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ABSTRACT 

Demographic models can be used to estimate population growth rate directly from the stable distributions of age and reproductive 
state. Two demographic models are considered. the geometric serie5 and Leslie matrix models. Both models are shown to converge to 
the same estimator for population growth rate, e‘. A method is derived which estimates the sampling variance in e ,  using this 
estimator. The variance of this estimator is calculated for three examples of marine mammal life history and for sample sizes ranging 
from 500 to 16,000. Even with the largest sample sizes and ignoring numerous sources of additional variability, the sampling variance 
in estimates of population growth rate is too large to be of practical value in marine mammal management. 

INTRODUCTION 

Demographic models are used to represent the dynamics of 
age-structured populations. They can range in complexity 
from simple 2-age models which consider only ‘juveniles’ 
and ‘adults’, to full Leslie matrix models which typically 
include one age class for each year of life. Demographic 
models have had a long history of use in the management of 
marine mammal populations (Allen, 1981). 

Although demographic models have many uses, the 
most misunderstood (and perhaps the most emphasized) 
has been the estimation of population growth rates. In this 
paper I examine this particular use in detail and evaluate 
whether such models can provide estimates of population 
growth rates that are useful in the context of marine 
mammal management. 

Several previous studies have investigated the accuracy 
with which growth rates can be estimated from 
measurement of demographic parameters. Lenski and 
Service (1982) and Meyer et al. (1986) derive variance 
estimators based on data that are gathered from a 
longitudinal study of a cohort. These data, however, are 
not available for marine mammals. For large whales, the 
emphasis has been on the accuracy of estimating natural 
mortality rates from catch-at-age data with independently 
measured trends in abundance (Tanaka, 1990). De la Mare 
(1990a) has shown that mortality rates estimated by these 
methods are not precise. In a more general sensitivity 
study, de la Mare (1990b) has shown that net recruitment 
rates are very sensitive to errors in estimating demographic 
parameters. Here I examine the sampling variance in 
estimating population growth rates from demographic 
parameters alone, independent of any information on 
trends in abundance. 

DEMOGRAPHIC MODELS 

In this paper I will consider two common demographic 
models which represent opposite extremes on a spectrum 
from simple to complex. These models are the geometric 
series model and the Leslie matrix model (respectively). 
As is common practice for both models, I will explicitly 
consider only the female segment of the population. 

The geometric series model describes the most basic 
elements of age structure with only four parameters: the 
mean survival rate of reproductive females (p), the mean 
birth rate of reproductive females ( m ) ,  the age at sexual 

maturation ( a )  and the survivorship from birth to the age 
of sexual maturity (la). Given these four parameters, 
population growth rate (e’) can be estimated by solving its 
characteristic equation: 

1 = (m l , ) / ( e r m  - per fn~l ) )  (1) 
Goodman (1984). 

The Leslie matrix model typically has many more 
parameters than the geometric series model. For marine 
mammals, this model will usually have two parameters 
(age-specific birth and death rates) for each year of life up 
to the maximum age attained by the species. This level of 
resolution has been chosen because it is typical of the level 
of resolution in age estimation for marine mammals. I use 
the terminology of Caswell (1989) for a birth-pulse 
population with postbreeding census. Age-specific survival 
rates ( P x )  form the first sub-diagonal of the matrix and 
represent the probability of surviving from age class x to 
age class x + l .  Age-specific fecundity rates (F,) form the 
first row of the matrix and represent the expected number 
of female offspring born to a female in age class x at time t 
and which are alive at time t + l .  Although the population 
growth rate ( e r )  can be estimated by using linear algebra to 
find the dominant eigen value of the Leslie matrix, it is 
mathematically equivalent and algebraically simpler to 
solve the following characteristic equation: 

13 

(2) 1 = &-,* .I ,=, x .Fx 
i - l  

,=, where lx = I I p d  

and p = maximum age class 

ESTIMATING DEMOGRAPHIC PARAMETERS 

Given age-specific fecundity and survival rates, the 
estimation of population growth rates using demographic 
models is a simple algebraic exercise. The real problem is 
in accurately estimating the birth and survival parameters. 

Survival rates can be estimated from the age distribution 
of a population if a number of assumptions are met. The 
primary assumption is that the population is in a stable age 
distribution. Although a method has been developed 
which circumvents this assumption (Fryxell, 1986), this 
method requires knowledge of both the actual, time- 
dependent age distribution and the distribution of ages at 
death. The latter is not available for marine mammal 
populations. Given a stable age distribution, survival rates 
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can only he estimated as an ‘apparent survival rate’ (i.e. the 
true survival rate divided by the population growth rate). 
As pointed out by Caughley (1966), true survival rates can 
be estimated from age-frequency distributions alone only if 
the population is not growing. Fortunately. it has been 
shown for the Leslie (Michod and Anderson, 1980) and 
geometric series (Goodman, 1984) models, that 
knowledge of the ’apparent survival rate’ is sufficient to 
estimate population growth rate using either model. 
Although many smoothing models have been proposed for 
the estimation of the age-specific survival rate. these 
complications are not necessary when estimating the 
population growth rate. As will he shown below for both 
the geometric series and Leslie models. the only relevant 
survival statistic is the ratio of the number of individuals in 
reproductive age classes to the number of individuals in the 
first age class. 

Estimating the fecundity parameter(s) of either model is 
more complicated than simply measuring crude birth rates. 
In both models, the fecundity term incorporates elements 
of survival of the mother from census to birth andlor the 
offspring from birth to census. Methods of estimating 
Leslie-matrix fecundities ( F J  from field data are discussed 
by Goodman (1984) and Caswell (1989). The fecundity 
term in the geometric series model ( m )  is a weighted 
average of the age-specific fecundities of the reproductive 
age classes where the weights are given by the stable age 
distribution (Goodman, 1984). If the population is in stable 
age distribution (which is a necessary condition for 
estimating population growth rates) m can be estimated 
from a random sample of reproductive females and the 
appropriate weighting will he implicit. 

ESTIMATING POPULATION GROWTH RATES 

Substituting the ‘apparent survival rate’ (i.e. the true rate 
divided by the population growth rate) in Equations 1 and 
2 results in considerable simplification; both can then be 
represented as direct solutions for e‘. 

Geometric Series Model 
The characteristic equation for the geometric series model 
(Eq. I)  simplifies to: 

e’ = (m ik)/(r - p ‘ )  (3) 
where 

and 

(incorrectly printed as Eq. 33 in Goodman (1984)). The 
apparent survival rate can he estimated as 

p ’  = the apparent survival rate 

I ,  = the apparent survivorship to age a 

p ’  = I - (na+/N)  (4) 
where n,+ = the number in reproductive age classes, 

and N = the total number in all age classes 

(Goodman (1984), from his Eq. 24). The apparent 
survivorship to age 01 can be estimated as 

I ,  = n,+/nl ( 5 )  
where nl = the number in age class 1 

(Goodman (1984), from his Eq. 32). Substituting 
Equations 4 and 5 into 3, population growth rate can thus 
he represented as 

e‘ = Im n,+)lnl (6) 

The numerator in Equation 6 represents the number of 
offspring that will be produced by females at time f and 
which will survive until census at time t + l .  Assuming that 
gestation is one year and ignoring the survival aspect of 
fecundity, the fecundity rate, m,  can be estimated as the 
number of pregnant females, np,  divided by the total 
number of mature females, ne+. Thus Equation 6 can be 
re-expressed as 

e‘ = n,in, (7) 

Leslie Matrix Model 
A similar simplification is possible with the characteristic 
equation for the Leslie matrix (Eq. 2 ) .  Again, population 
growth rate can be expressed in terms of age-class 
abundances and fecundity li 

1 F ,  . n, 
(8) 

/=o e‘ = ~ 

nl 

(Michod and Anderson (1980), from their Eq. 3). The 
similarity between Equations 6 and 8 is more than 
superficial. 

The numerator in both represents the number of 
offspring that will he produced by mature females at time f 
and which will survive until census at time t + l .  Again 
assuming that gestation is one year and ignoring the 
survival aspect of fecundity, Equation 8 can be reduced to 
Equation 7. The estimation of population growth rates for 
both the geometric series and Leslie matrix models has 
thus converged on a single approach. 

The data which will be needed to estimate population 
growth rate will thus be the number of pregnant females 
and the number of individuals in the first age class. 

VARIANCE ESTIMATION 

The estimation of population growth rate has been reduced 
to the ratio of two elements of a multinomial distribution. 
This makes the problem of estimating its variance simple. 
Let ql be the expected proportion in age class 1 in the 
population, let qp he the expected proportion of pregnant 
females, and let N be sample size of all age and 
reproductive classes. The sampling variance in er can he 
estimated from the Taylor series approximation for the 
variance of a ratio (Yates, 1953) using multinomial 
variance and covariance estimators. Thus 

For simplicity I have glossed-over all the complications 
involved in estimating fecundity from data on gross percent 
pregnant. As stated previously, fecundity includes an 
element of survival. I have assumed that this survival rate is 
1 .O. The survival part of the fecundity term is typically very 
difficult to measure and its estimation will add to the 
sampling variance associated with estimating population 
growth rates. Furthermore, I have assumed that age and 
reproductive status can be measured without error. For 
these reasons the variance estimated here will 
underestimate the true variance expected from any real 
sampling plan. 

MONTE CARLO SIMULATIONS 

A simple simulation is used to test Equation 9 and to 
examine the distribution of estimated population growth 
rates. 1 assume that the population can he sampled 
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randomly with respect to age and reproductive condition. I 
draw random samples from a hypothetical population of 
females and record (1) the number in the first age class and 
(2) the number of pregnant females. For each sample, 
population growth rates are estimated from Equation 7. 
Thus, in this simulation I assume that all errors in 
estimating population growth result from random sampling 
of a multinomial distribution. 

The expected fraction of the female population in each 
of the two categories given above is dependent on both the 
age-specific fecundities and survival rates. Consequently, 
the simulations require some assumptions about the life 
history of the species. Three model life tables will be used 
as representative examples in the simulation. Case I is a 
generalized marine mammal with an adult survival rate of 
0.9, a mean adult fecundity rate of 0.21, an age of sexual 
maturity of 6 years, a survivorship from birth to sexual 
maturity of 0.506 and a population growth rate of 1.000. 
Case I1 is the same generalized marine mammal except 
with a mean fecundity of 0.45 and a population growth rate 
of 1.065. Case 111 is modeled specifically after the spotted 
dolphin (Stenella attenuutu) with age specific fecundity and 
survivorship as illustrated in Fig. 1 and with a population 
growth rate of 1.024. The expected frequency of 
individuals in the first age class, all other immature age 
classes, the mature pregnant and the mature not-pregnant 
groups are given in Table 1 for each of the three examples. 

0- 

I 
5 10 15 20 25 30 35 40 

Age in years 
Fig. 1. Age-specific survivorship and fecundity rates used to model the 

spotted dolphin (from Barlow and Boveng 1991) in Case Ill of the 
simulation studv. 

To simulate sampling from a real population, samples 
were drawn randomly from the multinomial distributions 
given in Table 1. Samples sizes of 500, 1,000, 2,000,4,000, 
8,000 and 16,000 females were drawn for each of the three 
sample life tables. Population growth rates were calculated 
from each sample, and sampling was repeated 1,000 times 
to estimate the mean and variance of the estimated 
population growth rates. 

RESULTS 

The distributions of estimated population growth rates 
from the simulations are given in Figs 2 to 4 for the three 
life table examples (all based on a sample size of 4,000 
females). In all three cases, the mean growth rate is in 
reasonable agreement with the expected mean growth 
rate, but the range of estimated growth rates is wide and 

Table 1 

Expected proportion of females that are in each of four age- 
reproductive classes (in year class 1, in other immature age classes, 
pregnant with a female fetus, and mature but not pregnanl with a 

female fetus) for a population in stable age distribution. 

Age Other Mature Mature 
Life table class immature and not 
example one ages pregnant pregnanl 

case I 0.118 0.313 0.118 0.451 
case I1 0.177 0.404 0.188 0.230 
case 111 0.072 0.430 0.074 0.424 

Growth rate 
Fig. 2. Frequency distribution of estimated population growth rates 

for Case I bared on 1,000 samples of 4,000 females. 

I 

Growth rate 
Fig. 3. Frequency distribution of estimated population growth rates 

for Case I1 based o n  1,000 samples of 4,000 females. 

appears skewed. Mean and standard deviations of 
population growth rates are given in Table 2. Estimates of 
standard deviation based on Equation 9 are generally in 
good agreement with the simulation results, hut for smaller 
sample sizes, growth rates and standard deviations are 
consistently lower than for the simulation (possibly linked 
to the truncation of third and higher-order terms in 
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Growth rate 
Fig. 4. Frequency distribution of estimated population growth rates 

for Case I11 based on 1,000 samples of 4.000 females. 

Table 2 

Standard deviations of growth rates estimated from Equation 9 and 
from Monte Carlo simulation. Simulation results are based on 1,000 

replicates of the given sample size. 

Life table Sample 
example size 

Analytical 
growth Standard 
rate dewation 

Case1 500 
1000 
UMO 
4000 

case11 500 
loo0 
UMO 
4000 

case111 500 
1000 
UMO 
4000 

l.m 0.184 
1.000 0.130 
1.000 0.092 
1.000 0.065 

1.065 0.157 
1.065 0.111 
1.065 0.079 
1.065 0.056 

1.024 0.241 
1.024 0.170 
1.024 0.128 
1.024 0.085 

Bootstrap 
growth Standard 
rate deviation 

1.029 0.193 
1.012 0.137 
1.004 0.095 
1.005 0.067 

1.073 0.163 
1.060 0.109 
1.059 0.079 
1.064 0.056 

1.059 0.258 
1.042 0.177 
1.031 0.123 
1.035 0.084 

1 ? 1.02 

2 4 6 8 10 12 14 16 
Sample size of females (000s) 

Fig. 5 .  Analytically derived estimates of the coefficients of variation in 
population growth rates as a function of sample size for each of the 3 
cases used in the simulation. From top to bottom. Cases 111, I ,  and 
11. 
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deriving Equation 9). Coefficients of variation in annual 
growth rate, e‘, are illustrated as functions of sample size in 
Fig. 5. 

DISCUSSION 

Results indicate that even under the most optimistic 
scenario, extremely large sample sizes are required to 
accurately estimate population growth rates. Even with a 
sample size of 4,000 females, biologically implausibly high 
growth rates were frequently estimated. These results were 
based on the assumption that random sampling was the 
only source of error. Many other important sources of 
variation were ignored. If those other sources of variation 
were included, the situation could only he worse. It is 
unlikely that unbiased samples could be collected from a 
sufficient number of individuals for this approach to be 
useful in managing marine mammal populations. 

Although coefficients of variation of less than 10% are 
typically considered good in ecological studies, values less 
than 1% are probably necessary for estimates of 
population growth to be useful in the management of 
harvests. The reason for this is that it is the annual 
increment (er-Z), not e‘, that is of interest in determining 
harvest rates. When population growth is small, a CV of 
1% in e’ can be equivalent to a CV of 100% in er-Z. This 
level of accuracy would provide little useful information 
and clearly should not be used as a sole basis for 
determining acceptable harvest rates. 

The sample sizes required to estimate population growth 
rates to within 1% were outside the range of values that I 
considered. It is easy to see from Fig. 5 that the required 
sample would be much greater than 16,000 females. There 
are many practical reasons why such large samples may be 
unobtainable. It should be remembered that in taking such 
a sample, it is likely that an equal number of males would 
have to be caught and examined (i.e. a total sample of 
much greater than 30,000 animals). The cost of obtaining 
such a large sample using unbiased collection methods 
would be staggering. Furthermore, the method is very 
sensitive to the ratio of reproductive females to females in 
year-class 1. Because juveniles usually segregate from 
adults. an unbiased estimate of this ratio may not be 
obtainable at any cost. 

Although based on Fig. 5, the utility of demographic 
estimates of population growth rate already looks dismal, it 
is important to consider the sources of variation that were 
ignored in the simulation. Perhaps the biggest source of 
error will come from biases in sampling. In previous 
attempts at obtaining unbiased samples of minke whale 
populations, Kishino et al. (1989) found that different age 
groups segregated into different characteristic group sizes 
and in different geographic areas. Random sampling of 
groups of different size is difficult because the ability to find 
groups varies with group size. Correction for the 
geographic segregation of age groups is difficult because it 
requires knowledge of the density of animals in each 
geographic stratum. Assuming that all these potential 
biases can be corrected, the correction process itself will 
introduce an additional source of sampling variance. 
Errors in the estimation of age and reproductive status are 
unavoidable. Assuming that this type of error can be 
measured, correction will again add additional sources of 
variation. Yet another problem is that populations may not 
be in stable age distribution. A long time series of samples 
would he required just to determine if this important 
assumption has been met. 
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The direct estimation of population growth rate is not 
the only use of demographic models. Demographic models 
have already been useful in estimating the upper limits on 
population growth of marine mammals (Reilly and 
Barlow, 1986; Barlow and Boveng, 1991). Also, the 
method of using stable age distributions is not the only 
method of estimating demographic parameters. Buckland 
(1990) and Barlow (1990) investigate alternative methods 
based on longitudinal studies of individually identifiable 
whales. The point of this study is not to denigrate the 
general value of demographic data. My main point is that 
one should have realistic ideas about what sample sizes are 
needed to estimate population growth rates using 
demographic models. Seldom, however, have the sample 
size requirements of demographic models for any purpose 
been tested before researchers go out and start collecting 
data. Data are collected in the optimistic anticipation that 
they will be useful when plugged into a demographic 
model. Often a simulation study such as the one presented 
here would have revealed the task was hopeless with any 
reasonable sample size. Tremendous expense could be 
saved, and we would not deceive ourselves into thinking 
that we were collecting all the information needed to make 
intelligent management decisions. Proper experimental 
design with a full analysis of all potential sources of error 
should be standard procedure .before embarking on any 
large-scale research project. 
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