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INTRODUCTION 
A common problem in basic ecological studies and 

applied environmental work is to determine whether 
a particular population, community, or other object of 
interest has changed after a perturbation to the envi- 
ronment. The answer is often obtained by conducting 
an experiment, consisting of a number of replicates, 
each randomly assigned to one of several treatments, 
and then applying standard statistical analyses. 

However, replication with randomly assigned treat- 
ments is not always possible. In assessing the effects of 
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Abstract. We address the task of determining the effects, on mean popidation density 
or other parameters, of an unreplicated perturbation, such as arises in environmental 
assessments and some ecosystem-level experiments. Our context is the &fore-After-Con- 
trol-Impact-Pairs design (BACIP): on several dates Before and After the perturbation, 
samples are collected simultaneously at both the Impact site and a nearby “Control.” 

One approach is to test whether the mean of the Impact-Control difference has changed 
from Before to After the perturbation. If a conventional test is used, checks of its as- 
sumptions are an important and messy part of the analysis, since BACIP data do not 
necessarily satisfy them. It has been suggested that these checks are not needed for ran- 
domization tests, because they are insensitive to some of these assumptions and can be 
adjusted to allow for others. A major aim of this paper is to refute this suggestion: there 
is no panacea for the difficult and messy technical problems in the analysis of data from 
assessments or unreplicated experiments. 

We compare the randomization t test with the standard t test and the modified (Welch- 
Satterthwaite-Aspin) t test, which allows for unequal variances. We conclude that the 
randomization t test is less likely to yield valid inferences than is the Welch t test, because 
it requires identical distributions for small sample sizes and either equal variances or equal 
sample sizes for larger ones. The formal requirement of Normality is not crucial to the 
Welch t test. 

Both parametric and randomization tests require that time and location effects be 
additive and that Impact-Control differences on different dates be independent. These 
assumptions should be tested; if they are seriously wrong, alternative analyses are needed. 
This will often require a long time series of data. 

Finally, for assessing the importance of a perturbation, the P value of a hypothesis test 
is rarely as useful as an estimate of the size of the effect. Especially if effect size varies with 
time and conditions, flexible estimation methods with approximate answers are preferable 
to formally exact P values. 
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a particular power plant, we cannot randomly assign 
the location of the plant, or build more than one of 
them. Even in basic ecological work, although we can 
often randomly assign the perturbation to one or sev- 
eral of the experimental units, costs or the unavaila- 
bility of replicates may make replication infeasible, 
particularly in whole ecosystem manipulations (Car- 
penter 1989, 1990, Carpenter et al. 1989). 
In general, the major goal of a study of an unrepli- 

cated perturbation is to determine whether the state of 
the perturbed system differs significantly from what it 
would have been in the absence of the perturbation. 
Usually the “state” of the system is the mean value of 
some univariate or multivariate quantity, such as the 
population size, average size, or life history parameters 

- -  I_ 
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of one or more species. We will assume the quantity 
of interest is univariate, e.g., the population abundance 
of a single species in a fixed area, although many of 
the general points we make also apply in the multi- 
variate case. 

Because the state of the system in the absence of the 
effect cannot be observed after the disturbance, we need 
to estimate what it would have been and compare the 
estimate statistically with the observed (perturbed) 
condition. The Before-After-Control-Impact-Pairs 
(BACIP) design (Stewart-Oaten et al. 1986) accom- 
plishes this by collecting samples at both the Impact 
site and a nearby “Control” site. These samples are 
paired, in the sense that the Control and Impact sites 
are sampled simultaneously (as nearly as possible). 
Replication comes from collecting such paired samples 
a t  a number of times (dates) both Before and After the 
perturbation. 

Each observed difference (e.g., in estimated popu- 
lation density) between the Impact and Control sites 
during the Before period is taken as an estimate of the 
mean difference that would have existed in the After 
period without the perturbation. The observed Im- 
pact-Control differences, one for each sample date, 
constitute a time series; we compare the differences 
from the Before period to those from the After period 
a change in the mean difference indicates that the sys- 
tem at the Impact site has undergone a change relative 
to  the Control site. The general process of estimating 
a change in a parameter, following a perturbation, has 
been termed “intervention analysis” (Box and Tiao 
1975). 

The BACIP design allows for natural differences be- 
tween the Control and Impact locations, and for changes 
from the Before to the After period that influence both 
sites the same way (e.g., resulting from a large-scale 
change coincident with the putative local impact). Hy- 
pothetical examples are shown in Fig. 1. 

But the design does not ensure that the assumptions 
of standard 2-sample tests, for comparing the “Before” 
set of differences to the “After” set, are satisfied. For 
the two-sample t test, the assumptions are: 

1) Additivity: Time and location (site) effects are 
additive (i.e., in the absence of the perturbation, the 
expected Impact-Control difference is the same for all 
dates). 

2) Independence: Observed differences from bffer- 
ent dates are independent. 

3) Identical Normal Distributions: The distribution 
of the deviation (observed difference-mean difference) 
is (a) the same for each time within a period, (b) the 
same in the After period as in the Before period, (c) 
Normal. 

An adequate analysis must deal with these assump- 
tions, either by supporting them (by arguing for their 
a priori plausibility and/or carrying out tests or other 
diagnostic procedures) or by showing that the analysis 
is not sensitive to their violation. This is a messy and 

complicated part of the analysis, which rarely can dis- 
pel doubt altogether. Thus tests needing fewer or more 
plausible assumptions could be valuable. 

Recently, Carpenter et al. (1989) proposed “random- 
ized intervention analysis” (RIA), which employs a 
BACIP design but uses a randomization test instead 
of a t test to decide whether there has been a change 
in the difference between the impact and control sites. 
They argue that a “distinct advantage” of RIA is that 
non-Normality does not affect the test results, and im- 
ply that this solves problems of temporal trends and 
time lags. They add that RIA is not affected by het- 
erogeneous variances “unlike . . . the t test,” and that 
the effects of serial correlation will often not lead to 
equivocal results. 

We discuss assumptions (l), (2),  and (3) in reverse 
order, with special reference to RIA, the standard t 
test, and the Welch (or Welch-Satterthwaite-Aspin) 
modification of the t test for unequal variances (Sne- 
decor and Cochran 1980:97). We argue: (a) RIA’S ro- 
bustness to non-Normality offers little advantage: the 
two parametric t tests are also little affected by non- 
Normality unless sample sizes are very small; (b) the 
Welch t test is approximately valid when the Before 
and After distributions have different variances; the 
other two tests are not, unless sample sizes are nearly 
equal, (c) the Welch t test is approximately valid when 
the distributions vary within a period; the others are 
not, although they are approximately valid if the av- 
erage Before variance is nearly the same as the average 
After variance; (d) if the successive differences are not 
independent, none of the tests is valid they may be 
approximately valid if the dependence is weak (and the 
other assumptions hold); (e) if time and location effects 
are not additive, none of the tests is valid; they may 
be approximately valid if the effects are approximately 
additive. 

We also discuss the general application of BACIP. 
We argue (1) that hypothesis testing, either classical or 
Bayesian, is less important than estimation of the ef- 
fect’s size and ecological assessment of its importance, 
and (2) that the appropriate statistical methods will 
often be unavoidably messy: effects may vary with en- 
vironmental conditions that can be delineated only 
roughly, and estimates will depend on models, which 
are based partly on intuition, guesswork, and mathe- 
matical convenience, and must be supported by bio- 
logical arguments and formal and informal diagnostic 
checks. 
In what follows, we assume there are n, Before dates 

and n, After dates: on the 2‘” Before date, the estimated 
densities were ZB, at the Impact site and C,, at the 
Control, for a difference of DE,. Similarly we have ZA,, 
CAJ, and DAJ on the ]Ih After date. The average differ- 
ences are DE and D, . The randomization test takes 
the (n,  + n,) values (the D , ’ s  and DA,’s) as given but, 
under the null hypothesis, their nssignment to “Before” 
or “After” is assumed to be random. The P value for 



1398 ALLAN STEWART-OATEN ET AL. Ecology, Vol. 73, No. 4 

0-Olmpoct B 
*-*Control 

A 
Before After Before After 

I I . I I 

Time Time 

FIG. 1. Hypothetical examples of data collected using the Before-After-Control-Impact-Pairs (BACIP) design. (A) A case 
where average abundance is greater in the Control area than in the Impact area and where average abundance falls from 
Before to After. Note that the average difference between Impact and Control does not change significantly from Before to 
After (bottom panel), indicating that there has been no effect of the perturbation. (B) For comparison, a case where the 
perturbation has reduced the abundance of the species at the Impact site, leading to a decline in the difference from Before 
to After (bottom panel). 

the test is then the fraction of the (n, + n,)!/(n,!n,!) 
possible assignments that give a larger value of the test 
statistic than was actually observed (Pratt and Gibbons 
1981: Chapter 6). The randomization t test uses 
DB - D,,. (or an equivalent) as the test statistic. 

IDENTICAL N O W  DISTPJBLTIONS 
It is likely that one or more of these assumptions 

will fail. Many biological observations are non-Nor- 
mal. Even without perturbation effects, distributions 
may well change between periods (Before and After), 
e.g., due to long-term weather patterns. They may also 
change within periods, e.g., the variance of an estimate 
of population density may be greater in summer than 
in winter. 

Parametric t tests 
Non-normaIity. -Strong evidence that the standard 

and Welch t tests are little affected by non-Normality 
comes from studies of both large and small sample 
sizes. 

For large sample sizes, it is a direct result of the 
Central Limit Theorem: the usual t statistics are all 
approximately Normal, provided only that the parent 
distributions have finite variances. 

For small sample sizes, there are a few analytical 

studies (Efron 1969, Tan 1982) providing evidence of 
the t test’s robustness to non-Normality, but the main 
evidence comes from simulations, e.g., Yuen and Dix- 
on (1973), Yuen (1974), Murphy (1976), Posten (1978, 
1979), Tiku (1 980), Gans (1 98 l), Tiku and SIX@ (1982). 
Several others are reviewed by Glass et al. (1972). 

A serious problem arises only from strong skewness. 
If D, and D,, have different skewness, or have the 
same (non-zero) skewness but different variances, then 
DB - D,, , the numerator of the t statistics, will have 
a skewed distribution. But such skewness is unlikely 
to be strong. Since I,, and C,, are estimates of  similar 
things (e.g., population densities) based on similar sam- 
pling effort, they are likely to have similar skewness 
and variance: most of the skewness should cancel in 
the difference, DE, = IBI - C,. More skewness is lost 
by averaging to get DB , and still more in the difference, 
DB - D, , if these are similarly skewed, as is likely. 
If histograms of the D , ’ s  and DA,’s show pronounced 
skewness that is Likely to persist through averaging and 
differencing, a modification of the Welch t test (Cressie 
and Whitford 1986) seems to solve the problem. 

Distributions change between periods. --This creates 
little problem unless both variances and sample sizes 
are unequal, in which case the Welch t test is approx- 
imately valid, but the standard t test is not. The two 
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t statistics have the same numerator, DE. - 0,. , which 
is approximately Normal by the Central Limit Theo- 
rem, except for the problem of skewness just described. 
Validity depends on the denominator, whose square 
should approximate the variance of D,  - DA., with a 
relative error that approaches 0 as sample size increas- 
es. 

The variance of D, - 0,. is S2 = uB2/n, + aA2/n,, 
where the u2’s are the true variances. For the Welch t 
test, the denominator is 

For the standard t test, the denominator can be writ- 
ten as 

S, = V[Md,2/nA + MAs,,2/nB]. 

The 9 ’ s  are the usual variance estimates and, for Z = 
A or B, 

M z  = (1 - l/nz)/[l - 2/(n, + n,,)]. 

As n, and n, approach 03, the s2’s approach the u2’s 
and the Mz’s approach 1. Thus Sw2 does approach S , 
but 

S: approaches sB2/n, + sA2/n, = R 2 S ,  

where R2 = (TUB2 + uA2)/(uB2 + ruA2) and r = n,/n,,. 
This shows that the Welch t test gives the correct 

level for large sample sizes; the simulations mentioned 
above verify this for moderate sample sizes. It also 
shows that, when its nominal level is a, the standard 
t test rejects the (true) null hypothesis that the Before 
mean is less than or equal to the After mean with 
probability approximately W - R z J ,  where is the 
standard N(0,l) cumulative distribution function and 
z, is the point for which W-zJ = a. If either the sample 
sizes or the variances are approximately equal, R = 1 
and the test is approximately valid. But if the smaller 
sample comes from the distribution with the larger 
variance, R < 1 and the test rejects more frequently 
than advertised. In the reverse case, it rejects less fie- 
quently. 

One option is to use a test of equality of variances 
to decide whether to use the standard or the Welch t 
test. Simulations by Gans (1981) indicate that this is 
inferior to direct use of the Welch t test. In particular, 
it rejects too frequently when R < 1 and one variance 
is about half the other. 

Dlstributions change within periods. -For this prob- 
lem, some general results are given for estimates of 
location by Stigler (1976), for one-sample t tests by 
Cressie (1982) and for two-sample r tests by Cressie 
and Whitford (1986). The main large sample results 
are similar to those just described. The numerator of 
both t tests, DB - D, , is approximately Normal. (There 
is a condition for this, roughly that the variances not 
be so dissimilar that most of the variability of D, or 
D, comes from a small subset of the observations; see 
Feller 1966:49 1 .) Its variance is u, 2 / n ,  + uA 2/n,, where 

u , . ~  = I: u,?/n, and u,: is the variance of the ith “Be- 
fore” difference. The Welch t test is approximately 
valid in general, because Sw2 approaches this variance. 
S,’ does so only if u, = u,, 2 ,  Le., the standard t test 
is valid for unequal sample sizes only if the average 
Before and Afier variances are the same. 

For moderate sample sizes, the Welch t test may be 
“liberal”: its true rejection probability may be slightly 
greater than the nominal value because its degrees of 
freedom are overestimated. The standard formula di- 
vides an estimate of 2{E[Sw2]}2  by an estimate of I+Yw2]. 
With heterogeneous variances, the latter estimate, sa4/ 
nB2(nB - 1) + sA4/nA2(n,, - I), is biased low: roughly, 
for Normal variables, sa4 approaches (a, 2 ) 2  instead of 
the desired Z uB,4/n, = (u, 2 ) 2  + V(oB2), where V(uB2) 
is the variance of the set uB12, . . (Cressie and 
Whitford 1986). But, since variances must be positive, 
V(uB2) is unlikely to be significantly larger than ( u , . ~ ) ~ ,  
which is overestimated by s,“, so the correct degrees 
of freedom are likely to be at least half the nominal 
value. If the nominal value is 30 or more, this error 
has little effect. Unfortunately, we know of no simu- 
lation studies of this case. 

Randomization tests 
The assumptions for randomization tests (which are 

sometimes called permutation tests) are usually satis- 
fied in experiments by the investigator’s deliberate ran- 
dom assignment of units to treatments. This is not 
possible in intervention analysis: one cannot randomly 
assign sampling times to “Before” and “After.” Instead 
it is assumed that “Nature” does the random assigning: 
under the null hypothesis, the “Before” and “After” 
observations are assumed to be independent draws from 
a common distribution. 

Thus all of the assumptions listed in the Introduction 
are required, except only assumption 3(c), Normality. 
The user of RIA must show either that these assump- 
tions hold or that RIA remains valid when they fail. 

The randomization test is nor valid for unequal var- 
iances. For large sample sizes, it is invalid in the same 
way, and to the same extent, as the standard t test 
discussed above. The limiting level and power of the 
randomization test are the same as those of the stan- 
dard t test. For equal variances, this result was proved 
by Hoeffding (1952), with the restriction that the orig- 
inal distributions have finite third absolute moments, 
in our notation, E I DE, I < w and E ID,, I < w, which 
is satisfied in almost all realistic cases. Romano (1990) 
proves it without requiring either equal variances or 
the third moment restriction. Our moderate sample 
(20 and 40) simulations with Normal variables agreed 
closely with these asymptotic results. One of us has 
also extended Hoeffding’s proof to the case where var- 
iances change within periods (A. Stewart-Oaten, un- 
published manuscript): Romano’s work suggests the 
third moment restriction is unnecessary here, too. Ro- 
mano also shows that the randomization test based on 
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medians is invalid for non-identical distributions, even 
for equal sample sizes, unless the Before and After 
probability densities at their medians are equal or sat- 
isfy an unlikely condition. 

For small sample sizes, it is easy to construct ex- 
amples for which the randomization t test is invalid 
for non-identical distributions, even when the vari- 
ances are the same. 

INDEPENDENCE 
Standard two-sample tests, including t tests and ran- 

domization tests (when these are based on randomiza- 
tion by “Nature” rather than by an experimenter), as- 
sume that the D , ’ s  and DA,’s are independent. 

In the assessment problem, the most likely violation 
is positive serial correlation: observations (DB,’s and/ 
or DA,’s) close in time may tend to be close in value. 
In t h i s  case, the variance of the average of the differ- 
ences, e.g., V(D, ), is no longer the variance of a single 
observation divided by the sample size, e.g., V(D,) /n, ,  
but is larger. If this is not allowed for, all these tests 
will reject true null hypotheses more frequently than 
advertised, because observed averages will be less pre- 
cise than they are assumed to be. 

The observed D,’s and DA,’s vary for two reasons. 
One is sampling error: the estimated Impact-Control 
difference at a given sampling time will not exactly 
equal the true difference at that time. But our concern 
is not with this “true difference,” which itself varies 
naturally over time: any particular Before and After 
values are almost certain to be different even if there 
is no perturbation effect. Our concern is with the mean 
of the “true difference,” i.e., the mean of the stochastic 
process of which the entire set of true differences over 
a period is a single realization (see Stewart-Oaten et 
al. 1986). 

Correlation can arise from the second source of vari- 
ation: the deviation between the true difference and its 
mean. This potential problem has been termed “pseu- 
doreplication in time” (Hurlbert 1984). Two devia- 
tions will be correlated if the time between them is 
short enough that the same random events (births, 
deaths, movements, etc.) play significant roles in both. 
The variation in the true difference would then be un- 
derrepresented in the sample, leading to underesti- 
mation of the variance of DB or DA . 

Whether serial correlation in the observed differ- 
ences is sufficient to invalidate the test for an effect 
must be assessed by formal tests and by a priori ar- 
guments and models based on knowledge of the pop- 
ulations under study. Stewart-Oaten et a]. (1986) pre- 
sent arguments and a simple (though easily extended) 
model suggesting that, provided the ad&tivity as- 
sumption holds, only large, local events (occurring at 
one site but not the other) should introduce serial cor- 
relation. Non-local events (e.g., storms) should have 
similar population consequences at both Impact and 
Control, and thus cancel (at least approximately) when 

we take differences. Small events (e.g., individual births 
and deaths) should not affect the populations for far 
into the future, and are likely to be swamped by the 
sampling errors (which are independent). 

Correlation should be insignificant if sampling times 
are sufficiently separated so that a single event is un- 
likely to have a large local effect for more than one 
time. Arguments and models indicating how large a 
separation is needed should depend on the organism. 
For some populations, e.g., those which are short lived, 
highly mobile or strongly density dependent, local 
changes, even if large, will have only a brief effect. 

For others, observations a year or more apart may 
be significantly correlated. A sedentary species whose 
larvae or seeds disperse unevenly in space over a short 
annual recruitmenthettlement period is likely to have 
much the same local population within a year (between 
one recruitment period and the next) but quite different 
populations between years: variation in recruitment 
might be a long-lasting large local effect. Another case 
occurs when dispersion between Impact and Control 
sites is rare, as for lakes. For example, Osenberg et al. 
(1988) analyzed size-specific growth rates of sunfish in 
eight lakes over a 10-yr period and found that half of 
the interpretable variation arose from lake X year in- 
teractions. Since the growth of these fishes is closely 
tied to the availability of their resources (lviittelbach 
1988, Mittelbach et al. 1988, Osenberg et al. 1988, 
Osenberg and Mittelbach 1989), these data suggest that 
the abundances of the invertebrate prey also exhibit 
lake X year effects. Some fish populations are also known 
to exhibit dramatic population cycles that may result 
from strong age class interactions (e.g., Aass 1972, 
Hamrin and Persson 1986, Townsend 1989), and the 
timing of these cycles may well vary fkom lake to lake. 
If variation in fish density cascades to lower trophic 
levels (Carpenter et al. 1987), then this could introduce 
local year (or even longer period) effects in a number 
of biological variables measured in a BACIP study. 

There is no guaranteed resolution of these uncer- 
tainties. Whatever testing procedure is used should be 
derived from a model that is plausible and survives 
diagnostic checking against the data, both formal tests 
and informal inspection, especially plots. The piausi- 
bility is important. For example, a single year of data 
would be insufficient for a test of serial correlation in 
the examples just given, since the main source of vari- 
ation, between years, is never observed. An implau- 
sible model might survive diagnostic checking in these 
cases, and could then be used to indicate a “pertur- 
bation effect” that was really natural year-to-year vari- 
ation. In most cases, we would expect several years of 
Before and After data to be needed, with serial cor- 
relation of the Before differences checked by the Dur- 
bin-Watson (Durbin and Watson 1971)and Ljung-Box 
(Ljung and Box 1978) tests, and one-way ANOVA, 
using years as “treatments.” 

If serial correlation appears significant, either a priori 



August 1992 ASSESSING UNREPLICATED PERTURBATIONS 1401 

I A I  
A-A nB = n A  = 5 

e--. n, = n A  = 15 

0.10 - 

O.08.0 0.2 0.4 0.6 0.8 

AUTOCORRELATION COEFFICIENT 

An example of the effect of serial correlation on 
the randomization t test. The proportion of results that were 
significant (when Ho is true and testing is done at the .O 1 level) 
is plotted against the value of the autocorrelation coefficient. 
Results are shown for sample sizes of 5 and 15 in each period. 
In all cases results are based on 5000 simulated trials, and 
randomization tests were based on the random selection of 
5000 permutations. Data were generated from the same 
Gaussian autoregressive model of order one separately for 
each period. 

FIG. 2. 

or as a result of tests, the test for a change needs to be 
based on a model that includes plausible representa- 
tions of the non-ignorable types of correlation (e.g.. 
Box 1954, Box and Tiao 1965,1975, Tiao et al. 1975, 
Jones 1980, 1981, McDowall et al. 1980), and is itself 
subjected to diagnostic checks (Box 1980). 

Carpenter et al. (1989) recognize that serial corre- 
lation can inflate Type I error rates in randomization 
tests, but suggest that the rule “reject if the nominal P 
value is < .O 1” gives a conservative .05-level test. This 
rule lacks generality and seems to us undesirable. First, 
if the correlation is weak, this test is too conservative 
and is inefficient. Second, if the correlation is strong 
enough, the test is invalid. Fig. 2 shows that, for sam- 
ples of 15 from a first-order autoregressive model with 
equal variances, the test is invalid if r > 0.3. 

ADDmVITY 

Suppose the two populations vary but tend to track 
one another so that the density in the Impact area is 
typically 50% of that in the Control area. Then the 
difference between the raw Impact and Control den- 
sities will also vary. The effects of location and time 
on the means at the Impact and Control sites are not 
additive: the time effect does not cancel when we take 
the differences. Such non-additivity has three conse- 
quences. 

Two arise when there is systematic (e.g., seasonal) 
variation in the overall density. The mean Impact- 
Control difference (the mean of the stochastic process 
mentioned in the previous section) then varies over 
time. The correct model for the data will not be the 
one the test is based on, Le., D,, = p, + e,, and D,, = 
pA + e,,>, where the errors, e,, have mean zero, but D,, 

= p, + NB, + t,, and D,, = p., + N,, + eAi where the 
N,’s are non-random. 

One consequence is that the test for an effect is not 
comparing p, with p., but comparing pB + NB . with 
p, + N,. , These could differ solely because of the choice 
of sampling times, e.g., if the fraction of summer sam- 
ples is higher in the Before period than in the After. 
Of course, we can balance the samples with respect to 
seasons, but there may be other cycles, perhaps un- 
known, that are not balanced. 

Second, if we have balanced cycles, the N,’s will not 
bias the estimates of the means, but they will add to 
the estimated variances: the test will be more conser- 
vative (and less efficient) than it should be. 

The third consequence arises from random natural 
variation, such as major storms or long spells of un- 
usual weather. This changes densities in both areas; 
without additivity, it also changes their difference. Thus 
region-wide, long-lasting random variation may not 
tend to be cancelled when we take differences. The 
assumption that the observed differences are indepen- 
dent is then less plausible. 

For hypothesis testing, the obvious way to satisfy 
the additivity assumption is to transform the data. If 
the data are multiplicative, as in the example above, 
we would expect to transform to logs. In practice, the 
“right” transformation may not be known, and various 
methods have been suggested for choosing a transfor- 
mation in this situation (Tukey 1949, Box and Cox 
1964, Andrews 1971, Carrolland Ruppert 1981,1984, 
Hinkley and Runger 1984). 

It may be that there is no monotone transformation 
for which the data (or the underlying process that pro- 
duced them) are additive. For example, it may be that 
Impact densities are higher than Control in winter, but 
are lower in summer. In such cases a different analysis 
may be better. We return to this below. The main 
message is that the problem of non-additivity cannot 
be ignored, regardless of whether the final test is a t 
test, a randomization test, or something else. 

EFFICIENCY 
Validity is not the only important consideration in 

the choice of tests. We also want a test that is efficient, 
i.e., which has good power. 

All three of the tests discussed here can be inefficient, 
because they are based on the Before and After sample 
averages. The average is, in some non-Normal cases, 
an inefficient estimator: for a given sample size, there 
are other unbiased estimators with much smaller var- 
iances for non-Normal distributions and only slightly 
larger variances for Normal distributions (Andrews et 
al. 1972). These “efficiency robust” estimators main- 
tain small variances against a range of distributions by 
reducing the influence of the extreme observations. 

A major virtue of randomization tests is the possi- 
bility of greater efficiency, from the use of robust es- 
timates whose distributions are hard to determine, e.g., 
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the median. However, as we have seen, these tests are 
likely to be invalid when the null distributions are not 
identical, as in the assessment problem. 

Fortunately, there are robust estimators whose var- 
iances can be estimated. These can be used as the basis 
for “2-like” tests (both standard and Welch). Examples 
include trimmed means (Yuen 1974), biweight esti- 
mators (Kafadar 1982), modified maximum likelihood 
estimators (Tiku and Singh 1982), and many others 
(Andrews et al. 1972). Perhaps the easiest to use are 
the trimmed means, although the biweight may be the 
most efficient overall (Gross 1976). 
In many cases a reasonable approach is to use both 

a Welch f test and an efficient Welch 2-like test. Only 
if they disagree is there a problem requiring a closer 
look at the data. Then the focus might well be on any 
skewness that might cause the tests to be testing dif- 
ferent things: if so, the investigator needs to decide 
what kind of change is of concern. 

DISCUSSION 

A main point of this paper is that there is no panacea 
for the difficult and messy technical problems in the 
analysis of data from assessments or unreplicated ex- 
periments using the BACIP design. Statistical analyses 
must be based on plausible models, themselves based 
on a priori empirical and theoretical arguments and 
checked by formal and informal methods. 
In particular, randomization tests are likely to be 

invalid in assessment if sample sizes are unequal, be- 
cause a crucial assumption, equal variances of the Be- 
fore and After deviations, is likely to be violated. The 
Welch t test is more likely to be valid, because it does 
not require this assumption, and violation of its Nor- 
mality assumption is not likely to be important to its 
validity. However, both tests also require the assump- 
tions of independence and additivity. 

We have concentrated on randomization 2 tests, but 
similar comments apply to virtually all “distribution 
free” and nonparametric tests. They require the ad- 
ditivity and independence assumptions and, contrary 
to frequent suggestions (e.g., Carpenter 1990, Jassby 
and Powell 1990), are less likely to be valid than are 
modifications of classical parametric tests, when dis- 
tributions vary over time and sample sizes are unequal, 
as must be expected for assessment data. 
For the remainder of this paper, we turn from the 

validity and efficiency of tests o P n o  effect” to the more 
important, if less technical, question of their proper 
role. 

The “P value” is the probability that data indicating 
an effect as strongly as our data do, or more so, would 
arise by chance if in fact there was no effect. Reckhow 
(1990) asserts that it is often misinterpreted as the 
probability that there is no effect, and advocates direct 
calculation of this probability by Bayesian methods. 
We disagree. 

First, the prudent solution to misinterpretation of 

classical P values is improved explication rather than 
dumping the methods. 

Second, Bayesian conclusions depend on subjective 
prior probabilities, which are likely to vary widely, 
especially in adversarial situations; there is a risk that 
debates about effects will focus less on the data and 
more on the credentials of the “experts” whose priors 
are invoked. For example, Reckhow (1 990) claims that 
P values are misleading because Bayesian calculations 
of the probability of no effect by Berger and Sellke 
(1987) are usually much larger. But these calculations 
are based on a prior probability of z0.5 that there is 
indeed no effect. In most assessment problems we would 
regard this prior probability as quite unrealistic: there 
is almost certainly some effect, so the prior probability 
of no effect should be close to 0; the Bayesian posterior 
probability of no effect could then easily be smaller 
than the P value. 

Third, and most important: neither a P value nor a 
Bayesian posterior probability, for a null hypothesis 
that is inherently implausible, is adequate for such pur- 
poses as making decisions about ending or mitigating 
the impact, resolving legal disputes, designing future 
power plants or sewage outfalls, managing ecosystems, 
or studying the biological mechanisms involved (e.g., 
National Research Council 1990:76). The important 
questions are how large the effects are, and whether 
they matter. The main statistical tasks are estimating 
effect sizes and estimating the precision of these esti- 
mates, not hypothesis testing. 

For this, there is a standard classical format, confi- 
dence intervals. There are Bayesian alternatives, but 
the disagreement between the two is usually minor for 
large or moderate sample sizes (Pratt 1965), provided 
that the prior distribution does not have a sharp peak. 
In assessments, where there are usually many inter- 
acting species, environmental parameters and physi- 
ological processes, many of them poorly understood, 
we would expect honest prior distributions to be quite 
diffise. 

Any test can be used to form a confidence interval 
for the size of the effect: the confidence interval is the 
set of values, 6, for which the null hypothesis “the 
change in the difference of the means is 6” is accepted. 
For many parametric tests, this interval is as easily 
calculated as the test itself. Randomization tests are 
much harder to convert, although efficient algorithms 
exist for some special cases (Pagan0 and Tritchler 1983, 
Tritchler 1984). 

But not all parametric tests will lead to useful esti- 
mates in the assessment problem. If a transformation 
is needed for additivity, the test will concern the mean 
difference of transformed data; the ecological signifi- 
cance of a change in this mean may be obscure. In 
some cases there may be no suitable transformation, 
e.g., if the “Control” population density is greater than 
the Impact density in winter but smaller in summer, 
no monotone transformation can achieve additivity. 
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Perhaps most important, real perturbation effects might 
not be constant, even if we have the correct transfor- 
mation. They may vary seasonally or in response to 
other conditions. For example, the cooling water sys- 
tem of the San Onofre Nuclear Generating Station may 
reduce irradiance (and gametophyte survival) over the 
San Onofre Kelp bed when the current flows South, 
but increase it when the current flows North (Murdoch 
et al. 1989). 

One way to deal with these problems is to think of 
the “Control” density and other variables (e.g., season, 
current direction, water temperature, etc.) as predic- 
tors. Using regression methods on the Before data, we 
could estimate the function that best predicts the Im- 
pact area density from these predictors. The pertur- 
bation effect could be estimated as the difference be- 
tween this hnction and the corresponding function 
obtained from the After data. This approach allows for 
effects that vary with environmental conditions, in- 
cludes quantitative estimates of uncertainty (via con- 
fidence bands), and is conducive to graphical presen- 
tation, which many audiences may find easier to 
understand. At least one successful example of this 
approach already exists (Mathur et al. 1980). 

This would not usually be a “clean” approach. It 
would involve regressions based on guessed functional 
forms, which would be checked, in part, by formal 
statistical tests, themselves often approximate. Few, if 
any, of the confidence intervals could be regarded as 
exact. Increasing exactness, e.g., by incorporating the 
uncertainty over functional form into the confidence 
interval, would be a difficult task, requiring some ar- 
bitrary judgments, and probably of little use to readers. 

But restricting consideration to questions that allow 
formally exact answers (or appear to), such as overall 
tests for an effect, risks losing the information of most 
value: “Far better an approximate answer to the right 
question, which is often vague, than an exact answer 
to the wrong question, which can always be made pre- 
cise’’ (Tukey 1962). 
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