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MODELS FOR POWER OF DETECTING 

AND HATFIELD 
TRENDS-A REPLY TO LINK 

Tim Gerrodettel 

Link and Hatfield (1 990) have criticized the analysis 
of Gerrodette (1 987), which investigated the statistical 
power of detecting linear or exponential trends in eco- 
logical data. The analysis was not limited to detecting 
temporal changes in the size of animal populations, 
although to my knowledge it has only been applied in 
that way; it could also be used, for example, in de- 
signing sampling along spatial gradients. Link and Hat- 
field concluded that the power of detecting a trend had 
been overestimated by Gerrodette’s methods. How- 
ever, Link and Hatfield‘s comments do  not invalidate 
the original analysis; rather, they suggest an extension 
of it. Here I reply to the main points raised by Link 
and Hatfield, and extend the original results slightly by 
considering other approaches that relax some of the 
restrictive assumptions of the 1987 paper. 

(1) Selection of proper statistical distribution. 
Gerrodette (1 987) employed the standard normal dis- 
tribution (referred to here as the z distribution) to es- 
timate the power of linear regression analysis to detect 
trends. Link and Hatfield (1990) argued that the t dis- 
tribution would be more appropriate to compute power 
for small sample sizes. The difference arises from con- 
sidering different statistical models. Link and Hatfield 
considered the classical regression problem, where the 
investigator has simply n data points. With no infor- 
mation about the variance of each point, the error vari- 
ance must be estimated from the deviations of the 
observed points from the regression line (i.e., from the 
residual sum of squares). Because a slope and intercept 
have been computed from the data already, there re- 
main n - 2 degrees of freedom (do for estimating the 
variance. The measurement of temporal or spatial gra- 
dients in ecology may often involve small n (5-1 0, say), 
and this means that the t distribution should be used. 

In many ecological applications, however, the de- 
pendent or response variable (abundance A, in this case) 
is not a simple, easily measured quantity. Gerrodette 
(1987) considered, but did not clearly distinguish, a 
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more complex situation in which estimates of A, re- 
sulted from an extended sampling effort, so that esti- 
mates of A, and also var(A,) would be made at  each of 
n points. For example, a program to monitor popu- 
lation size, where estimates ofA, and var(A,) come from 
annual surveys in year i, would typically produce data 
of this kind. The df for significance testing may not be 
clearly defined in this situation, but with reasonably 
large sampling effort, we may consider that the var(A,) 
have been estimated with “1arge”df. This leads to using 
the z distribution. 

Intermediate cases occur if there are “simple” esti- 
mates (Le., with no associated variance estimates) but 
with replication or near replication at  each “point.” 
With k true replicates at each of n “points,” there are 
n -- 2 df to test lack-of-fit and n(k - 1) df to estimate 
true error. If these can be pooled, a total of kn - 2 df 
can be used to estimate variance. Similar considera- 
tions apply even if there are not true replicates, but the 
data can be arranged in n groups of near replicates (not 
necessarily equal in size) based on values of the in- 
dependent variable; in such a case there are effectively 
only n “points” available for fitting the regression line, 
but a possibly much larger number of values for esti- 
mating the error variance. 

The general issue is that the degrees of freedom to 
be used in testing the significance of a regression line 
are not always simply n - 2. Determination of the 
appropriate df, and hence whether the t or z distri- 
bution should be used to estimate power, depends on 
the nature of the data. One may argue that since the t 
approaches the z distribution for large df, the t distri- 
bution could be used in all cases. In principle this is 
correct, but there are important practical reasons for 
using the z distribution when it is suitable. Compu- 
tational routines are widely available. Indeed, because 
the z distribution is readily tabled, it is possible to solve 
many problems, at least approximately, with just a 
hand calculator. In the original paper (Gerrodette 1987), 
I attempted to emphasize this practical application. 
The probability that a trend will be detected, given that 
it is present, is a calculation so infrequently considered 
that even “quick and dirty” estimates of power will 
show that many proposed experimental designs have 
unacceptably low power. 

Calculations of power using the t distribution are 
slightly more involved. For a t test at the 01 significance 
level with df degrees of freedom, the power ofthe test is 

Prlnct(df,d) < t,,dd 

Pr{nct(df,Q > tl-,,dfi 

for 6 < 0, 

for 6 > 0, and 
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Pr{nct(df,b) t,,,.,A + Pr{nct(df,b) > t ,  -a,2.df} 

in the two-sided case, where 6 is the noncentrality pa- 
rameter of the noncentral t distribution nct. Unfortu- 
nately, Link and Hatfield (1990) tried to use the central 
t distribution to compute power, and thus incorrectly 
concluded that power could only be estimated by Mon- 
te Carlo simulation. Tables of the noncentral t distri- 
bution are available (Resnikoff and Lieberman 1957, 
Owen 1965, Park 1972), but the function is more easily 
implemented by computer routines in IMSL (function 
TNDF), SAS (function PROBT), and some specialized 
programs for computing power (Goldstein 1989). 
In the present case, the noncentrality parameter b is 

equal to 

where b is the true slope of the regression line. Note the 
similarity of this formula with the usual test statistic for the 
regression line 

6 T = - .  
s6 

The test statistic T, however, uses estimates for the 
slope of the regression line and its standard deviation 
derived from the data. A calculation of power, on the 
other hand, is conditional on specified population val- 
ues, not sample estimates, a point sometimes confused. 

Note also that 6 as defined above is a dimensionless 
number that measures the difference of the slope of the 
regression line from the null hypothesis H,: b = 0 in 
standardized units. For this reason, b can be thought 
of as a measure of the strength of some effect one is 
trying to detect through the regression analysis, Le., an 
effect size index (Cohen 1988). 

To sum up, using the z distribution to calculate pow- 
er is a valid approach if the number of df is effectively 
“large.” If the number of df is “small,” particularly in 
the classical regression case with n - 2 df, the t dis- 
tribution will provide more accurate estimates of pow- 
er. Because t values are larger than corresponding z 
values for any finite df, calculations of power based on 
the t distribution will always be lower than those based 
on the z distribution. Similarly, calculations based on 
the t distribution will indicate higher rates of change 
needed to be detectable, as well as larger sample sizes 
and smaller coefficients of variation needed to detect 
a given rate of change. The numerical difference be- 
tween calculations of power using the z and t distri- 
butions may or may not be important, depending on 
several factors in addition to df (factors discussed in 
Gerrodette 1987). A specific example is shown in Fig. 
1 with n = 10, a = .05, for the linear model with the 
coefficient of variation (cv) proportional to the inverse 
of the square root of abundance (see Gerrodette 1987), 
with power plotted as a function of the rate of change. 
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RATE OF CHANGE 
FIG. 1. Power of linear regression as a function of r, the 

rate ofchange, estimated by analytic formula and Monte Carlo 
simulation, and based on either the z or t distribution. Cal- 
culations are based on the linear model with cv 0: A - ” ,  cv, 
= 0.2, n = 10, and a = .05, two-tailed (cf. Gerrodette 1987). 
The simulation results are so close to the analytic results that 
they are difficult to distinguish. Error bars show 95% binomial 
confidence intervals for 5000 simulations. 

(2) Accuracy of analytic results. The models con- 
sidered in Gerrodette (1 987) involved violations, to 
various degrees, of the normal and homoscedastic as- 
sumptions of linear regression. These violations were 
explicitly recognized in the original paper. Because of 
such violations, the formulae presented did not com- 
pute power exactly, but only estimated, or approxi- 
mated, power. Link and Hatfield (1990) have con- 
firmed this, showing that the formulae are not exact. 
The question remains, however, whether the approx- 
imations are sufficiently accurate to be useful in prac- 
tice in an experimental design context. Both simula- 
tions (discussed in the next paragraph) and analytic 
comparison (Appendix) show that they are. 

Link and Hatfield (1990) claimed that analytic es- 
timates of power for the models discussed in Gerro- 
dette (1987), even if based on the t distribution, were 
invalid, and they recommended Monte Carlo simu- 
lations. However, Link and Hatfield‘s calculations of 
power were invalid because they were based on the 
central t distribution, rather than the noncentral t, as 
noted in the previous section. I used simulations to 
verify the original analytic results, but did not report 
the simulations at that time. Simulation results using 
either the z or t distribution generally agree with an- 
alytic formulae within the uncertainty of the Monte 
Carlo estimator (Fig. 1) .  Data for each run ofthe Monte 
Carlo simulations were randomly drawn from normal 
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distributions with means Ai and variances var(A,) as 
given in Gerrodette (1987). Analytic values of power 
in Fig. 1 were computed with either the z or t distri- 
bution functions using d = b/u,, where b and u, were 
computed from equations in Gerrodette (1987). The 
close agreement of the analytic formulae with the sim- 
ulations, in spite of known violations of assumptions 
of the regression model, is probably due to two factors: 
linear regression is a robust procedure, and the change 
in abundance is small (on a relative basis) in typical 
trend problems. 

Therefore, the supposed overestimation of power that 
Link and Hatfield (1990) discussed is not due to any 
problem with the analysis presented in Gerrodette 
(1987), but relates entirely to a different model based 
on the t distribution. Link and Hatfield’s simulation 
results (“actual” in their figures) are indistinguishable 
from the results, simulated or analytic, based on the t 
distribution properly computed (compare Fig. 1 with 
their Fig. 1). Furthermore, their simulated estimate of 
power for the sea otter (Enhydra lutris) example (Ger- 
rodette 1987: 1368-1370) is virtually identical to the 
analytic calculation of power using the t distribution 
(0.424 vs. 0.420). Monte Carlo simulation is certainly 
a useful tool, and could profitably be used in situations 
less tractable than the simple models of my original 
paper. For linear (additive) and exponential (multipli- 
cative) models ofchange with equally spaced sampling, 
however, the analytic approximations are quite ade- 
quate, and simulations are unnecessary. 

The analysis of Ger- 
rodette (1987) was based on unweighted linear regres- 
sion with equal sampling effort at equally spaced points. 
These are fairly restrictive assumptions. More gener- 
ally, the slope and variance of a weighted regression 
line, using the inverse of the point variances V ,  = var(A,) 
as weights, are 

(3) Moregeneralapproaches. 

h =  ” 

z 6 z - (z $ 
and 

where all sums are taken from i = 1, . . . , n. These expressions 
follow directly from standard equations for weighted regres- 
sions (Draper and Smith 198 1). Then we may estimate power 
for arbitrary x, and V, as 

for a decreasing trend (b < 0), as 

for an increasing trend (b > 0), and as 

1 - B = a(,,, - t) + *(; - .,-*,.) 

for a trend in either direction. If, as before, we assume 
that the variance at each point is V,, we may take u2 
= 1 (Le., it is not estimated), and let be the distri- 
bution function for the standard normal distribution. 
If the V,  are treated as weighting factors, we estimate 
the common error variance u2 from the residuals about 
the regression, replace z, by t , , , ,  and let be the dis- 
tribution function for the noncentral t distribution. 

Finally, to test for simple patterns in the A,, we may 
dispense with regression entirely and use the method 
of linear contrasts, as in-ANOVA. Given independent 
estimates ofabundance A,, i = 1, . . . , n. with associated 
variances V,, we can test for a linear trend by choosing 
contrast coefficients c, proportional to x, - X, com- 
puting 

and comparing Z to a standard normal distribution. Again, 
this procedure implicitly assumes that the V,  have been es- 
timated with “large” dE with different assumptions the test 
could be based on the t distribution. Power for this test is 
computed in a manner similar to the above, e.g., as 

for a one-sided test for an increasing trend, where A, 
and V ,  are generated by the alternative hypothesis for 
which power is being computed. Calculations of power 
by this method are identical to the results in Gerrodette 
(1987), except for slight differences in some cases re- 
sulting from using the variances V ,  directly rather than 
using the mean variance as an approximation (see Ap- 
pendix). However, the contrast method is considerably 
more flexible: it allows the x, to be unequally spaced 
(for example, if surveys were not conducted at equal 
intervals), it allows the V ,  to follow any pattern (for 
example, if sampling effort or survey methods changed), 
and it allows other, nonlinear patterns in the A, to be 
tested by choosing other coefficients c,, subject to the 
condition that 2 c, = 0. 

Reporting of statistical power is widely neglected in 
ecological work (Peterman 1990). Although not a dif- 
ficult concept, power is unfamiliar to many ecologists, 
and its calculation and use are easily misunderstood. 
For example, Link and Hatfield (1990) correctly point 
out that the formula for the confidence interval and 
standard error given on p. 1368 of Gerrodette (1987) 
is in error. The formula should apply to b, the estimated 
slope of the regression line, not r, the rate of change, 
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and I would add that the formula is out of place in any 
case because it does not directly refer to  power. How- 
ever, Link and Hatfield go on to  provide methods for 
estimating r. Their procedure gives an  estimate of r for 
a particular set of data, but the answer is irrelevant for 
a power analysis. This is most easily seen by noting 
that the equations they give for r do not involve either 
01 or 0, the probabilities of statistical error of main 
interest in a power analysis. Link and Hatfield have 
answered the question: “What is the best estimate of 
r, given the data at hand?” However, the question of 
interest for a power analysis is: “What is the minimum 
r that will give a significant result, with controlled Type 
1 and 2 errors, if the experiment were to  be camed out 
under the stated conditions?’ 
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APPENDIX 
Under the models proposed by Gerrodette (1 987), Link and 

Hatfield (1 990, Appendix) gave an exact expression for the 
error variance u* (which they labelled ub2) as 

This is an average ofthe V,  weighted by the squared deviations 
of the i’s from their mean. Because of the symmetrical nature 
of the series (i - Q2, i = I ,  . . . , n, and the regular pattern of 
V,  (V,  a A:, q = 1, 2, 3), the arithmetic mean will equal the 
weighted mean for q = 1 with the linear model and for q = 
2 with the exponential model, and will differ only slightly for 
other combinations of q and model with n in the small-to- 
moderate range under consideration. 

u2 = 3(n + 1)2Z - 12(n + l ) Z i K  + 1 2 Z i 2 V ,  
n(n + l)(n - I )  ’ 

where all sums are taken from 1 to n. Gerrodette (1987) 
approximated the same quantity (which he labelled u,~:) as 
the simple arithmetic average of the variances Z V,/n. Link 
and Hatfield‘s expression can be written as 

Z i z V , - ( n +  I ) Z i V , +  ( n ;  - I y Z  v, 




