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ABSTRACT

Hatchery-based enhancement cf depleted marine fish

populations often is guided by irxuition more than by analysis.

For example, so-called "carrying capacity11 (i.e., the abundance

of a natural population) is often thought to be an appropriate

upper limit to enhancement efforts. Hatchery production is

incremental to the status quo population, and therefore can be

treated as a marginal value problem. Examination of the logistic

model and related population models shows that knowledge of

carrying capacity provides little guidance to optimization of

enhancement. If the abundance of the receiving population is

above the MSY level (one-half carrying capacity in the logistic

model), the marginal value of hatchery-produced fish is less than

unity. Even at carrying capacity this discount is not severe,

each hatchery-produced fish being worth exp(-r) or approximately

1-r fish, where r is the intrinsic rate of increase.
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INTRODUCTION

Artificial enhancement of fish stocks by means of hatcheries

is a proven though sometimes controversial tool of salmon and

freshwater fishery management• In marine ecosystems hatchery-

based attempts at stock enhancement also have a long history, but

the tool cannot be considered proven. In most cases there has

been little evidence that any benefit has been achieved (MacCall,

1989; Solemdal, 1984). Nonetheless, abundances of many natural

marine fish stocks have been fished to low levels, and marine

hatcheries are gaining popularity as an optimistic solution that

may be politically preferable to closing fisheries. Whether

marine fish hatcheries are economically worthwhile is subject to

analysis (e.g., Hobbs et al., 1990). However, in cases where

marine hatcheries are actually being constructed, hatchery

management decisions become conditional on the assumption that

they are in some sense effective. The important operational

question is no longer whether to produce fish, but rather how

many fish to produce.

There are few, if any, established demographic or ecological

criteria for optimizing hatchery output. The concept of

"carrying capacity" is sometimes invoked as an ad-hoc but

seemingly reasonable limit to artificial enhancement. This

criterion is appealing in that it intuitively relates to a

presumed natural level of (or limit to) fish abundance, and that

it would therefore appear to be undesirable (or impossible) to



exceed that level. Unfortunately, that intuition is not

supported by formal analysis of population growth dynamics, and

"carrying capacity" may not provide a definitive reference point

in management of efforts toward artificial enhancement.

THE LOGISTIC MODEL

The term "carrying capacity" originally descibes a parameter

in the logistic population growth model arising from the

differential equation,

(1) dN/dt = rN(K-N)/K, where

N is abundance,

t is time,

r is a maximum per capita rate of increase, and

K is an asymptotic limit to abundance over time, also called

the "carrying capacity."

Properties of this curve are well-known: Population growth or

production (dN/dt) has a maximum (often associated with Maximum

Sustainable Yield, MSY) at N=K/2, and falls to zero at N=0 and

N=K* Population growth is negative at abundances above "carrying

capacity" (N>K).

Equation (1) has a classic solution describing the

trajectory of population growth over time (Figure 1). One



parametrization of the solution, is given by Nisbet and Gurney

(1983),

(2) Nt = K/tl+N^CK-NJexpf-rt) ], where

Nt is the abundance at time t, and

No is the initial abundance at time t=0.

The asymptotic property of "carrying capacity" is easily seen in

Figure 1. Importantly, Equation (2) describes the trajectory of

population growth for initial population sizes above "carrying

capacity" (NO>K) as well as the more usually considered initial

condition of NO<K. Thus in the logistic growth model, "carrying

capacity" is an upper limit to population size only if the

initial condition is NO<K. If initial abundance exceeds K, then

the population size declines, and K is an asymptotic lower limit.

Another kind of solution to the logistic model of Equation

(1) is a function that describes Nt+1 as a function of Nt (known

generically as a Ricatti function). This function can be derived

algebraically from Equation (2) by writing a second equation for

Nl+1, solving each equation for No, equating the two, and solving

the resulting equation for Nt+1 as a function of Nt, giving

(3) Nt+1 = Ntexp(r)/[1+Nt(exp(r)-1)/K]



This equation is of the form y=Ax/(l+Bx) and describes a

hyperbola, i.e., a shape similar to a Beverton-Holt stock-

recruitment relationship (Figure 2). For values of Nt<K, the

population grows, so Nt+1>Nt. For values of Nt>K, the population

declines, so Nt+1<Nt. As expected, Nt+1=Nt if Nt=K. Like Equation

(2), Equation (3) shows that abundance approaches K whether

initial values are above or below.

From the viewpoint of hatchery production, we would like to

know the effect on the next year's abundance of a marginal

increment in this year's abundance such as would result from

release of hatchery-produced fish. This corresponds to the slope

of the curve in Figure 2, and is given by the first derivative of

Equation (3),

(4) dNt+1/dNt = exp(r)/[l+Nt(exp(r)-l)/K]2

which is shown in Figure 3. At very low initial abundance, the

marginal population increase resulting from release of a unit

quantity of hatchery fish (dNt+1/dNt) is exp(r) , which is greater

than 1 because r>0 and Equation (1) assumes the added fish

immediately achieve functional equivalence to those already in

the population. The marginal increase falls to unity (i.e.,

dNl+1/dNt=l) at Nt very near K/2, where Equation (1) exhibits

maximum surplus production. In the Ricatti equation maximum

surplus productivion does not occur exactly at Nt=K/2, but rather



at Nt slightly below K/2 because Equation (3) incorporates an

entire year of growth (MacCall, 1980). At Nt=K, the marginal

rate falls to dNt+1/dNt=exp(-r) , and continues to fall for Nt>K.

It is interesting to note that Equation (3) does have an

asymptotic upper limit to Nt+1. This limit is K/ (1-exp (-r)) , or

approximately K/r. In some ways, this limit corresponds more

closely to the intuitive concept of "carrying capacity" as being

the largest population size that can be achieved♦ Importantly,

this limit is much larger than K. For example, if r=0.1

indicating that the maximum population growth rate would be about

10% per year, the upper limit to abundance is approximately 10K.

The logistic model does provide some guidance to hatchery

optimization, but not of the sort originally envisioned by the

use of "carrying capacity" as a limit. Assuming full viability,

hatchery production is most effective when the abundance of the

receiving population is below K/2. At population sizes above

K/2, the marginal value of hatchery-produced fish is less than

unity, or in other words, the introduced fish are subject to a

discount. However, for low to moderate (i.e., typical) values of

r, that discount is not severe, and other cost-benefit

coniderations can readily compensate. From the viewpoint of this

very simple bioeconomic model, hatchery production potentially

can be advantageous at abundances substantially in excess of

"carrying capacity."



OTHER POPULATION MODELS

The logistic model is one of the simplest population models

that can be applied to this problem. It is appropriate to

consider how the results would change if a more complicated model

were considered. The logistic model is a member of a

differential equation family of growth models described by the

Richards growth equation (Richards, 1959) and the generalized

production model (Pella and Tomlinson, 1969),

(5) dN/dt = rN[(K-N)/K]m m>0/ where

m is an exponent controlling skewness of the population

growth curve.

The logistic model corresponds to the case of m=l. If m>l,

the abundance producing MSY (NMSY) is larger than K/2, and

population growth rate drops sharply at higher levels of

abundance. Because of this, the upper limit of Nt+1 is near K,

even if r is small. This shape of population growth curve is

often found in populations of whales and other large mammals

(Fowler, 1987) that are unlikely candidates for artificial

enhancement. In contrast, fish populations (i.e., typical

candidates for hatchery production) often have a NMSY that is

smaller than K/2, corresponding to the case of 0<m<l. Here the

population growth rate declines more slowly as abundance



increases, and the upper limit of Nt+1 is consequently even larger

than would be predicted by the logistic model.

A popular alternative to differential equations is

difference equations, where we consider an annual rather than

instantaneous change in population size, i.e., AN/At (e.g., where

At is one year) rather than dN/dt. Theoretical population

biology has explored the chaotic population behavior arising from

high values of r in a difference equation analogous to the

logistic model (May, 1975),

(6) AN/At = rN(K-N)/K

where r is now a rate of increase associated with time interval

At, in this case, annual. The equivalent Ricatti equation is

simply

(7) Nl+1 = Nt + rNt(K-Nt)/K.

For the low values of r that are characteristic of fishes,

difference Equation (6) does not exhibit peculiar properties, and

behaves indistinguishably from differential Equation (1) in the

range 0<N<K (Figure 2). The difference equation also has a

maximum value of Nt+1, but it is not asymptotic and has a peak at

Nt=K(l+r) /2r; Nl+1 declines at higher values of Nt. Except for

very large values of Nt, the conclusions drawn from the
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differential equation model are similar to those for the

difference equation model.

More realistic population models would incorporate age

structure, including a delay between when the hatchery fish are

released and when those fish become reproductive. Unless there

is a strong mechanism of population regulation (e.g., a limited

number of recruitment sites that become saturated at high

abundance of pre-recruits) operating during that period, it is

unlikely that the previous model results will be invalidated.

CONCLUSION

In conclusion, knowledge of "carrying capacity" provides

little guidance to optimizing output of fish hatcheries. There

may be a theoretical upper limit to stock abundance under

artificial enhancement, but it is much larger than the natural

equilibrium level or "carrying capacity." The marginal value of

hatchery-produced fish declines slowly with the size of the

receiving population, and remains high at and even above

"carrying capacity." However "carrying capacity" may still be

an appropriate target for the purpose of preserving ecosystem

functioning (predator-prey relationships, etc.), but ecological

aspects are beyond the scope of this discussion. Hatchery-

related efforts to estimate "carrying capacity" with precision

may be misguided; it is likely that a good guess may suffice for

most purposes.
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FIGURES:

1. Population growth characteristic of the logistic model. Lower

curve is for NO<K; upper curve is for NO>K. (Parameter values:

K=l, r=0.2/yr)

2. Ricatti curves for the differential (solid line) and

difference (dotted line) forms of the logistic model. Parameter

values as in Figure 1.

3. Slope of the Ricatti curves in Figure 2. Parameter values as

in Figure 1.
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