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Abstract

“Optimnal transformations” are new statistical methods that
greatly improve our understanding of non-linear relation-
ships that may exist between environmental and ecological
data. The effect of “optimal transformations” of environ-
mental data is examined for tuna catches, and for the small
pelagic fishery in the Gulf of Guinea. In the frequency do-
main it is shown that the “op$imal transformation” changes
the spectrum of the environmental variable so that it is
more similar to the spectrum of CPUE (Catch Per Unit of
Effort). When there is more than one environmental va-
riable, methods are presented for determining the unique
information in each variable that is relevant to the ana-
lysis, and for determining if the environmental variables
carry information that is not contained in the CPUE sc-
ries itself. The analysis makes clear why for tuna in some
areas wind is most important, while in other areas wind
and SST are important. For the small pelagics, the ana-
lysis explains why only SST (Sea Surface Temperature)
is important for predicting the combined species CPUE,
but SST and salinity are both important in predicting the
CPUE for S. maderensis only. Evidence is presented that
the environmental variables important to the fisheries in
the Gulf of Guinea have “long-term memory™. This has
implications for our ability to accurately predict into the
future the consequences of our management actions.

Résumé

Les «transformations optimales » sont de nouvelles mé-
thodes statistiques qui améliorent beaucoup notre com-
préhension des relations non-linéaires qui peuvent exis-
ter entre des données environnementales et écologiques.
L'effet des «transformations optimales » des données en-
vironnementales est examiné pour les captures de thons
et de petits pélagiques dans le Golfe de Guinée. Dans le
domaine fréquentiel les transformations optimales chan-
gent le spectre de la variable environnementale de telle
facon qu'il apparait plus semblable & celui des CPUE
(Capture Par Unité d"Effort). Quand plus d’une seule va-
riable environnementale cst considérée, des méthodes sont
présentées pour déterminer I'information, pertinente pour
1'analyse, contenue dans chacune des variables et pour dé-
terminer si les variables environnementales apportent de
I'information par rapport aux séries de CPUE. L'analyse
révele pourquoi, pour le thon, le vent est 1a variable 1a plus
importante Jans certaines zones, tandis que pour d’autres
il s'agit du vent et de la SST (température de surface de la
mer). Pour les petits poissons pélagiques, I'analyse montre
pourquoi la SST est importante pour expliquer les CPUE
toutes espéces confondues alors que c’est la SST et la
salinité qui permettent de prédire 1a CPUE de S. maderen-
sis. On montre enfin que les variables environnementales
importantes pour les pécheries, dans le Golfe de Guinée,
possédentune «mémoire A long terme ». Ceci a des impli-
cations pour notre faculté A prédire les conséquences des
actions d'aménagement.
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Introduction

Fisheries management models traditionally have concentrated on the equilibrium behavior of catch and effort in isolation
from the environment in which the fish live. In the Gulf of Guinea, as elsewhere, there is mounting evidence that the
ocean environment plays a key role in the observed dynamics of fish stocks. A list of references documenting this
statement can be found throughout the papers in this volume. I mention in particular Mendelssohn and Roy (1986),
and Mendelssohn and Cury (1987, 1989), because the techniques and results of those papers are directly relevant to the
concerns of this paper.

Studies of the ocean environment'’s effects on fish dynamics have occurred at several levels. At the lowest level,
studies attempt to determine the direct mechanisms that cause mortality, reproductive success, or growth in a fish. For
example, Lasker’s work (1978) on the survival of larvae suggests that the concentration of food sources within the first
several days of life are essential for survival of the larvae. Such information, if true, provides understanding of the
mechanisms by which the ocean affects the fish, and thereby possible limitations of any higher level models. To make
practical use of this information, however, would requn'e knowing where the larvac are located and measuring the food
concentrations right after birth, a formidable and expensive task.

The next level of study has traditionally looked at contemporaneous environmental condmons in relation to fish
catch or fish recruitment. (This approach has been extended, for example, in the papers cited above, by considering the
dynamics of both the environment and the fish in space and time). In most of these studies, cross-correlations between
variables, such as cross-correlations between sea surface temperature (SST) and catch-per-unit effort (CPUE), have
been used to explore the relationships between fish populations and the ocean environment.

It is clear that at this “higher” level, the variables being used no longer directly affect the fish. Rather, they act
as surrogates for other variables, or for processes in the ocean, that do directly act on the fish. This is a subtle and a
seemingly insignificant distinction, but it is one that will be important for the statistical discussion that follows. For, if
the environmental variables being used are not causal, then it makes sense to view the modeling process, particularly
in terms of forecasts, as deciding if a variable to be included in the model contains any additional, unique information
about the future of the fishery dynamics over and above the information contained in the series itself or in other series
to be included in the model.

The cross-correlation between two series at 2 given lag is not independent of the cross-correlations at other lags
nor of the auto-correlations of either series. The most extreme example of this is if each series has an independent
deterministic sinusoidal component. Then there is a sinusoid in the cross-correlation function. As a less extreme
example, two independent series, each with a large lag-one autocorrelation, over & short period of observation will often
have a significant sample cross-correlation at lag-one. This will particularly be true if the underlying series have been
time aggregated (Granger 1980).

In the examples above, pre-filtering would have removed some of this spurious correlation. The effect of pre-filtering
is to remove some of the information that a series carries about itself. When this removes the cross-correlations, it is
lantamount to saying that there is no additional information in the new series. Pre-filtering has its own dangers, but
similar characteristics can be searched for in a true multivariate setting. There has been resistance in fisheries to such
an approach, because “regressing” CPUE, for example, against lagged values of itself, does not have a clear, causal
explanation. If we drop the idea that our models are causal, then it is clear why some such approach makes sense: if
lagged values of CPUE can predict future values just about as well as a new variable, then the past history of the CPUE
series has integrated into itself any information the new series might have. The past history is not necessary causal, but
in terms of information content, it is sufficient.

As I will show, it is possible to resolve some of these issues if we assume that all relationships between CPUE
and its own history or between CPUE and the environment is linear. Unfortunately, dating back to some of the earliest
Japanese work on fish and the ocean, and to the earlier work on tuna (see Sund et al. 1981 and refences therein for
example) the evidence is that the environment affects fish in a nonlinear fashion. The tuna work, based on short term
conditions around concentrations of catch, suggests a “window-like™ relationship between the environment and tuna
CPUE. More recently, using long time-series of data and empirically derived techniques, Mendelssohn and Mendo
(1987) have shown the nonlinearities between the environment and recruitment for anchoveta off Peru. Mendelssohn
and Cury (1987, 1989) using similar techniques, have shown the nonlinearities in the relationships between CPUE
for small pelagics off the Ivory Coast and environmental variables. Cury and Roy (1989) have shown “window-like”
relationships between recruitment for eastern boundary current pelagics and transport or turbulence in the particular
region.

Such nonlinearites affect the analysis greatly. An environmental variable may not show unique information because
it is being examined on the wrong scale. For example, on a linear scale, a window-like relationship will show lack of
fit. While I suggest some methods for circumventing this problem, they are ad hoc solutions at best. Using fisheries
from the Gulf of Guinea, I will examine ways to determine which variables will be important to include in models, and
I will show in specific examples how the analysis changes due to finding a more appropriate scale for the variables.
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If the environment is important in fisheries dynamics, then it is 10 be expected that some of the properties of the
ocean's dynamics may be inherited by the fishery dynamics. Recent years has seen a boom in the literature on “chaos”
and the related ideas of fractals and fractal dimensions. Probably a more accurate nomenclature is “sensitivity to initial
conditions.” There is, however, a feature of these concepts that is more relevant to fisheries science. The analyses in
this paper assume stationarity (or more exactly joint stationarity) in the series to be studied. Or else it is assumed that
the nonstationarity is of a form that can be easily removed, such as a deterministic trend. The physical motivation
for these assumptions is that the effect of anything that happens now dies off relatively rapidly. Hurst (1951) noticed
that riverflows appeared to have the opposite characteristic - there appeared to be long-term memory in the system.
This “Hurst effect”, and achieving stationarity by fractional differencing, are closely related the concepts of chaos
and fractals (see for example Mandelbrodt 1983). If the ocean’s dynamics exhibit long-term memory, this can have
significant implications for how far in the future we can ever expect to accurately forecast fish catches. At the end of
this paper I briefly examine the question of long-term memory in the environmental series from the Gulf of Guinea.

Methods

In this section I briefly review some of the relevant literature on “causality” in time-series, and on empirical methods
for determining nonlinear transformations of variables in the form of “‘optimal” additive models. I also discuss in more
detail the specific computational techniques used in the next section.

Information between two or more time series

Pierce (1979) developed a time-series analogue 1o the R? statistic of regression analysis for the case of bivariate time
series with no feedback. Pierce’s statistic measures how much better a second series helps predict a given series over
that available from the past history of the series. Parzen (see discussion section of Geweke 1982) pointed out that this
amounted to studying the “innovations of the innovation series”, a comment which will be made more concrete below.
Geweke (1982, 1984) extended these concepts to the true multivariate case with feedback. Other related papers are
Gelfand and Yaglom (1959), Caines and Chan (1975), Gustafson, Ljung and Soderstrom (1977) and Anderson and
Gevers (1982).

In this paper I follow Gersch (1986), and the presentation closely follows the discussion of that paper. The
background for developing a quantitative measure of the information in one time series about another time series
(Gelfand and Yaglom 1959) is the measure of the amount of information between two continuously distributed vector
random variables X and Y (Shannon 1948, Woodward 1953),

Ly = / / Sxor @ 9) nlfxy (29 x(2) fr ()] d= dy )

where fx,y(z,y) is the joint probability disuibution function of X and Y, and fx(z), fy(y) are the marginal
probability distributions of X and Y. Equation (1) is the negative entropy of the “true” distribution fx,y with respect
to the assumed distribution fx fy. More formally, equation (1) is the amount of information, on the average, per
observation, to reject the nuli hypothesis that the random vectors X, Y are independent.

In order to use equation (1) simplifying assumptions are necessary. Gelfand and Yaglom (1959) assume that the
time series are stationary and jointly normally distributed. Let w(t) be an (r + g) vector-valued time series that consists
of an r-vectored time series z(t) and a g-vectored time series y(t), that is w(t) = (z(t), y(¢))". and the notation 2"
denotes the transpose of the vector z. Then the spectral density matrix of w(t) at a frequency A can be partitioned as

Ssz(d)  Szy(A
Suw(d) = [ EateY s,:&?]

Then the Shannon-Gelfand-Yaglom (SGY) measure of information is

b 15w
few = /_i‘"ls,,(x)nsw(x)l @ @
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where S* denotes the conjugate transpose of the matrix S, and W? is the multiple coherence at the frequency ). In
equation (3), if X and Y are independent, then the denominator and numerator are identical and the integral is zero,
as would be expected. Equation (4) expresses the information in terms of the extension of the coherence between two
series, the multiple coherence.

For arbitrary time series, the SGY measure partitions into
Ly=Iiey+Iy~z+1Isy (5)

where I._, is the amount of feedback between the series z(t) and y(t), and I,y is the amount of instantaneous
feedback between the two series (Geweke 1982). The measures in equation (5) can be expressed in terms of linear
regressions. Let |W denote conditioning on the present and past of a series, |W ™ denote conditioning on the pastof a
series. Then the series w(t) can be written in equivalent moving average (MA) and autoregressive (AR) forms

w(t) = Y A@e-i Var{e} =EZ(W|W") (6)

=0
w(t) = ) B()w(t-i)+e. Q)

=1

The component series z(t) and y(t) have AR representations
(t) = ZE;;:(!— 1) + upe; Var{u} =Z(X|X™) 8)
i=1

y(t) = ZG“’:(! - 1)+ vy} Var{vn.} =Z(Y]Y™) ©)

=]
The component series can also be expressed in terms of two different ARMAX models that depend on different
present and past information

z(t) = i Eyz(t — i) + i Fiy(t ~ 1) + uae; Var{uz} =Z(X|X~,Y7) 10)
=1 =1

y(t) = iﬂz-‘r(f-i)+icz.’y(t—i)+0z¢; Var{va}) = Z(Y|X~,Y7) 1)
=1 =l

z(t) = i Eyiz(t —i) + f: Fy(t — i) + use; Var{us} =Z(X|X",Y) a2
[ i=0

y(t) = i Hyz(t—i) + i Giy(t — 1) + vae; Var{vy} = X(Y|X,Y") (13)
=0 il

Then the information measures in equation (5) can be written in terms of the innovations of these ARMAX models
(Geweke 1982) as

EXIXHIEYIY )

B = 0w @
ey = L s
T ”
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This is the innovations of the innovation series mentioned above.
The amount of information and feedback can be computed in either the time domain or the frequency domain. An
important additive decomposition is (Geweke 1982)

i
Iyes2> / * Ty—z(2) dA (18)

with similar relationships for the other measures. (The frequency domain representation is useful for examining
environment influences on CPUE, as estimates at different frequencies asymptotically are independent. In the time-
domain, it is necessary to adjust for the past history of CPUE. In the frequency domain, anly the relationships between
CPUE and the environment need be examined).

Model the time series z(t) in two ways - regress it on its own past and on its own past and the past of the series y(t).
Let 5:(X) be the power spectrum of z(t) from the regression on its own past, and let S, ., () be the contribution to
the power spectrum of z from its own past when it has been regressed on both z and y. Then

151
[y (19)

If, for example, y(t) does not influence or feedback on z(t) then the inner term in equation (19) is one, and the measure
is zero as expected. Geweke (1984) shows that these results continue to hold under conditioning or partial regression
on another time series z(t).

To practically implement this, suppose we observe three univariate time series z(t), y(t) and z(t). Assume that
there is pairwise linear dependence between the series, that is

Iywz(A)=In

I‘-! # 0, Is,: # 0, Iy,; # 0. (20)
Assume also that each pair of time series is conditioned on the excluded third time series, with the following results,
I:,ylz # 0, I:.xly #0, Iy.:lz =0, (21)

This implies that the the z(t) series uniquely explains the linear relationships between the three series.

Suppose spectral density matrices have been estimated at each frequency and are partitioned as above. Then the
coherence between z and y is,

Szy(A)]
VA = 5 5™ 22)
The partial spectral densities (conditioned on the excluded variables) are (Brillinger 1981)
Sea:(A) = Sex(A)(1 =W (2)) 23)
Spis(A) = Syy(A)(1 - W:z('\)) (24)
Sz:(A)Szy(A
Sa(¥) = Sn() - 2P @)
Then the partial coherence between z and y after removing the effects of z is
2 — IS,,|,(A)|"
wsyll(A) - S,,],(A) (26)

Brillinger (1981) gives multivariate extensions for each of these terms. The partial coherences are the frequency domain
analogues of partial correlations in regression theory.
The conditions in equations (20, 21) for z to be *“causal” can be estimated by

W2,(A) #£0, WL (M) #£0, W2,(A)#0 @n
W2,.(0) #0, W2, () #0, W2, (3)=0 @8)

Gersch (1986) and Brillinger (1981) give significance tests for each of these quantities. There are a variety of methods
for estimating spectral density matrices. In this paper, I have used the autoregressive estimates of Akaike (1980). There
is a close connection between AR spectral estimates and Maximum Entropy Spectral Estimation (Ulrych and Bishop
1975).

The AR spectral estimate is calculated by fitting multivariate autoregressive models to the data up 10 a maximum
lag. Akaike's AIC criterion is used to pick the “best” model. Assume this “‘best” model has m lags, and that the estimated
coefficient matrices are given by A, at lag i. Also let the innovations covariance matrix be denoted by U. Then the
spectral density matrix at frequency A is given by,

S = A0 'var ()™ (29)
and A(A) =T — Z;" Aj exp(—2¢Aj) is the Fourier transform of the coefficient matrices.
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Estimating nonlinear transformations

The standard linear regression model estimates a function of the form

¥ = a+ 3 b(3)z;6). (30)

If it is believed that the relationship between the y’s and the z’s is nonlinear but of an unknown form, then an acceptable
first approximation might be the additive model

T(y(i) = a+ 3 b(3)s;(z,(3)) (31)

where T(:) and the s;(-) are unknown functions. Breiman and Friedman (1985) have derived an algorithm, the
“Alternating Conditional Expectations” algorithm, or ACE, to estimate models of the form of equation (31).

Briefly, for one independent variable, they show this problem is equivalent to finding the transformations that
have the highest possible correlation. The quantities that need to be solved for can be written in terms of conditional
expectations. The algorithm proceeds by alternately estimating the conditional expectation after removing the influence
of the other variables. The conditional expectations are estimated using scatterplot smoothers. The result, therefore, is not
a function that can be written down, but rather an empirical transformation of each observed point. The transformation
can be observed by plotting the transformed values against the original values. There is a close connection between the
ACE algorithm and the power method of calculating the maximum eigenvalue of a matrix (see discussion section of
the article).

The ACE algorithm has been used in a fisheries context by Mendelssohn and Cury (1987, 1989), by Mendelssohn
and Mendo (1987) , Mendelssohn and Husby (1992), and Cury and Roy (1989). What is noted in each of these papers
is that the overall form of the ransformations generally have close, obvious physical interpretations. Transformations
of CPUE, as would be expected from the ratio of two seperate series, tends to be close to a log scale.

Fractional differencing and long-term memory

My discussion follows Porter-Hudak (1982). Hurst (1951) examined the flows of rivers. Let 11, 12,...,z7 be the
historical sequence of flows. Then the cumulative flows up to time ¢ are

t
Su,:Zz,, t=12,..,T. (32)

=1
Related to reservoir construction is the sequential range

R = max Su, — m‘in Su.. (33)
4

Hurst looked at the normalized sequential range (or “rescaled adjusted range”) where Su, has the mean flow removed
and the quantity is divided by the standard deviation of the flows. If the flows are independent over large time scales

then one would expectthat R/S ~ (T/2) }. However, Hurst found that for a wide range of river flows R/S ~ (T/2)¥
where H is in the range (.6, .8). Mandelbrot (Mandelbrot and Van Ness 1968, Mandelbrot 1971) explained this in terms
of fractional Gaussian noise (fGn). Let B(s) be Brownian motion, a stochastic process such that B(s + u) — B(s) are
N(0,1) and independent. Then fractional Brownian motion takes the form

Bu(t) = / (t - a)"'* dB(s) —oco<t< oo (34)
or

BH(:)—BH(0)=/ (:—s)"‘QdB(s)-f (-s)¥-YaB(s). (35)
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Discretizing the equation yields
be(H) = Bu(t) — Bu(t —1). (36)

Fractional Gaussian noise can be described by its autocorrelation function
Cls) = (3)(Is = 1PF = 2§aP¥ 4 |a + 1), (37)
Fractional Gaussian noise also exhibits the self-similarity property, that is
X(@@2) ~ (A X(¢t). (38)
A related concept is fractional differencing (Granger and Joyeux 1980, Hosking 1981)
(1-B¥X.=e (39)
where d is possibly nonintegral, B is the backshift operator, and ¢, are independently distributed as N (0, 0%). Note that

this is not a nonintegral lag operator, but rather an infinitely lagged polynomial in B whose weights die out at a rate
given in the autoregressive representation equation (41). The spectral density of this model is

Q)= j—;(Z(l ~cos(A))"™?  A#£0. (40)
Granger and Joyeux (1980) derive the following autoregressive representation of a fractionally differenced process
= e __TuG-4d .
Za,X._,—cz. a; = TA—dTG+1) i>1L (41)

Porter-Hudak (1982) and Geweke and Porter-Hudak (1983) show that the power spectrums of the error term from
an fGn process and a fractionally differenced process only differ by a short-memory component. Thus both models are
estimating essentially the same long-term memory component. Porter-Hudak (1982) and Kashyap and Eom (1988) give
methods for estimating the fractional differencing parameter d, based on regressions between the log of the periodogram
of the observed series and the log of the theoretical spectrum of a fractionally differenced series. The most important
property is that long-term memory models have a value of d in the range (0, %), processes such that d > 1/2 have
infinite variance, and those with d < 0 are short-terrn memory models (Granger and Joyeux 1980, Hosking 1981).

Yellowfin Tuna in the Gulf of Guinea

In this section and the next one I make real some of the ideas in the last section, using yellowfin tuna catches in the
Gulf of Guinea and catches of small pelagics off the Ivory Coast. Mendelssohn and Roy (1986) studied the space-time
dynamics of yellowfin CPUE in the Gulf of Guinea in relation 1 SST and wind. They divided the northern part of the
Gulf of Guinea into 11 areas (fig. 1).

Within each area a local model was estimated that also estimated the missing data (in this instance, whenever
there was no fishing in the area there was missing data), using an extension of the EM algorithm (Dempster, Laird
and Rubin 1977) suggested by Shumway and Stoffer (1982). Frequency domain principal components and canonical
correlations were used to examine phase relationships between the different areas at given frequencies. Mendelssohn
and Roy (1986) suggest that yellowfin CPUE foliows the propogation of SST in what appears to be a remotely-forced,
Kelvin wave type behavior.

The local models suggested that the onset of upwelling previous to fishing was an important key to fishing success.
The combined local and global results suggested that SST and wind were surrogate variables for an oceanic process
that probably tended to concentrate food for the predatory tunas. There was evidence that the actual relationships were
nonlinear, but this was not explored in the paper. The question of which variables in each area were most important in
the local models was addressed in at best an ad hoc manner. It is these last two questions that I explore here.

1 restrict myself to the coastal areas, areas 7 through 11, where the bulk of the fishing effort has been. It is worth
emphasizing that the spectral results given here are average results - at any given time period a variable may be having
much more influence on the system than represented in the average statistics.
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Figure 1: Areas of study for Yellowfin Tuna CPUE.

Area 7

The optimal transformations were estimated arbitrarily up to a lag of two fortnights. The estimated transformation for
any variable can be different at each lag, so that ideally each variable at each lag could be treated as a separate variable
in the analysis. However, I have arbitrarily used LNCPUE = In(CPUE + 1.) as the transformation of CPUE, and the
estimated transformation at a lag of 1 fortnight for all the environmental variables.

A simple, convenient method for determining the effect of the transformations on a variable is to compare the
power spectra of the original and transformed series. This is particularly useful in this situation as it relates nicely to
the suggested measures of information in section 2.1 (fig. 2). The LNCPUE series has a smoother spectrum than does
CPUE with the peak moved from roughly a period of 7 weeks to a period of 5 weeks.

The estimated transformation for SST (fig. 3) is nearly linear at a lag of one fortnight, but shows a window-like
structure with a peak around 27° — 28° C. Despite the near linearity of the transformation at a lag of 1 fortnight, it has
a pronounced effect on the spectrum (fig. 4). The peak in the spectrum has been shifted from a period of roughly two
months to a period of almost 5 weeks, much closer to the period of LNCPUE.

The estimated tranformation of the north-south wind component s highly nonlinear (not shown), but the effect of the
transformation on the spectrum is almost identical to that of SST. The spectrum of the transformed variable is smoother
with a peak identical to that of SST. Both the SST series and the north-south wind series have lJow coherences with
CPUE at all frequencies (fig.5-6) while the transformed variables have significant and significantly higher coherences.

However, while the coherences and partial coherences for the north-south wind are essentially identical, the partial
coherences for SST are greatly lower then the coherences. Carrying out the full analysis in the last section suggests
that the significant environmental variable in area 7 is the north-south wind, and that the coherence with SST is due to
coherence and feedback between SST and the wind.

Area 8

As in area 7, the spectrum of LNCPUE is shifted over to the higher frequencies with a period of about 5 weeks,
but in this case the peak is also much narrower (fig. 7). The estimated transformation for the east-west wind (not
shown) is hyperbolic in shape, and its affect on the power spectrum is almost identical to that of CPUE. The estimated
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Figure 3: Estimated transformation of SST in area 7 from the ACE algorithm at lags of one and two fortnights.
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Figure 5: Coherences (solid lines) and partial coherences (dashed lines) for CPUE with SST and LNCPUE with
transformed SST in area 7.
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Figure 6: Coherences (solid lines) and partial coherences (dashed lines) for CPUE with north-south wind and LNCPUE
with tranformed north-south wind in area 7.
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Figure 7: Power spectrum of CPUE and LNCPUE in area 8.
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transformation of the north-south wind is again highly non-linear (not shown), and the power spectrum is transformed
much as with CPUE and the east-west wind.

The transformation of SST at a lag of 1 fortnight is almost window-shaped (fig. 8) The transformation smooths the
power spectrum shifting the power into the highest frequencies at a period of around 1 month. While the coherences of
both raw and untransformed east-west wind are high, the partial coherences of both at all frequencies are non-significant.
(This is true for areas 9 through 11 also, so this variable will not be examined further). The coherence between CPUE
and SST, particularly with the raw series, is particularly significant at a period of roughly 5 weeks (fig. 9). The partial
coherences between CPUE and SST are essentially insignificant. The partial coherences between LNCPUE and SST
are insignificant except at a period of 1 month.

The coherences and partial coherences between CPUE and north-south wind are almost identical (fig.10), while with
the transformed data, one peak at a period of 1.5 months is sharply reduced. However, the overall results are the same
as with area 7 - north-south wind is the predominant environmental variable, working at relatively high frequencies,
and with an additional effect due to SST on the transformed scale at a period of one month. The transformed data has in
effect separated out the frequencies at which the wind and SST contain important information sbout CPUE. However,
at most frequencies, the observed coherence between SST and CPUE appears 1o be due 1o feedback and coherence
between SST and the wind.
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Figure 8: Estimated optimal transformation of SST at a lag of one and two fortnights in area 8.

Figure 9: Coherences (solid lines) and partial cohcrences (dashed lines) for CPUE with SST and LNCPUE with
transformed SST in area 8.

Area9

The spectra for CPUE and LNCPUE in this area are nearly identical with a sharp peak at a period of slightly greater
than one month (not shown). The transformation of the north-south wind (fig. 11) is window-shaped, and transforms
the power spectrum to a single peak at the same frequency as that of CPUE (fig. 12).
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Figure 10: Coherences (solid lines) and partial coherences (dashed lines) for CPUE with north-south wind and LNCPUE
with transformed north-south in area 8.
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Figure 11: Estimated transformation for north-south wind in area 9.

10.7 - 2.
—— N-SWIND . 175

g g L - TRANS.N-SWIND ‘ =]

> ) 1.5 =

f (7]

il L1.25 =

Q [7]
-

> F 1. g

[« (=

= w

Q +0.75 e}

[ =

@ 0.5 =2

—

(&)

L0.25

w

0.1 0.2 0.3 0.4 0.5
FREQUENCY

Figure 12: Estimated spectra of raw and transformed north-south wind in area 9.
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The coherences and partial coherences between CPUE and north-south wind are similar (fig. 13), but with the
transformed data a very significant peak in the coherence disappears in the partial coherence. A similar result can be
seen for SST (fig. 14). Here the high-frequency peak in the coherence disappears, while a lower frequency peak remains.
This is evidence that at the peak frequency, SST and the north-south wind contain nearly identical information about
the environment.
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Figure 13: Coherences (solid lines) and partial coherences (dashed lines) for CPUE with north-south wind and LNCPUE
with transformed north-south wind in area 9.
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Figure 14: Coherences (solid lines) and partial coherences (dashed lines) for CPUE with SST and LNCPUE with
tranformed SST in area 9.

Areas 10 and 11

In area 10, the estimated transformations for both the north-south wind and SST are nearly linear (not shown). For both
variables, however, the effect on the estimated power spectrum is to shift a single peaked spectrum from a frequency of
.45 10 a frequency of .4 (not shown). For the raw data, the peaks in the coherences with either environmental varisble
disappear in the partial coherences (fig. 15 and 16). As these peaks occur at the same frequencies for both SST and
the north-south wind, this implies that both variables contain similar information about the ocean in terms of CPUE
for yellowfin. On the transformed scale, the coherences and partial coherences for LNCPUE with transformed SST
are nearly identical, while those with the north-south wind are reduced at the peak frequency. However, at this peak
frequency the partial coherence with the north-south wind is still significant, so that both wind and SST contain unique
information when the data are sppropriately transformed.

The situation is very similar in area 11, where SST and north-south wind both are significant at a period of roughly
2 months. Each variable contains some overlapping information at this frequency, but the partial coherences are also
significant though smaller than the coherences.
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Figure 15: Coherences (solid lines) and partial coherences (dashed lines) for CPUE with north-south wind and LNCPUE
with transformed north-south wind in area 10.
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Figure 16: Coherences (solid lines) and partial coherences (dashed lines) for CPUE with SST and LNCPUE with
transformed SST in area 10.

Small pelagics off the Ivory Coast

Mendelssohn and Cury (1988) estimate forecasting models and nonlinear transformations for the explanatory variables
for modeling the CPUE of small pelagics off the Ivory Coast. Mendelsson and Cury (1989) also study the dominant
species in the catch, Sardinella maderensis, in time, as well as in space and time. Their results suggests that the factors
affecting the aggregate CPUE are not the same as those affecting S. maderensis by itself. In this section I reexamine
this question using the techniques of this paper.

I have arbitrarily estimated the optimal transformations for the explanatory variables from a model which includes
lags up to 4 fortnights. Thus, each model contains lagged values of CPUE, lagged values of SST at § meters depth from
a shore station (SST5M) and salinity at 5 meters depth (SAL5M) from the same station.

Log of CPUE again is used as the transformation for CPUE. LNCPUE shifts the spectrum from a peak at around a
period of 1 month to a peak centered around 5 weeks (fig. 17). The estimated transformations for SST5M and SALSM
(fig. 18,19) shift their power spectra in a similar manner so that all three series have a peak in their spectrum at a period
of roughly 5 weeks (fig. 20,21).

The coherences and partial coherences for SST5M with CPUE are nearly identical (fig. 22). The coherences make
clear how the transformation has shifted the spectrum so that it is closely aligned with LNCPUE.

The coherences for CPUE with SALSM show a strong coherence at a period of 1 month, but this disappears in the
partial coherente (fig. 23). On the transformed scale, while the coherences and partial coherences are similar, they are
not particularly significant. This supports the claim in Mendelssohn and Cury (1987) that for combined CPUE, SSTSM
was sufficient for prediction and that no extra information was contained in the SAL5M series.

When examining CPUE for S. maderensis only, the picture is different. The coherences and partial coherences
for SSTSM with CPUE are nearly identical, with a significant peak at a period of roughly 2 months (fig. 24,25). For
SALSM, the coherences and partial coherences are identical expect at this frequency, where a significant peak in the
coherence is eliminated. The most significant coherence for CPUE with SAL5M is now at a period of roughly a month.
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Figure 17; Estimated power spectrum for CPUE and LNCPUE for small pelagics off the Ivory Coast.
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Figure 18; Estimated transformations for SST5M off the Ivory Coast.
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Figure 19: Estimated transformations for SAL5M off the Ivory Coast.
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Figure 20: Estimated power spectrum for SALSM off the Ivory Coast.
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Figure 21: Estimated power spectrum for SALSM off the Ivory Coast.
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Figure 22: Coherences (solid lines) and partial coherences (dashed lines) for CPUE with SST5M and LNCPUE with
transformed SST5M for small pelagics.

461




1. 1
SAUNTTY TRANS. SALINITY
0.8 0.8
w
§ o.6 0.6
8 0.4 0.4
0.2 0.2
41//\\\ 4J/Q\C
0.1 0.2 0.3 0.4 0.5 0.1

FREQUENCY

Figure 23: Coherences (solid lines) and partial coherences (dashed line) for CPUE with SALSM and LNCPUE with
transformed SAL5M for samll pelagics.
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Figure 24: Coherences (solid lines) and partial coherences (dashed line) for CPUE with SSTSM and LNCPUE with
transformed SST5M for S. maderensis.
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Figure 25: Coherences (solid lines) and partial coherences (dashed lines) between raw and transformed SALSM and
raw and transformed CPUE for S. maderensis.

Thus, for S. maderenis, the partial coherences show SST5M and SALSM both containing significant information about
CPUE, but at different frequencies. That SALSM is important for S. maderensis but not for combined CPUE was
asserted by Mendelssohn and Cury (1989) using time-domain techniques. Here I show further cvidence of the claim.

The low coherences in the transformed data for S. maderensis is due to the fact that I have arbitrarily used the
transformation at a lag of 1 fortnight. Particularly for SAL5M, it is clear from the analysis of Mendelssohn and Cury
(1989) that salinity has its greatest effects at much longer lags. There are significant and difficult management questions
raised by the fact that the dynamics of the combined CPUE (that faced by the fishermen) are much different from
that of the dominant species in the caich. Clearly, a forecast of the aggregate could become misleading, and it may be
preferable to aggregate forecasts instead.
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Long-term memory in the ocean environment in the Gulf of Guinea

In this section I briefly consider if there is long-term memory in the ocean environment in the Gulf of Guinea. The
presence of long-term memory may have profound implications for fisheries management. If long-term memory exists
in the ocean, then small changes in the ocean, rather than dying out and causing bounded changes, persist and their
effects may multiply through time. Large changes, such as El Nino type events, can have lasting consequences. If the
ocean exerts a significant influence on the dynamics of a fish population, then it can be expected that fish populations
will display a similar property. This would limit how far into the future we can reasonable expect to understand the
consequences of management regimes on the fishery.

I examine the question of the presence of long-term memory by calculating estimates for the fractional differencing
parameter d in equations (38) and (39) for several of the environmental series. I use the shore station SST and salinity
series (SSTSM and SAL5M) as probably reflecting the environmental conditions relevant to the important near-shore
fisheries. I also use SST and the two wind component series from area 9, which is the area of the Intertropical
Convergence Zone. This area most likely will reflect much of the dynamics of the Gulf. The salient feature here is
that short-term memory series have a value between (—1/2,0), long-term memory models have a value of d between
(0,1/2), and series with a value of d greater than 1 /2 have infinite variance.

The estimates of d (table 1) suggest that all of the series except the east-west component of the wind have a strong
long-term memory component.

Method of Estimation
Series Geweke & Porter-Hudak  Kashyap & Eom
SSTSM 0.4170 0.4426
SALSM 0.4241 0.4486
Area 9 SST 0.6169 0.6728
Area 9 NS Wind 0.4036 04312
Area 9 EW Wind 0.0021 -0.0070

Table 1: Estimates of the fractional differencing parameter for selected environmental series in the Gulf of Guinea.

There is some evidence that SST may even be an infinite variance series. If this is so, climatologies and other
mean-like statistics in this region would have very little meaning. SST in the Gulf of Guinea appears to reflectimportant
processes in the Gulf of Guinea that have major influences on fish dynamics, and my results suggest that these processes
may have infinite variance. While much more research must be done in this area before any definitive statements can
be made, the initial evidence is troubling indeed.
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