relating the data from egg surveys to adult biomass. The 
objective of this paper is to introduce another set of tools which 
can be used by the fisheries scientist or manager who is involved 
in egg or larval surveys. 

The work reported here was motivated by the need to manage 
the recovery of the northern population of California sardine, 
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Surdhops sagax caerulus (Wolf 1986). Once a thriving 
population, with a peak standing biomass estimated to be 
11 X lo6 metric tons (t) in the California current in 1860, to 
about 4 x lo6 t during the cannery heyday (Smith 1978), it is 
no longer strong. Current State law (Wolf 1986) prohibits any 
direct fishery on sardine (there will always be incidental catch 
that is essentially uncontrollable) until the spawning biomass 
(the fraction of standing biomass older than 2 yr) exceeds 
20 OOO short tons (1 short ton = 0.907 t). If the spawning bio- 
mass is determined to exceed the critical level of 20 OOO short 
tons, then a fishery with a catch quota of about 5% of the 
spawning biomass is recommended. 

The methodology developed here, however, should be appli- 
cable to a wide variety of other plankton sampling programs 
(e.g. Sene and Ahlstrom 1948; Squire 1983) and many benthic 
sampling programs (Downing 1979; Resh 1979). The meth- 
odology introduced here addresses the same kinds of problems 
as the work of Pennington (1983) but does so with very dif- 
ferent techniques. 

For the current management of sardine, the key question is 
whether the biomass exceeds a critical level B, (in this case 
20 OOO short tons). We thus do not need to estimate the mean 
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and variance of the spawning biomass directly, but instead want 
to assess the probability that the biomass exceeds the critical 
level. We do this as follows: first, we associate the critical level 
of biomass B,  with a critical level rn, of eggs per sampling 
station. Second, given the sampling data, we estimate the prob- 
ability that the mean of the distribution of eggs per sampling 
station exceeds rnc, 

In the next section, the models for egg and larval distribu- 
tions are developed and discussed. In the third section, a 
sequence of sampling models is developed. Particular attention 
is paid to the justification for presence-absence sampling 
(PAS). In the fourth section, the methodology developed here 
is compared with a method based on egg production. We then 
develop a criterion indicating when direct counts are preferable 
to presence-absence sampling. A case study of sardine from 
1940-65 is used to justify a number of the assumptions nec- 
essary for the analysis. We conclude with a discussion illus- 
trating how presence-absence sampling can be placed into the 
overall context of management. 

Models for Egg and Larval Distribution 

Eggs and larvae are commonly distributed over space in an 
aggregated and patchy manner. Although this aggregation is 
undoubtedly behavioral in nature (Vlymen 1977; Lasker 198 I ;  
Grosberg and Quinn 1986). the models introduced here are 
operational ones, with attempted biological justification. The 
highly aggregated nature of eggs and larvae means that samples 
of egg counts will have considerable dispersion. That is, a high 
proportion of the samples will have no eggs and samples that 
have one egg are likely to have many. A typical situation is the 
following data on anchovy eggs: for a survey involving 419 
samples there were 208 samples with no eggs; the range for 
positive samples was 2-12 200 eggs per sample. The mean was 
206 eggslsample and the SD was 1022 (Le. a coefficient of var- 
iation of about 500%). Compared to sardine, anchovy is a 
healthy stock, leading to many samples with eggs. For exam- 
ple, in the 1985 sardine cruise discussed in the fourth section, 
only 11 of 419 sites sampled had eggs. The actual counts of 
eggs per positive station were 42, 15, IO,  5, 5, 5, 3, 2, I ,  I ,  
I ;  these data have mean 7.8 and SD 11.6 for a coefficient of 
variation about 150%. 

Some of the samples with no eggs occur because samples 
are taken beyond the current habitat of the population. That is, 
if we knew exactly the current range of the population. it would 
be possible to design surveys in which a much higher proportion 
of samples had eggs. The difficulty for pelagic species is that 
the spatial range of habitat can vary considerably (see, e.g. 
Lasker 1985, p. 18); thus the sampling must both determine the 
boundaries of the habitat and estimate abundance. We believe 
that in some cases, fully Y3 of the samples may be used to define 
the boundary of the current range of the spawning population. 
That is, in some cases more than 50% of the samples taken may 
have no eggs and will be used to help delineate the boundaries 
of the habitat. A good, operational model should be compatible 
with the assumptions that ( I )  not all samples will be in the 
habitat of the spawning stock, (2) samples in the habitat may 
still show high levels of aggregation. 

The question of spatial scale is an important one as well. For 
the sardines, the relevant spatial scales are: 

Unit Spatial scale 
Individual fish - cm 
School - 100m 
Egg patches - IOOOm 
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School groups 
Sampling scale 

- 10000m - 10000m 

The actual area of the device used to sample sites in the Ocean 
is 0.05 m2. It is reasonable then to assume that samples taken 
at different sites (called stations) are independent random var- 
iables. Let (Table 1 summarizes symbols and their 
interpretations) 

(1 )  X,  = number of eggs (or larvae) taken at the rh station. 
The properties of X,  suggested by the empirical data are 

(i) X ,  3 0. 
(ii) Pr{X, = 0) is considerable, and 

( 2 )  (iii) Var {X,}>>E {X,}.  

In this equation, Var{ } and E{ } denote the variance and 
mean of a random variable respectively, and P r { X = x }  is the 
probability that the random variable X takes the value x. The 
variance greatly exceeding the mean is a commonly accepted 
definition of an overdispersed or aggregated population. 

One model with properties (it(iii) is the negative binomial 
( N B )  distribution. At the outset, we stress that using the N B  is 
not crucial to any of the conceptual development that follows. 
We choose it because it is commonly used in ecological mod- 
eling. We will show below that other distributions could be 
used as well. For the NB distribution, 

Pr{X, = x I station is a habitat} 

(3) = [ T ( k + x ) / T ( k ) x ! ]  [k/k+rn]’  [rn/k+rn]” 

In this equation, T ( x )  is the gamma function, and k and rn are 
parameters. In particular, 

(4) Pr{X, = 0 I station is a habitat} = [k/k+rnIk 

The conditional mean and variance of X, are (Johnson and Kotz 
1969) 

(5) 
so that rn is the mean of the distribution and k is a measure of 
the amount of “overdispersion” relative to the Poisson 
distribution. 

Often k is essentially independent of spawning biomass, 
although it depends upon sampling scale (DeBouzie and 
Thioulouse 1986). Smith and Richardson (1977, p. 57) found, 
for example, that for sardine eggs the estimate of k varied 
between 0.08 and 0.21 as the spawning biomass varied between 
0.2 and 3.9 X IO6 t. This is a variation of less than a factor of 
3 in k ,  during variation by a factor of 19.5 in biomass; we 
interpret this as relative constancy of k .  

The value of k may also be tied to the life history of the 
species (Hewitt 1981). Table 2 shows our estimate of the life 
history dependence of k for the early stages of anchovy (P. E. 
Smith, unpubl. data). Because of the depleted nature of sardine, 
we are unable to determine a similar life history dependence of 
k at the present time. 

The N B  model has a long and distinguished history in ecol- 
ogy (e.g. Anscombe 1948, 1950; Taylor 1953; Sampford 1956; 
Bliss and Owen 1958; Bissell 1972; Pielou 1977; Taylor et al. 
1979; Ripley 1981; Zweifel and Smith 1981; Diggle 1983; Den- 
nis and Patil 1984). It also has limitations. For example, L. R. 
Taylor and his colleagues (Taylor et al. 1979; Perry and Taylor 
1986) have sharply attacked the use of the N B  distribution with 

E{X, I station is a habitat} = rn 
Var{X, 1 station is a habitat} = rn + m2/k 
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TABLE 1. Summary of symbols. interpretations, and values for computations. 

Symbol Interpretation Value used and source 

Spawning biomass and its critical 
level 

Number of eggs at the i'" station 

Mean number of eggs at a sfation 

Overdispersion parameter of negative 
binomial distribution 

Probability that the r* station is a 
habitat for the spawning stock 

Critical value of m, linearly related 
to critical value of biomass 

Number of eggs detected at the i* 
station 

Maximum probability of detecting 
eggs at the th station when eggs are 
overly abundant 

Sampler efficiency 

Denote samples with positive 
number of eggs and no eggs 

Likelihood of an egg sample 

Maximum likelihood estimator 
(MLE) for m 
Number of samples with no eggs or 
a positive number of eggs, 
respectively and total number of 
samples 

Likelihood ratio of a value of m 
relative to MLE 

Presence or absence of eggs of age 
group j at station i 

Overdispersion parameter and mean 
number of eggs of age group j 

Association or correlation coefficient 
for the presence of eggs of different 
age groups at station i 

20 O00 short tons 
(State of California Law) 

Random variable 

Estimated by the procedure 

Ranges from 0.08 to 0.21 for sardine 
eggs (Smith and Richardson. 1977) 
All p, = p  = 0.05(historical data) 

m, = 1.14 (historical data) 

Random variable 

a,= 1 

Varies between 116 and 6 

Data 

Computed by Eq. (12) 

Computed by methods of this paper 

Data; N = N ,  + N ,  

Computed by Eq. (16) 

Data 

Age dependence given by Smith 
(1973) 

Varies between 0 and I 

TABLE 2. Early life history values of the negative binomial k for 
northern anchovy larvae (P. E. Smith, unpubl. data). 

Value of k 

Night 

3.25 0.064 0.073 
5.25 0.093 0.104 
7.25 0.102 0.121 
9.25 0.095 0. I26 
1 I .25 0.069 0.120 
13.25 0.038 0.085 
15.25 0.019 0.053 
17.25 0.006 0.036 

Length 
(mm) Day 

constant k. They propose that k is always a function k(m) of the 
mean and that one should use Taylor's power law (Variance = 
a m b ,  where a and b are constants) and a moment estimator for 
the variance to determine the form of the function k(m) .  It is 
our opinion that, for egg sampling especially, k can be treated 
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as constant. That is, we believe that eggs are highly clumped 
in order to insure successful fertilization and thus the clumping 
should be relatively independent of spawning biomass. Mangel 
(1987) discusses other biological motivations for choosing the 
NB distribution. 

The distribution given in Eq. (3) is conditioned on the 
assumption that the iIh station is a habitat for the spawners. Let 

(6) p,(m) = Pr{the ith station is a habitat for the spawners} 

Methods for determining the functional form of p , (m)  will be 
described in the next section. We assume that p, may depend 
upon m because as the stock abundance increases and decreases, 
the spawning habitat used by the stock may expand and contract 
(MacCall 1988). Since m increases with biomass, the net effect 
is that the probability that a station is a habitat for the spawners 
depends upon biomass, and through that, m .  Note, however, 
that we do not assume that all samples are taken at stations that 
are habitats. 
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The unconditional distribution of eggs at stations is then 
Pr{X, = 0) = Pr{station is not a habitat] + PrIstation is a 

habitat and no eggs are present} 
= ( I  -p;(m))  + p,(m) [k /k+mIk 

= p,(m){I - [k /k+m]‘}  
Pr{X,>O} = 1 - Pr{X,=O}  

Pr{X,  = x>O} = PrIstation is a habitat and x eggs are 
present] 

(7) = p,(m) {[r(k+x)/ I-(&!] [k /k+m]’  [m/k+m]”} .  
In the analysis that follows, we assume that k is known but that 
m is unknown and that the objective of the sampling is to make 
inferences about m. In particular, we assume that the adult bio- 
mass and mean number of eggs per station are linearly related. 
In general, this assumption must be verified by historical data, 
which we do in the case study. This means that there is a critical 
value of m ,  denoted by m,, related to the critical level of bio- 
mass B ,  in the sense that 

(8) Pr{E>B,} = Pr{m>m<} 
In order to justify this assumption, we must either back-cal- 
culate from egg abundance to spawning biomass level (e.g. 
Lasker 1985; Wolf and Smith 1985, 1986) or use historical data 
that relate previous levels of spawning biomass and mean egg 
density to determine the value of mcr as in the case study pre- 
sented below. 

Other types of “contagious” distributions can be used in the 
analysis in place of the NB distribution. Some choices are dis- 
cussed in the Appendix. 

Presence-Absence Sampling 

In this section, presence-absence sampling (PAS) is 
described as a method for estimating and making inferences 
about m. A number of extensions of the basic NB model - 
including imperfect detection of the plankton and multiple age 
groups - are described. 

In presence-absence sampling, the incidence of eggs over 
space (time is essentially “fixed” over a short interval) is deter- 
mined and used to estimate the spawning biomass. There are a 
number of reasons, both analytical and operational, for simply 
noting the incidence of eggs rather than counting them. First, 
for certain distinctive eggs (e.g. northern anchovy), PAS can 
be done on board ship whereas counting eggs requires extensive 
off ship effort. (In order to reduce possible errors in on-ship 
presence-absence sampling, one often introduces a threshold 
1e.g. 4 or 5 eggs]: a sample is marked as “eggs present” only 
if the number of observed eggs exceeds the threshold.) Thus, 
PAS could be done as a “real time” operation. Second, when 
the overdispersion parameter k is small (e.g. k < O.l), the eggs 
or larvae will be highly aggregated and thus estimating the value 
of m with any precision from a sample mean will require a large 
number of samples, usually larger than the number available. 
In addition, the value of the sample mean will often be driven 
by one or two large samples; sampling for incidence avoids this 
problem. (As the spawning biomass increases, however, so that 
virtually all stations have eggs, one should switch from PAS to 
actual counts. Below, we describe a way to determine when 
the switch should be made). For problems in which one needs 
to determine habitat boundaries as well as spawning biomass it 
is likely that most stations will have no eggs. (As behavioral 
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information about the species, and the effects of physical var- 
iables becomes better known, it may be possible to reduce the 
number of stations without eggs by satellite presurvey or appro- 
priate design of the survey.) Smith (1973) discusses how over- 
dispersal may affect estimates of survival. 

We extend Eq. (7) to include the failure to detect eggs present 
at a site. Let Y, denote the number of eggs in the sample at the 
?“ station. There are three ways to obtain Y,  = 0: (1) the station 
is not a habitat for the spawning species; (2) the station is a 
habitat and there are no eggs present; and (3) the station is a 
habitat, there are eggs present, but the sampler misses the eggs. 
The models developed thus far account for (1) and (2) but not 
for (3), which is a likely possibility since the CalCOFI stations 
(Fig. 1) represent about 102 kmz and the sampler area is 
0.05 mz. Introduce a detection function 

(9) Pr {detect eggs I number of eggs present X, = x} 

where OSa,S 1 is the maximum probability of detecting eggs 
as X i  ---* m and bi is a measure of sampler efficiency when eggs 
are present. Eq. (9) represents a random search formula (Mangel 
1985a. b, 1987). We thus obtain 

Pr{ Y,  = O} 

= a , ( 1  - 

= Pr{station is not a habitat} + 
Pr{station is a habitat} Z, Pr{x eggs present}Pr{no 

detection at the level x} 

(10) p,B, [ ~ ( k + ~ ) / r ( k ) ~ ! ]  [k /k  + m]‘[m/k+ m y  

Eq. (IO) can be simplified by the use of the moment generating 
function for the NB distribution and becomes 

(11) Pr{y, = 0) = (1 - ag,) + ap, [ k / ( k + m ( l  -e-bt) ) ]k  

Eq. ( I  1) is the sarting point for the rest of the analysis in this 
paper. 

To recap: we want to estimate m from values of Y,  and assume 
that the parameters ai. p , .  b;, and k are known. The first three 
are essentially operational parameters, fixed by the operational 
situation and equipment. The last, k, is a biological and oper- 
ational parameter, fixed by the species and the scale of the 
sampling procedure. The objective is to sample N stations for 
the incidence of eggs and to then make inferences about the 
properties of the mean m. In this paper, a Maximum Likelihood 
Estimation (MLE) approach is adopted (see Edwards 1972 for 
general discussion); Mangel (1987) discusses Bayesian meth- 
ods for presence-absence sampling. 

Assume that a total of N stations are sampled and that there 
are N, stations (indexed by i E 9) at which eggs are discovered 
and N, stations (indexed by j E N) at which no eggs are dis- 
covered. The likelihood 9 of such a data set is constructed from 
the basic model Eq. (1 1). Begin by setting 
(12) w, = 1 - 

The likelihood of the data set is then 

(13) 3 = njSN [(I - apj + a,p,{kJ(k + r n ~ , ) } ~ ]  II,,, [ap, 

From this likelihood function, we want to compute the maxi- 
mum likeli@od estimate (MLE) for m. The MLE, which we 
denote by m, must generally be computed numerically. There 

= (1 - P,) + 

{ I  - a , ( l - e - b p ) }  

- ag,{k/(k + mw,)}’] 
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FIG. 1 .  Sampling stations with eggs in the May, 1985 sardine survey 
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. 
is at least one case, however, in which 4 can be found analyt- 
ically. This is the special case in which for all values of i p ,  = 
p ,  a, = a, and w, = w. This assumption must be somewhat 
restrictive, since it is based on the assumption of uniformity of 
oceanic habitat over space. On the other hand, for a survey done 
over a relatively small region and done quickly, these assump- 
tions might be valid. Assuming the constancy of a, p .  and w, 
leads to the likelihood 

(14) Y = [I - a p  + c~plk/(k+mw)}7~. 
x [ a p  - ap{/d(k+m~)}~]~p. 

In this equation, N ,  and N, ,are the number of stations with no 
eggs and with eggs, respectively. Set N = Nm + N,. so that N 
is the total number of stations sampled. Direct computation 
shows that the MLE is 

(15) 
Thus, for fixed k ,  w ,  N, and a p ,  the ?LE e2timate is a function 
of the number of positive samples m = m(N,). Eq. (15) rep- 
resents a generalization of a formula due to D. J Gerrard 
(Southwood 1976, p. 55). 

The likelihood can be viewed as a function of m ,  Y = 3 ( m )  
so that the likelihood ratio 
(16) R(m, 4) = Y(m)/Y(A) 
provides a measure of the relative likelihood of any value of m 
in comparison to the MLE. Alternatively, R(m, m)  is approx- 
imately the posterior distribution of m under Bayesian analysis 
when a uniform prior is assumed. Figure 2 shows one such 
likelihood ratio, for parameters corresponding to the 1985 sar- 
dine egg cruise shown in Fig. 1. The likelihod ratio is highly 
skewed with a long tail (indicating the chance, albeit small, of 
some very large values of m). If m is proportional to the spawn- 

4 = (k/w)[{Nap/(Nap - N,)}(”‘) - 11 
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ing biomass, then we can view R(m, 4) as a likelihood distri- 
bution for the biomass. The probability that m exceeds m,. and 
aproximate confidence intervals for the biomass can then be 
constructed from this likelihood function (Hudson 1971). 

Since the nynber of positive samples is a random variable, 
the function m(Np) is also a random variable. Its mean can be 
computed by the application of Seber’s delta method (Seber 
1973) and is 

where E{Np} is the expected value of N ,  and is 

(18) E{N,} = Nap[l - {k/(k+mw)}‘] 

and &(N ) is the second derivative of ;(A’,); in Eq. (17) it is 
evaluatedat the expected value of N . 

The following properties are veriffed 

Thus, although we find that ;(E{N,}) = m ,  it is not in general 
true that E{m(N,)} = m and the MLE is in general a biased 
estimator. Table 3 provides numerical information on the size 
of the bias. Note the trend that the bias decreases with decreas- 
ing b. The other trend - that the bias decreases with increasing 
a p  -is easily understood since we are- dealing with less uncer- 
tainty as a p  increases. 

In order to test the estimation procedures form further, we 
used a Monte Carlo simulation to generate data according to 

(19) Pr{positive sample} = ap[l - {W(k+mw)}*] 
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m 

FIG. 2. Likelihood ratio R(rn, 4) (Parameters are ap=O.l, b=6, 
k = 0 . 2 ,  N=419,  N,=408). 

TABLE 3. Bias in the MLE f i  (N=419,  m = 5 ,  k=0.2) .  

Bias for 

aP b=6 b= 1 b =  116 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0 .4  
0.3 
0 .2  
0.1 

0.36 
0.43 
0.53 
0.65 
0.81 
1.04 
1.39 
1.96 
3.10 
6.54 

0.30 
0.36 
0.44 
0.53 
0.66 
0.83 
1.09 
1.54 
2.43 
5.09 

0.18 
0.20 
0.24 
0.28 
0.34 
0.42 
0.54 
0.74 
1.14 
2.34 

and in each run of the simulation, the value of & wasAdeter; 
mined. Figure 3 shows the coefficient of variation CV(m> of rn 
obtained using the simulations. The same trends with b and ap 
are observed for the coefficient of variation as for the bias. 

In many instances, the eggs or larvae sampled will include 
different age-classes that involve different levels of dispersion 
and different means. For example, sardine eggs are usually 
classified as S (eggs encountered during spawning), A, E ,  or C 
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FIG. 3. Coefficient of variation (CV) of the MLE for rn, from the 
simulations, asafunctionofapandb. (ParametersareN=419,rn=5, 
k=0.2) .  

(1-, 2-, or 3-d-old). We explicitly extend the model to include 
age-classes of eggs as follows. Let 

1 if there are eggs of the j"' age-group 
at the I"' station 

0 otherwise. 
(20) Y,j = 

The natural extension of the basic model is 
(21) Pr{Y, = 0) = 1 - agi + ag, {kj/(kj + rnjwi)}') 
where k and rnj are the values of k and m for the J" age-group. 
For sardine, we choose the parametrization (Smith 1973; Lasker 
1985, p. 17 ff) k .  = 0.1 j and rn. = {l - 0.30'- l)} rn with j 
= I ,  2 ,3 ,  or 4 {or S, A, B ,  or deggs respectively. The inter- 
pretation of this parametrization is the following. The k. increase 
with time, indicating a more even (less patchy) distrihion of 
older eggs. We presume that this is due to oceanic mixing after 
spawning. The rnj decrease. with time, indicating mortality at 
about 30% per day for the first 3 d. This 30% per day mortality 
is true for sardine eggs; for anchovy eggs it is about 20%. 
Detailed justification of these values, along with variance esti- 
mates, is given by Smith (1973) and Smith and Hewitt (1985). 

To construct the likelihood function, we now need to include 
the interaction between eggs of different age-groups. It is con- 
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ceivable that the presence or absence of eggs of a certain age- 
group is not completely independent of the presence or absence 
of eggs of other age-groups. On the other hand, we do not know 
the exact correlation between eggs or different age-groups. As 
a way around this difficulty, we introduce a parameter r,(i) that 
can be interpreted as a simple “association coefficient” or 
“presence-absence correlation coefficient”: when r,(i) is set 
equal to 0, the eggs at the rh station are treated as completely 
independent, random variables and when r,(i) is set equal to 1, 
the eggs at the i”’ station are treated as completely dependent 
random variables so that if eggs of one age-class are present, 
eggs of all age-classes are present. With this model, 

Pr{no eggs of any age group at the th station} 

= (1 - r,(i)) Il Pr{Y<,  = O} 
4 

J =  1 

(22) 
This model is used in the next section for the analysis of the 
1985 sardine egg survey. 

Application to the 1985 Sardine Egg Survey 

The methodology developed in the previous section was 
applied to the data for the 1985 sardine egg survey, conducted 
in May 1985 by P. Wolf (California Department of Fish and 
Game) and one of us (P. E. Smith). In that survey, 
419 CalCOFI stations were sampled and 11 of those stations 
(Fig. 1) had sardine eggs of any age group. The total number 
of eggs discovered was 86. The stated objective of the survey 
was to determine whether the spawning biomass exceeded 
20 OOO short tons. The data thus consist of N,  = 408 and 
N = 11. From those data, the objective was to estimate the 
maimurn likelihood value of m and the probability that m 
exceeded the critical value m,. 

The multiple age group model was used for calculations, with 
the {m , k,} given above. Other parameters were set at up = 
1/20, c = 0.6, and m, = 1.14. These are justified as follows. 
Based on historical records (from the period of the cannery 
heyday), a sardine spawning biomass of 20 OOO short tons cov- 
ered about 5% of the long-term spawning area (Kramer and 
Smith 1971; Lasker 1985, p. 18). We thus set p = 0.05 and 
a = 1 (note, of course, that only the product ap enters into 
the computations); the choice a = 1 means that if eggs are 
abundant enough they will be detected. We choose b = 0.6 as 
an upper bound on the effectiveness of the sampler. The value 
of m, was also determined by comparison with historical data 
from the cannery period. We performed computations for r,(i) 
constant for all i and in the range of 0.4-1.0. The MLEs 
obtained in this manner ranged between 1.2 (for r,(i) = 0.4) 
and 12.5 (for r,(i) = 1.0); the probability that m exceeded the 
critical level m, was high for all combinations of parameters 
tested. 

Wolf and Smith (1986) used a method based on egg produc- 
tion and concluded, using the same data, that the spawning 
biomass exceeded 20 OOO short tons and recommended opening 
a small, directed fishery on sardine in 1986. The “inverse egg 
production method’’ used by Wolf and Smith is motivated as 
follows. The egg production method (Parker 1980; Picquelle 
and Hewitt 1983; Hew& 1984; Lasker 1985) is used to estimate 
spawning biomass B by 
(23) B = P,A kW/RFS 

Can. 1. Fish. Aquar. Sci.. Vol. 47, 1990 

+ r,(i) min, Pr {Y,J = 0) 

where Po is daily egg production (eggs/O.OS m2/d), W is aver- 
age female weight, R is sex ratio of the population, F is batch 
fecundity (number of eggs spawned/female/batch), S is the pro- 
portion of females spawning per day, A is the total area of the 
survey, and k is a conversion factor from grams to short tons. 

Wolf and Smith (1985) invert Eq. (22) (hence the name 
inverse egg production method IEPM) and argue as follows: if 
the spawning biomass exceeds B,  short tons, then the area with 
eggs should exceed a critical area A, given by 

(24) A, = B,RFS/P,kW 

To employ the IEPM, one multiplies the number of stations 
with positive egg samples by the area associated with each sta- 
tion (in this case, the area is 40 nm2) and compares that area 
with A,. In particular, using the inverse egg production method, 
Wolf and Smith estimated that a population of 20 OOO short 
tons spawning biomass would cover about 500 nm2; they esti- 
mated that in 1985 the population covered about 670 nm2. 
Thus, for the first time since 1974 a directed fishery for sardine 
opened on 1 January 1986 (Wolf and Smith 1986). It should 
be noted that many of the parameters in Eq. (23) have consid- 
erable uncertainty (Wolf and Smith 1986; Mangel 1988) and 
this affects the confidence that one has in the estimate. 

The IEPM and the methods developed in this paper are sim- 
ilar in spirit, since the objective of each method is to use pres- 
ence/absence data to determine the spawning biomass of the 
stock. Although the two methods use the same kind of data, 
they are different in methodology (the IEPM is fundamentally 
deterministic while the methods of this paper are fundamentally 
stochastic). Both methods are easily employed using a small, 
desktop microcomputer. In a sense then, one has the best pos- 
sible situation: the IEPM and the methods developed in this 
paper are two relatively independent analytical procedures for 
assessing the size of the spawning biomass from the same data. 
They thus complement each other and can be used to check one 
another. 

Finally, both methods are ideally suited to the situation in 
which the spawning biomass is sufficiently small that using 
actual counts is not advisable. For example, analogous egg sur- 
veys are currently performed for anchovy, but use counts 
instead of presence-absence. 

When are Counts Preferable to Presence-Absence 
Sampling? 

The alternative to presence-absence sampling is the use of 
counts, that is records of the actual values of X , ,  rather than 
whether or not X, > 0. In this section, we develop a method 
that can be used to determine when using counts is preferable 
to using presence-absence sampling, in the sense that one has 
a smaller error than the other. 

We consider the situation in which all stations have the same 
values for the detection parameters and the probability of the 
station being a habitat. In that case, with Y, denoting the number 
of eggs in the sample 

(25) 
The MLE for presence-absence sample, henceforth denoted by 
mmle is given by Eq. (15). Another commonly used estimate of 
m from presence-absence sampling (Southwood 1976) uses the 
fraction of zerosf, = NJN in the sample. This is essentially a 
moment estimator. Assuming that k is constant, equatingf, to 
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the right hand side of Eq. (25) and solving for m gives the 
estimate 

(26) mfm = (k/w){ap/(f, - 1 + ap)}"' - k 

the samples. Denote this estimate by m, for count; it is 

(27) m, = (1/N) I: Y, 
We consider the situation in which w = 1, but up < 1. In light 
of Eq. (25) we write that 

Finally, one can estimate m by the mean number of eggs in 

0 with probability 1 - ap + ap(k/k+m)' 
Y,  = 

(28) x with probability apNB(x;m,k) 
Here NB(x;m,k) denotes the negative binomial probability of 
x events when the parameters are m and k, so that with prob- 
ability 1 - ap + ap(k/k + m)' no eggs are detected in the sample 
but when eggs are detected they follow the negative binomial 
distribution. Using Eq. (27), we see that E{mc} = apm. 

To compare these three estimators, we propose using the fol- 
lowing normalized emor 

(29) S, = {E(m, - m)2}'/2/m 
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in which m, denotes any of the three estimators and E{ } 
denotes the expectation over all possible samples. If them, were 
unbiased estimators, then the S, would be associated coeffi- 
cients of variation. 

When counts are used, S, can be computed directly and is 

(30) E{m, - m'} = (1/N2){Nap(m2 + m  + m2/k) + 

We were unable to develop an analytical formula for mmlc or 
m,rac. They are, however, easily computed numerically accord- 
ing to the following scheme. First note that the number of pos- 
itive samples follows a binomial distribution with number of 
trials N and success probability p' = ap - ap(k/k + m)'. Let 
%(n;N,p') denote the probability of n positive samples for the 
binomial distribution with parameters N and p ' .  Then 

(31) E{(m,-m)2} = c (m,(n) - m)2%l(n;N,p') 

In this equation, m,(n) is the appropriate estimator when the 
number of positive samples is n. The right hand side of 
Eq. (31) is most easily evaluated by noting that 
Rob {N,=O} = (1 -p'p and that for 0 0 .  

N ( N -  I)a2p2m2} + m2 - 2apm2 

N 

" = O  
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Virtual Population analysis (Smith 1990). 

(32) Rob {Np = n+ I }  = [ (N-n) / (x+ l)]b’/(l -$)I 

One complication, however, remains. In real surveys, one 
does not know the value of m. What will be known is the mean 
number of eggs per positive station. From the definition of con- 
ditional probability and Eq. (29) 

(33) Pr{Y, = x I Y, > O} = Pr{Y,=x,  Y,>O}/PdY,>O} 

Thus, the mean number of counts per positive station is esti- 
mated by 

(34) E{Y, I Y, > 0} = E,= x NB(x;mk,)/( 1 - (Wk + m)? 
= m/(l -(Wk+m)’) 

Note that this mean is independent of ap; this happens because 
one is only considering stations with positive counts. 

Figure 4 shows the normalized errors as a function of the 
expected mean number of counts per positive station and sug- 
gests that when m is very small, presence-absence sampling 
using the estimate based on the fraction of zeroes is most pref- 
erable, that for intermediate values of m presence-absence sam- 
pling using the MLE is best, and that for larger m,  counts may 

Rob{N, = n} 

= NB(x;m,k)/(l - ( W k t m ) ’ )  
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FIG. 6. Egg density (number of eggs/ 10 m2 sea surface) for the same 
period as in Fig. 7. Note that there are years in which spawning bio- 
mass is very low but in which egg density nearly equals the egg density 
when the biomass was high. 

be preferable (e.g. Fig. 4b). We stress that these results depend 
upon parameter values, and that one should repeat the com- 
putations for his or her own particular parameter values. The 
computational schemes outlined in Eq. (25)-(33) are, however, 
easily implemented on desk-top microcomputers. 

A Case Study of Sardine 

To justify a number of the assumptions used in this paper, 
we summarize the results of a study by one of us (Smith 1990) 
on a long time series for sardine in the California current. 

The time series tracked sardine population size as it declined 
from about 2 X lo6 t in 1940 (Murphy 1966) to about 3 X lo3 t 
in the mid-1960s (MacCall 1979). For the period of interest, 
we show the biomass B ,  estimated by virtual population anal- 
ysis (Fig. 5 ) ,  the estimated number of eggs per unit area 
(Fig. 6) .  and the percent positive stations (Fig. 7). Note the 
relatively large estimates for the number of eggs per unit area 
and the considerable fluctuations in percent positive stations 
during a period in which the biomass consistently declined. For 
example, in 1941, when the biomass E ,  = 2709 t, the egg 
estimate is 337 eggdl0 m2 while in 195cwhen E ,  = 122 t, 
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FIG. 7. Percent positive stations for the same period as in Fig. 6. The 
difficulties identified in Fig. 6 do not occur for this measure of pres- 
ence-absence sampling. 

the egg estimate is 182 eggdl0 m2. That is, the biomass 
dropped by a factor of about 20 and the average estimate of 
eggs per unit area dropped by 2. We believe that this is caused 
by the clumped distribution of the eggs. The generally high 
values of eggs per positive station (Fig. 8) between 1955 and 
1960 are an example of how counts of eggs per positive station 
can bias the estimation. For example, in 1941 (Evpp. = 2709 t) 
the number of eggs per positive station was 536 and in 1956 
(Evw = 108 t) the number of eggs per positive station was 532. 
These results suggest that counting eggs may give incredibly 
misleading estimates of biomass under circumstances that could 
be reasonably expected to occur and that practicable alterna- 
tives such as presence-absence sampling are important. 

Smith (1990) used a combination of Virtual Population Anal- 
ysis (VPA) and regression. The results of this work that are 
relevant to ours include the following. The apparent relation- 
ship between spawning biomass, E,, and eggs per unit area 
is 

(35) 
where B, is the sardine biomass over 2 yr old and E is the 
estimate of eggs per unit surface area (numbed10 m2). The ? 
corrected for sample size is 63.8% and the constant is not sig- 

E ,  = 44.3 + 3.43E 
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FIG. 8. Number of eggs per positive station for the same period as in 
Fig. 7. Note that the difficulties identified in Fig. 6reoccur here, when 
actual counts are used. 

nificant, suggesting that our assumption of a linear relationship 
between spawning biomass and mean egg density is justified. 
When the analysis is done without the constant, the relationship 
becomes E ,  = 3.5419 E. By inverting Eq. (34), it is possible 
to determine the critical level of egg density associated with a 
critical level of biomass, as required by the analysis in previous 
portions of the text. 

For an analysis in which the number of square miles covered 
(E.) and the number of eggs per positive station (Epos) are sep- 
arated, the results of the regression are 

(36) E ,  = - 187.8 -0.6918 EPs + 112.43 Ea 
Neither the constant nor the coefficient of EPs are significant. 
The ? for the model (36) is 79.1%. Excluding both the constant 
and the coefficient of .EP, gave the relationship E ,  = 
74.367 Ea, justifying the assumptions of the inverse egg pro- 
duction method and the interpretation of our results that pres- 
ence-absence sampling provides a good measure of areal 
coverage. 

Similar results are obtained when larval data are used, with 
higher values of ?. We believe that this is caused by a longer 
period in which the larvae are vulnerable to a survey (20 d for 
larvae vs. 3 d for eggs). In addition, there is excellent corre- 
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TABLE 4. Mean number of sardine eggs per positive tow for Pacific 
sardine 1931-89. 

Mean number 
of eggs per Sardine biomass 

Sampling device positive station (million m-tons) 
California Dept. of 
Fish and Game 2 m 
silk ring net (193 I-  
32) 543 3 . 5 v  

One metre silk ring 
net (1941) 568 2.50’ 

Half-meter silk ring 
net (1941) 618 2.50’ 

High-speed net 
( 1950) 405 0.70b 

CalCOFI standard 
net (I-m ring net) 
1951-79) 416 <0.30b 

Bongo net (1977- 
89) 397 C0.02 

CalCOFl vertical 
egg net (CalVET) 
1985-86 932 0.02 

Simulation using a 
log-normal 
distribution with 
mean 3.7 and SD 
2.14, based on 
eggslpositive tow 
1951-89 416 Not applicable 

‘Murphy (1966). 
’MacCall (1979). 

lation between overall larval abundance and overall egg 
abundance. 

Finally, we compiled essentially all of the sampling infor- 
mation for Pacific sardine over the last half-century (Table 4). 
The results of a simulation study of sampling, using the data 
on number of eggs per positive station from 1951-89, show 
that the mean number of sardine eggs per positive tow is very 
insensitive to the spawning biomass of the sardine and the type 
of net used to sample the sardine eggs (Table 4). Thus the 
results suggest that the area of spawning (or fraction of spawn- 
ing ground covered) is most sensitive to spawning biomass in 
this species. All of the sample means in Table 4 could have 
been derived from random samples from a population in which 
the number of eggs per positive station was log-normally dis- 
tributed with mean 3.7 and standard deviation 2.14, as in the 
last line of Table 4. A study of the sampling distributions, not 
presented in Table 4, showed that the upper limit of the number 
of sardine eggs per positive station was nearly uniform for all 
samplers and biomass levels. The lower limit is controlled by 
the threshold of the sampler. For example, one sardine egg in 
a CalVET sampler (area 0.05 m2) corresponds to 200 eggs per 
10 m2, whereas 1 sardine egg in a Bongo net is five sardine 
eggs per 10 m2, and one sardine e g in the CalCOFl standard 
net is three sardine eggs per 10 m . 

Conclusions 

Our objective was to introduce a new method for the analysis 
of egg or larval sampling for purposes of biomass estimation. 
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Presence-absence sampling has a number of points that will 
help facilitate fisheries management. First, when compared to 
full fishing surveys for stock estimation, presence-absence 
sampling is a relatively inexpensive means of gaining infor- 
mation about the managed stock. For example, one can use 
presence-absence sampling and the methods in this paper to 
determine if the probability that the stock is sufficiently strong 
to warrant a full biomass survey. Second, presence-absence 
sampling provides a natural determination of the management 
boundaries of the stock. Third, the method has wide applica- 
bility. Fourth, the method requires a minimum amount of data 
and parameters and nicely complements other methods for esti- 
mating spawning biomass. 

When a stock is recovering, as in the case of sardine, a vari- 
ety of estimation techniques are needed for the successful 
management of the recovery. Early on, a relatively simple and 
inexpensive but cautious technique such as presence-absence 
sampling is valuable. During this period one wants to build 
confidence both in the estimation methodology and in the 
recovery of the stock. Afterwards, more expensive assessment 
techniques such as the egg production method become useful 
as a means of accurately quantifying the stock level. , M e n  the 
stock is sufficiently recovered and strong, one can use tech- 
niques that interpolate between years in which expensive 
assessment methods are used. 

There are a number of directions for future work. The most 
important or promising are the following ones. 

Joint esrimation of habitat boundaries and the biomass - 
In general, the boundary of the geographical habitat will not be 
known and one simultaneously estimates the distribution of the 
mean of the biomass and the probability that a site is a habitat. 
Wolf and Smith (1985, table 2, p. 137) give an illustration of 
the importance of habitat exit information. As spawning pop- 
ulation increases, the spatial spread of the stock may increase 
(Rosenzweig 1981; MacCall 1988). MacCall (1984, 1988) 
shows how to compute the spawning habitat suitability contours 
for the northern anchovy Engraulis mordax. These contours 
represent average phenomena and in any given year one will 
not know the location of the habitat contours precisely. Oper- 
ationally, then, the long term average habitat contours can be 
used to plan the initial part of the sea survey, but then the pres- 
ence-absence data are used to update (e.g. in a Bayesian sense 
(Mangel 1985b, 1988)) the estimation of the contours. The nat- 
ural extension of these ideas is adaptive survey optimization 
(Walters 1986): one develops an “adaptive survey design” in 
which the data that have been accumulated thus far in the survey 
are used to determine where future sampling occurs. The sam- 
pling process {Y,,} is now viewed as a spatial point process and 
one is attempting to control properties of this spatial point 
process. 

Egg surveys as priors and economic modeling - If one 
decides that the spawning biomass does exceed the critical level, 
then a full biomass (i.e. sampling of juvenile and adult fish) 
survey may be warranted. In such a case, the egg survey can 
be used as a prior spatial distribution when planning the full 
biomass survey. In addition, the results of the presence-absence 
egg survey can be used to determine the economic costs and 
benefits of a complete biomass survey and of not allowing com- 
mercial fishing if the spawning biomass exceeds an appropriate 
level. Thus, the presence-absence survey fits nicely into the 
overall bioeconomics of fisheries management. 

We believe that presence-absence sampling provides a new 
tool for the estimation of the biomass of pelagic fish stocks. 
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The great advantages of presence-absence sampling is that it 
can be used in situations in which other methods are either t w  
expensive or unreliable and thus provides a technique that com- 
plements existing ones. 
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Appendix A: Alternative Choices for the Underlying 

We briefly describe other aggregated distributional models 
that could be used instead of the Negative Binomial model cho- 
sen for the main part of the text. These models all have the 
property that, depending upon parametrization, the probability 
of a zero is very high and the variance may greatly exceed the 
mean. 

For the Neyman type A distribution (Johnson and Kotz 1969) 

Distributional Model 

Pr(Xi = X I  station is a habitat} = 

(A.l) 4- I [e-%Vj!l[e-'' ($~Y/x!] 
with the properties that 

(A.2) E{XA station is a habitat} = AB 

For the Polya-Eggenberger distribution (Johnson and Kotz 
1969) 

Pr {Xi = 0) station is a habitat} = exp( - A ( 1  - Ce))  

Var{XA station is a habitat} = AB( 1 + 0) 

Pr{X, = x) station is a habitat} = 
r-1 n-x-1 

i = O  
(3 n (P + i 4  n (Q + ia) 

n (1 +ia) 
(A.3) ' = O  n- I 

,=O 

In this equation, P ,  n, and Q are parameters and Q = 1 - P .  For 
this distribution 

E{X,I station is a habitat} = nP 
(A.4) Var{X,l station is a habitat} = nP Q( 1 + na)/( 1 + a) 
In the limit that n + m, P + 0, a + 0 such that nP and na 
are bounded and nonzero, the Polya distribution is approxi- 
mated by the NB. Johnson and Kotz (1969) also note that the 
Polya distribution is obtained as the unconditional distribution 
when a variable is conditionally binomial and the parameter p 
of the binomial distribution has a beta density. 

A third model is the "zero/random" model. Suppose that a 
station has a positive number of eggs with probability p and 
that if a station has a positive number of eggs, then the egg 
number is distributed according to the positive terms of a 
Poisson process. Then 

Pr{X, = 01 station is a habitat} = 1 - p  
(A.5) Pr{X, = x > 01 station is a habitat} = 

[p/eX - 11 [A%!] 

The second of these equations arises in the following manner: 
X ,  is positive with probability p. If it is, then its distribution is 
Poisson, excluding the zero term. This leads to the AVx!. The 
normalization constant is then Ex= I A"/x! = eA - 1. The first 
two moments of this distribution are 

E{X,l station is a habitat} = pheA/(eA - 1) 
(A.6) E{X;1 station is a habitat} = peA(A + A2)/(eA - 1) 
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