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The Pacific whiting (Merluccius productus) is a highly migratory fish occupying the continental
shelf and slope off the west coast of North America. The species spawns in January off southern
California and northern Mexico. During spring and summer the older and larger lish will
migrate as far north as central Vancouver Istand. Recruitment is highly variable, with strong
vear classes often supporting the commercial fishery during several years of low recruitment. The
level of recruitment appears to be independent of the size of the spawning population.

A simple biocconomic model of the Pacific whiting is constructed with independent
recruitment. Fishery production functions are estimated from data on U.S. catch. average
annual biomass and the number of vessels in the U.S. flect. A stochastic optimization problem.
seeking to maximize the expected value of industry profit. is formulated. Its solution would
require a joint distribution on future recruitment and other bioeconomic parameters. Such a
distribution is problematic. As an alternative, the certainty-equivalent problem is solved vielding
solution values for the stochastic equilibrium and an approximately-optimal rule that sets
allowable catch based on an estimate of current-year biomass.

Adaptive management can result in large changes in fleet size and allowable catch from year to
year. The whiting fishery might be characterized as an opportunistic fishery. requiring a
generalist fleet to expand or contract as biceconomic conditions warrant. It is possible that long-
run conditions would not support a profitable fishery, but that short-run fishing is profitable
based on previous years of strong recruitment. The situation is not dissimilar to that facing the
owner of a marginal gold mine that opens or closes depending on the price of gold. In the case of
the whiting fishery. the optimal leve! of short-run fishing will depend not only on price. but on
current biomass. the annual cost of fishing. the discount rate and vessel productivity. A simple
interactive program is provided for would-be managers.

1. Introduction. With the development of a joint-venture fishery, the Pacific
whiting (Merluccius productus) has become a commercially valuable species.
Trawlers from California, Oregon, Washington and the province of British
Columbia harvest whiting (also called hake) and then off-load the cod-end of
their nets to a foreign factory vessel where the whiting is quickly processed to
preserve {reshness and texture. In 1989, the U.S. fleet delivered approximately
204 000 metric tons of whiting to foreign processing vessels, earning about
$21 million in revenues.

The Pacific whiting is a highly migratory species, spawning ofl the coasts of
southern California and northern Mexico in January (Bailey et al., 1982).

* This paper was written in July 1990 while the author was a Summer Faculty Fellow at the Southwest
Fisheries Center, La Jolla, California. The author gratefully acknowledges the support of the U.S. National
Marine Fisheries Service.
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During the spring and summer the population migrates northward, with the
older and larger fish crossing into Canadian waters in August. Joint-venture
arrangements have proved profitable to both U.S. and Canadian trawlers, and
the distribution of allowable catch between the U.S. and Canada has taken
on greater importance. While there is no formal treaty, fisheries managers
from both countries have met to work out a long-term plan for binational
allocation. -

Recruitment in the whiting fishery appears to be independent of spawning
biomass, but is positively correlated to surface temperature during spawning.
Temperature in the month of January is affected by Eckmann transport, a
process where warmer nearshore surface waters are pushed offshore, followed
by an upwelling of deeper, cooler water (Bailey, 1981).

By August the whiting stock is distributed along the coast by age. While the
location of a cohort in a particular year will depend on temperature, cohorts
aged two tosix are likely to be found off northern California and Oregon, while
cohorts 7 to 14 are likely to be found off the coasts of Washington and British
Columbia. In September and October whiting begin their southward
migration {rom the feeding grounds to the spawning areas, and the cycle
repeats itself.

The age structure of the resource and its reasonably stable migratory pattern
have lead previous researchers to develop cohort models with population
dynamics, migration and trophic interactions (Francis, 1983), stochastic
recruitment (Swartzman et al.. 1983), and a game-theoretic approach to
U.S~Canadian management (Swarlzman et al., 1987). Dorn and Methot
(1989) also employ a cohort model with recruitinent randomly generated by
iterative resampling from estimates of recruitment for the period 1959-1986.
Constant and variable effort strategies are examined by averaging yields from
10 replicate. 1000-year simulations. Estimates of average yield ranged from
178 000 to 244 000 tons for the constant-effort strategy and from 205 000 to
251 000 tons for the variable-effort strategy. They recommend that total
allowable catch be split 80 and 20% for the U.S. and Canada, respectively.

A simpler approach is taken in this paper. All the numerical results can be
derived from the nine observations on catch, mean annual biomass and effort
(vessel numbers)in Table !, and by using the 20-line program (in BASIC) listed
in Table 3. Analytical expressions for stochastic equilibrium and the approxi-
mately-optimal policy rule for adaptive management require some calculus
and a fair amount of tedious algebra.

While the model is simple, it incorporates economic elements which have
been absent in all the previous modcling of the Pacific whiting. Specifically. the
program in Table 3 will employ estimates of a vessel productivity parameter,
natural mortality, annual cost per vessel, dockside (or exvessel) price. the real
rate of discount (interest) and long-run average recruitment to calculate what
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has been called the stochastic equilibrium. More relevant to short term
management is the adaptive-management rule which, given an updated set of
bioeconomic parameters and an estimate of current-year biomass, will suggest
levels for allowable catch and fleet size. The issue of distributing allowable
catch between the U.S. and Canada is left for resolution by managers from both
countries.

The rest of this paper is organized as follows. In the next section we constuct
a bioeconomic model and derive equations defining stochastic equilibrium and
the adaptive-management rule. In the third section we estimate production
functions for the Pacific whiting fishery and calibrate the model for price and
cost circa 1988. Section 4 examines stochastic equilibria and the performance
of the adaptive-policy rule for allowable catch under a range of values for the
bioeconomic parameters. The paper concludes with a discussion of the
implications and limitations of the model.

2. Bioeconomics: Stochastic Equilibrium and Adaptive Management. Let X,
denote the average biomass ol Pacific whiting in year ¢, E, the level of fishing
effort in year t and ¥, the level of harvest or catch. We assume there exits a
production function relating annual catch to biomass and effort and write
Y,=F(X,, E,), where the partial derivatives of F(X,. E,) are denoted with
subscripts and assumed to have the following signs: Fy, >0, F;>0. F ;=
Fe x>0, Fy x<0and F; ;<0. If p denotes the exvessel price per unit of catch
(say. $/metric ton) and ¢ the cost of effort (say, cost/vessel/year), then we may
write nel revenue or prolit in year ¢ as:

n,=pF(X,. E)—cE,. (N

Average annual biomass is assumed to change according to the following
first-order difference equation:

X =(0=M)[X—FX, E)]+R 2)

where M is annual natural mortality and R, is a random variable denoting
recruitment in yecar t. Maximization of the present value of expected profits
subject to the dynamics of mean annual biomass may be stated mathematically
as:

Maximize E{ Z p'LpFX,, E,)—('E,]}
t=0

Subject to X, , =(1-M)[X,—F(X,. E)]+ R,

where p=1/(1 + 9) is a discount factor and & is the real rate of discount (or real
annual interest rate).
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This stochastic optimization problem might be solved by dynamic
programming if a distribution for future recruitment were known. If other
bioeconomic parameters are also random variables then one would need a
Joint distribution over all random variables. Such a distribution is problematic.
As an alternative we consider what is called the “certainty-equivalent
problem™. The name is a bit of a misnomer, because the solution to the
certainty-equivalent problem will not be the same as the solution to the:
stochastic dynamic programming problem (when the necessary distribution is
known). The actual degree of suboptimality associated with the solution to the
certainty-equivalent problem will depend on the specifics of the problem, the
functional forms, the presence of irreversibilities. and the degree to which initial
conditions dilfer from the long-run “stochastic equilibrium™.* Before discuss-
ing the issue of suboptimality further. it may be useful to pose and solve the
certainty-equivalent problem.

Let the expected value of R, be denoted by R. The certainty-equivalent
problem is the deterministic problem obtlained by substituting the expected
value for its random variable. This results in a problem with a Lagrangian
expression that may be written as:

gk

L=

4

PPF(X,, E)—CE,

0
+pl [ =M)[X,—-FX,E)J+R-X,,,]} 3)

where 4, , is the Lagrange multiplier associated with biomass in period t + 1,
and may be interpreted as the marginal value of an additional unit (say, metric
ton) of fish in the water in year t + 1. The Lagrange multiplier is also called the
“shadow-price™ of the fish stock. Note that R becomes a parameter in the
certainty-equivalent problem.

In the Appendix we derive the first-order necessary conditions for this
problem. They can be evaluated in steady state and are shown to imply the
following two equations:

(b —MYF,
—_ 2 =0+ M 4
(pf=¢) )
R=MX+(1-M)F(X, E). (5)

Equation (4) is a special case of what has been called the “fundamental
equation of renewable resources™ (see Conrad and Clark. 1987, p. 34). With
independent recruitment the first derivative of the net growth function vanishcs

* Perhaps a more accurate name would be “certainty-equivalence equilibrium™ since the concept of
stochastic equilibrium is usually associated with a stationary probability distribution.
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and we are left equating the “marginal stock eflect” to the sum of the rate of
discount and natural mortality. The marginal stock effect mcasures the
incremental cost savings from larger biomass relative to the immediate benefit
if that increment in biomass were harvested this year.

Equation (5) requires that expected (or long-run average) recruitment oflset
the reduction in biomass [rom natural mortality plus that portion of biomass
that would have survived had it not been harvested. Equations {(4) and (5)
collectively define what Burt (1967) refers to as the stochastic equilibriuni. Burt
was concerned with the optimal management of a groundwater stock when
recharge (form rain or melting snow) was stochastic. He notes that the
stochastic equilibrium is “always approached. bul rarely experienced™.

The stochastic equilibrium for our problem is portrayed in Fig. 1. From the
implicit function theorem. equation (4) will define a curve in X' — FE space.
Totally differentiating equation (4) and making use of the partials of J(X, E).
we can show that along this curve d E/d X is positive. Depending on the form of
F(X, E)it may be possible to solve for an explicit relationship. £= E(X), that is
positively sloped.*

Equation (5)also implies a curve in X' — E'space. Total differentiation and the
signs for Fy and Fp will imply that along this curve dE/d.Y <0. Il an explicit
relationship. E= R(X), can be obtained from equation (5), it will be negatively
sloped. Thus, the partials of F(X, E) imply that a nonzero stochastic
equilibrium. (Xg. Eg) in Fig. I, will be unique.

W hile the stochastic equilibrium may be of interest in determining the long-
run effects of changes in the bioeconomic parameters, it is not very useful for
short-term management. When fish biomass is not at its long-run equilibrium
we would need to solve the deterministic certainty-equivalent problem. or a
finite-horizon stochastic dynamic programming problem to determine the first
step along an “approach path™. With F(X,. E,) nonlinear. this is not a trivial
problem.

Instead of taking this tack we make use of an “approximately-optimal”
technique proposed by Burt (1964, 1967) for groundwater management and
more recently examined by Kolberg (1990) for management of a fishery. This
approach makes use of equation (4) by noting that it can be regarded as
defining a relationship between X, and E, in the vicinity of long-run
equifibrium. Could we use this relationship for short-run management? If we
do, how inferior would the resulting decisions be. relative to the solution

* The curve E(X) has nothing to do with the expectation operator. It is a smooth, posttively-sioped curve
obtained from cquation (4) and will be used to identify the approximately optimal level of effort given an
estimate of biomass. X, The curve implicd by cquation (3) will be denoted £ R{E). since this curve will
depend on parameters of the production function, the annual mortality rate and the long-run, expected fevel
of recruitment. R. This latter curve is used in defining the stochastic or certainty-equivalence equilibrium. but
only £(X) is needed for short-run. adaptive management.
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E(X)

R(X)

Figure 1. The long-run stochastic equilibrium.

obtained for a stochastic dynamic programming problem (with a known
distribution for recruitment)? We will take these two questions in order.
The procedure for using equation (4) as an adaptive management rule is
shown in Fig. 2. In the northeast quadrant we have redrawn the E(X) curve
from Fig. 1. Its position depends on all of the bioeconomic parameters except
R, expecled recruitment, which only appeared in equation (5). Suppose that
biologists, using data from a series of scientific trawls or through a cohort
model taking into account last year's total (U.S. plus Canadian) harvest, could
provide managers with an estimate of biomass for the forthcoming year. With
an estimate of X we could project up to the E(X) curve to determine the
recommended level of effort. The estimate of current biomass will also imply a
specific production function in E— Y space drawn in the northwest quadrant.
Projecting E over to the appropriate production function results in a catch rate
which might be used as allowable catch for the forthcoming year. Because
recruitment is stochastic and because fishermen may exceed or fail to harvest
allowable catch in a particular year, the subsequent estimates of X may bounce
around. From Fig. 2 we can get a qualitative feel for how recommended effort
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Figure 2. A depiction of the approximately-optimal feedback policy.

and allowable catch vary with X. First, note that there is likely to be an
intercept of the E(X) curve on the X axis. This has a straightforward
interpretation. For a given set of bioeconomic parameters (per unit price,
annual cost, the rate of discount, natural mortality, and perhaps catchability)
there is likely to be some stock level below which fishing today would reduce
present value. This is denoted by X, _,. As X increases we see a less than
proportional increase in E. The resulting change in Y is less easy to assess
qualitatively because the production function shifts upward with increases in
X. With a particular form for F(X, E), and given estimates of the biceconomic
parameters, we could numerically examine the change in Y for a change in X.
{We will do this for the whiting fishery in Section 4.) If we wish, we could collect
the (X, Y) pairs by constructing a 45° transfer line in the southeast quadrant,
project X downward, across., and then pair it with the corresponding Y
projected downward from the Y-axis of the northwest quadrant. Thisis donein
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the southwest quadrant and the four “dots™ have been (arbitrarily) “connected”
by a series of line segments.

Burt compared the level of groundwater pumping recommended by such a
procedure to the level of pumping recommended when using stochastic
dynamic programming,. taking the estimate of current X as an initial condition,
with all other parameters the same. In his study he found that the pumping
rates differed by less than 2% when the current groundwater stock was within
42% of the stochastic equilibrium. As the current stock got closer to the
stochastic optimum, the dillerence went to zero. On the basis of this relatively
small departure from the optimal pumping rate, Burt dubbed this rule “the
approximately-optimal™ pumping rule.*

Burt and Cummings (1977). in considering this rule for other renewable
resources, found that the difference between the approximately-optimal
harvest rate and the optimal rate obtained via stochastic dynamic program-
ming was likely to exhibit a consistent and perhaps attractive bias. When
X < Xy the harvest rate [rom the approximate rule was likely to be less than the
harvest rate from the optimal rule. When X> X, harvest was likely to be
slightly more than optimal. This would lead to a more rapid approach to
equilibrium in a deterministic model. The slightly lower levels for recom-
mended harvest when the resource stock was less than its stochastic
equilibrium caused Burt and Cummings to regard the approximate rule as also
being “conservative”. Managers may find this built in conservatism (when
stock is low) to be attractive.

In a recent study and application to the anchovy fishery in northern
California, Kolberg (1990) analyzed the above approximate procedure and
compared it lo the optimal solution (obtained via dynamic programming) and
two other approximate solutions obtained from first- and second-order Taylor
approximations to the value [unction at the steady state optimum. Burt’s
original approximate rule [equation (4) in this paper] is equivalent to the first-
order approximation of the value function. Kolberg finds that both first- and
second-order rules result in harvesting decisions that produce a stream of
discounted profits within 1% of the maximum.

* The approximate optimality of the £{X} curve as employed in Fig. 2 can be derived from the first-order
conditions in the Appendix. Suppose that the optimal approach from some stock level X, involves values for
the Lagrange multiplicrs of i, =i+#, and Z,,,=/4+¢,,,. where 4 is the value of the multiplier at the
certainty-cquivalence equilibrium. Then the first and second of the first-order conditions can be shown to
imply:

(PF.— ) [d+ M+ (1 - M)F,]
d =pF +¢ s -
=MF, phx+e., ¢

If the sum of ¢, , and ¢, is small (which scems especially likely if convergence is oscillatory). then the above
equation will be closely approximated by equation (4)in the text, and hopefully not too far from the solution
to the underlying stochastic optimization problem.
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It is diflicult to make such comparisons in the whiting fishery. Without a
jointdistribution for recruitment and other bioeconomic parameters we do not
have the necessary ingredients for the appropriate stochastic problem. As we
will see in the next section, many of the estimates for equilibrium stock are
around 1.0 million metric tons. This is within 30% of the 1989 estimate of 1.3
million metric tons for mean annual biomass (Dorn and Methot, 1989;
Table 12). It would appear. at least superficially, that the approximately-
optimal decision procedure described above can be appropriately applied to
the Pacific whiting fishery.

3. Calibration of the Model for the Pacific Whiting Fishery. In the general
model of the preceding section the production function, ¥,= F(X,. E,). took on
central importance in defining the stochastic equilibrium and the adaptive-
management rule. When one attempts to specily and estimate such a function,
one encounters at least two problems. First, where does one obtain a time series
of estimates for average annual biomass, and second, how should one define
effort?

In calibrating the model to the Pacific whiting fishery the author was
fortunate to have estimates of average annual biomass from a stock-synthesis
model developed by Dorn and Methot (1989). This time series seemed the best
available and would also allow a comparison of yield levels from two otherwise
disparate modeling perspectives.

The definition of effort has always proven difficult. Ideally, one would like as
precise a measure as possible of the actual volume of water “strained™ per unit
time. The closest practical measure might be the number of hours that a vessel
had net in the water fishing. In a bioceconomic model. the analyst is further
removed from the ideal measure because of the need 10 estimate the unit cost of
eflort. The measure adopted here is the number of vessels in the fishery. This
measture is open to criticism because it may not correspond to the volume of
water strained during a season, but it is a measure for which we have some data
on unit annual cost.

Table 1 contains data on catch by U.S. vessels, estimates of mean annual
biomass. and the number of vessels in the U.S. whiting (leet from 1981 to 1989.
From 1985 onward the fleet has increased, with a jump from 42 vessels in 1988
to 65 in 1989. The estimate of mean annual biomass has declined from 2.225
million metric tons in 1986 to 1.315 million metric tons in 1989. Dorn and
Methot believe that this reflects the “mining™ of the strong 1980 and 1984 year
classes that were recruited into the fishery in 1982 and 1986, respectively. (Note
the jump in average annual biomass in those years.)

Table 2 contains the regression results when the data in Table | were used to
estimate Cobb-Douglas and exponential production functions. The Cobb—
Douglas function takes the form Y=gX*E?, and is linear logs. It contains. as a
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Table 1. Data on catch, mean annual biomass and effort in the
U.S. Pacific whiting fishery

Year (t) Catch (¥)* Biomass (X}t Effort (E))

1981 44 395 1 384 000 21
1982 68 488 2000 000 17
1983 73 150 1 805 000 19
1984 81610 1 742 000 21
1985 35586 1 685 000 17
1986 85 103 2225000 25
1987 110 792 2012000 31
1988 142 657 1 688 000 42
1989 204 038 1315000 65

*U.S. catch is measured in metric tons and is the sum of joint-
venture and domestic catch from Table I of Dorn and Methot
(1989).

Biomass is measured in metric tons and is the mean annual
estimate of biomass from Table 12 of Dorn and Methot (1989).

{Effort is measured as the number of vessels in the U.S. Pacilic
whiting fleet as listed in the fax from D. E. Squires. NMFS,
Southwest Fisheries Center, La Jolla, California, 18 June 1990.

special case, the standard catch-per-unit-effort production form (when
a=f=1).

The exponential function takes the form Y = X(1 —e~*£). With this form it is
impossible to catch more than current biomass, a logical characteristic,
unfortunately not exhibited by the Cobb-Douglas production function. (Note:
With the Cobb-Douglas form, as effort goes to infinity, so does catch.)

The exponential function may be estimated by regressing the natural log of
the fraction of surviving biomass on effort. Ideally one wouid like to obtain an
intercept not significantly different from zero and a significantly negative
coeflicient on effort. Alternatively, one can force the regression through the
origin by suppressing the intercept.

The regression results for Cobb-Douglas and exponential production
functions are given in Table 2. For the Cobb—Douglas form the coeflicient for
the natural log of g is not significantly different from zero, implying that q is not
significantly different from one. The estimates of x and f are significant at the
5% level for a one-tail test. The adjusted R? is 0.8369. The Durbin-Watson
statistic would appear to be in the inclusive range. The small sample size,
however, makes determination of autocorrelation difficult.

In the least squares regression for the exponential function, the estimates of
both the constant and the effort coeflicient were significant. The adjusted R?
was 0.9568. Because the Durbin-Watson seemed at the lower end of the
inconclusive range the regression was run correcting first for first-order
autocorrelation, then for second-order autocorrelation. Neither AR(1) nor
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Table 2. Regression results for the Cobb-Douglas and exponential production functions

A. Cobb-Douglas: In ¥,=Ing+2In X,+ f In E +¢,
Least squares

Variable Coeflicient Standard error t-statistic Two-tail significance
In ¢ —7.4226 7.4350 —0.9983 0.357
In X 1.0274 0.4979 2.0631 0.085
In E 1.2240 0.1878 6.5169 0.001

R*=0.8776. Adjusted R?=0.8369, F=21.5285., D—1I'=14724

B. Exponential: In(1 — Y,/ X,})=7+aF, +¢,
Least squares

Variable Coeflicient Standard error f-statistic Two-tail significance
7 0.0215 0.0068 31732 0.016
E -0.0028 0.00021 —13.35 0.000

R*=09622, Adjusted R?=0.9568. F=178.232. D—H'=1.1146

Lcast squares. AR(1)

Variable Coeflicient Standard error t-statistic Two-tail significance
" 0.0272 0.0187 1.4575 0.205
E —0.0030 0.00043 -~ 7.0358 0.001
AR(1) 0.5962 0.5030 1.1852 0.289

R2=09708. Adjusted R*=09391. F=83.209. D- 1 '=09544

Least squares. AR(2)

Variable Cocflicient Standard error t-statistic Two-tail significance
¥ 0.0225 0.0121 1.8498 0.138
F —10.0028 0.00036 —7.7592 0.001
AR2) —0.0783 0.6942 —0.1128 0916

R*=09651, Adjusted R?=09477. F=55368. D—1'=09676

AR(2) were significant and in fact the Durbin—Watson statistics became
smaller. The constant term became insignificant in both the AR(1)and AR(2)
regressions but the estimate of » was essentially unchanged and remained
significant.

The exponential form, with 2> 0 implies that production is strictly concave
in effort, while the Cobb-Douglas function with > 1 is not concave and would
cause the stochastic equilibrium to be locally unstable. For this reason, and
others noted above, we adopt the exponential form and run sensitivity analysis
on « over the interval [2.0E-2. 3.0E-2].

In an analysis of the tax returns of 13 vessels participating in the whiting
fishery in 1988, Squires (1990) estimates annual variable costs per vessel to be
approximately $150 000. More difficult to estimate is the portion of fixed costs
that should also be included when estimating annual operating costs. Squires
calculates annual fixed costs by adding the costs of insurance, rent, association
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dues, professional services and 7% of vessel acquisition costs (for vessels
bought in 1978-1986, inclusive), for a total of approximately $237 000 in 1988.
The sum of annual variable and fixed cost payments comes to $387 000.

It is difficult to argue that all the costs filed (ex post) on a tax form are
relevant when a fisherman chooses to fish whiting, as opposed to some other
species. One also suspects that there is an incentive to report as high a cost as
possible (to reduce taxable income). In the numerical analysis of the next
section we restrict our estimate of ¢ to the interval ($200 000, $300 000).

Francis (1983). in fitting a cohort model to survey data, conciuded that
annual mortality was likely to be age-dependent. with rates varying from 0.195
for 5-year-old fish. to 0.757 for 1l-year-old fish. Dorn and Methot use a
constant rate of 0.20 for all cohorts. An average annual mortality rate of 0.25is
used in the Base-Case, with values of M =0.20 and M =0.30 also examined.

The price per metric ton for whiting has fallen since the early 1980s. when it
peaked at slightly over $151 in 1982. From 1986 to 1989 the price has been
relatively stable between $106 and $110 per metric ton. Stochastic equilibria
and adaptive management are examined for prices of $100. $110 and $120 per
metric ton.

Modeling by Dorn and Methot also provided estimates of recruitment,
measured as billions of age two fish entering the fishery. They construct a time
series from 1958 to 1988. There is a large range, from a low 0of0.017in 1987 toa
high of 5.16in 1963. The average over this 31-year period was 0.991 billion fish.
An average 2-year-old whiting will weigh about 250 grams, transforming the
0.991 billion fish into an average recruitment of approximately 250 000 metric
tons per year.

Though imprecise. we set R=250000 metric tons in the Base-Case
parameter set. It is important to emphasize that while recruitment is highly
variable. mean annual biomass is much less variable. Adaptive management
does not depend directly on recruitment, only on an estimate of mean annual
biomass. This has ranged from a high of 3.695 million metric tons in 1965, to
low of 1.315 in 1989: with most year to year changes being less than 15%.

The final parameter required [or both stochastic equilibrium and adaptive
management is an estimate of the real (inflation-free) rate of discount. There
has been a long standing debate among economists as to the appropriate rate of
discount to employ when evaluating public investments or managing publicly
held resources. There appears to be no simple answer. It depends on where the
funds are coming [rom (whether they are displacing private investment or
consumption) and whether the beneficiaries of the project derive a significant
portion of their income from the investment or resource.

The question is perhaps more easily answered when managing a fishery
resource. If there are a large group of fishermen, or if the species being managed
constitutes only a small portion of the total income derived from fishing, then
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the discount rate should be risk-free as well. Discount rates of 2, 4 and 6% will
be evaluated.

4. Results. Restricting our analysis to the exponential production function,
’= X(1 —e~?F), we note that F, = (1 —e~*F), and that F,=xX¢c™*E. Substitu-
tion into equation (4) results in:

c(l=M)(1—e"%F)
(paXe *E—¢)

=0+ M. -+ (6)

Equation (5) takes the form:
R=MX+(1—=M)X(1—e ). (7)

It is possible to solve equation (6) for an explicit expression for E, yielding:

E=—1In c(1+9) P (8)
- [pad+MX+c(l=M)] |~

This is our E=FE(X) curve in Figs1 and 2. It will be used in the
adaptive-management program.

Using equation (7) it is possible to eliminate E from equation (6) and obtain
a quadratic expression in X. The positive root gives an expression for the
optimal {stochastic) equilibrium stock. This expression is tedious to derive but
some careful algebra should reveal:

Xe=(~B+./B*—4N)2 9)
where:
Be — [paR(O+ M)+ c(l — M) ] (10)
[pa(6+ M)]
and
(A=A
=_((l_1I)R‘ (1)
[px(d+ M)]
With X, we can calculate long-run optimal effort as:
Ep=—In{(Xg— RY[(1 — M) X ]}/x. (12)

From the production function we know Y= Xp(1 —e~*E*).
In the program in Table 3 we define and read the parameters a.c. 6, M, pand
R and then calculate the stochastic equilibrium Xg. Ez and Y. You are then
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asked 1l you would like to adaptively manage. If you answer yes, you are asked
for an estimate of current-year biomass. Using this as the value of X in
equation (8), and the same bioeconomic parameters as specified in line 10, the
program calculates the approximately-optimal E (lines 140-150). then catch
(lime 160), and finally prints the results. '

Table 3. A listing of the BASIC program to calculate the stochastic equilibrium and to
adaptively manage based on estimates of current biomass

10 DATA 0.25E —2.250000.0.04.0.25.110,250000

20 READ A.C.D.M.PR

30 B= —(PxA*xR*(D+ M)+ Cx(1 ~ M}D)/(PxAx(D+M))
40 N=—Cx(1=M»R/(PxAx(D+M))

50 XR=(—B+SQR(B 2—4%N))2

60 ER= — LOG((XR—=R)/{(I =M )xXR))/A

70 YR=XRx*(I —~EXP{—A«ER)}

§0 PRINT: PRINT “Long-Run Average Biomass=":XR
90 PRINT:PRINT “Long-Run Average Effort=";ER
100 PRINT:PRINT “Long-Run Average Catch=":YR
110 PRINT:INPUT “Do you want to Adaptively Manage? Yes=1. No=0.":W
120 IF W=0 GOTO 200
130 PRINT:INPUT “Current Biomass=":X
140 NUM =Cx(1+D):DEN=PxA+(D+ M)}xX + Cx(l — M)
150 E= — LOG(NUM/DENYA

160 Y=X*(1 —EXP{—A=xE)}))

170 PRINT:PRINT “Current Biomass=":X

180 PRINT:PRINT “Recommended Effort=":E

190 PRINT:PRINT “Recommended Catch="Y
200 END

The Base-Case parameter set is ¢ =0.25E-2,¢=$250 000, 6 =0.04, M =0.25,
p=5110 and R=250000. Table 4 reports the calculated values for stochastic
equilibrium and the approximately-optimal values for effort and allowable
calch when the current biomass is 1.0E6, 1.5E6 and 2.0E6 metric tons. Each
parameter (with the exception of R) is varied above and below its Base-Case
value to determine its ellect on the stochastic equilibrium and the adaptively-
managed levels of effort and allowable catch. The results are presented in the 10
subcases (B through K) also contained in Table 4. Increases in long-run
expected recruitment, R, will increase the equilibrium levels for biomass, effort
and yield, but given the imprecise estimate of this value and the previously
noted fact that the stochastic equilibrium is “seldom experienced”. we do not
present these results.

For the Base-Case parameter set the stochastic equilibrium occurs at a mean
annual biomass of 957 748 metric tons, supporting a fleet of six vessels
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Table 4. Stochastic equilibria and adaptive management

A. Base-Case parameter sct

a=0.25E-2 ¢=3250 000 5=0.04
M=0.25 p=38110 R=1250 000 mt
=957 748 mt Ep =6 vessels Ye=14 083 mt
When Y=1.0E6 E=11 '=27128
X=1.5E6 E=67 Y=230 159
X=20E6 E=115 =501 441

B. 2=0.20E-2

No commercial fishery in the long run. Vessels not sufficiently productive.

When X=1.0E6

No commercial fishery

Stock too low

Y=15E6 E=43 Y=122 881
X=20E6 E=96 ¥'=349 730
C. x=0.30E-2
X =883051 mt Lp=15 vessels Ye=38 983 mt
When X=10E6 E=28 Y=381921
Y=15E6 E=381 ¥=321930
XY=2.0E6 E=126 F=627 606

D. ¢=3200 000
A =867 361 mt

Eq=21 vessels

Yr=44 213 mt

When X=10E6 E=40 Y'=94 668
X=1.5E6 F=104 }'=2342 837
X=20E6 E=159 Y'=655 897

E. ¢=3%300 000

No commercial fishery in the long run. Fishing too costly.

When XY=1.0E6
Y=1.5T:6
X=2.0L6

F.8=002

Xp =958 887 mt

No commercial fishery

E=40
E=84

Ep =6 vessels

Stock too low
V=142 002
Y=377113

Ye=13704 mt

When Y=1.0E6 E=10 Y=25788
X=1.5E6 E=064 ¥=220 201
X=20E6 E=110 Y=482 143

G. 6=0.06

X =956 702 mt I, =6 vesscls 1,=14432m

When A=1.0E6 E=12 Y=28414
X=1.5E6 E=70 "=239956
X=2.0E6 E=120 Y=519 553
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Table 4—continued

H. M=0.20

Ap=1075564 mt Eq=17 vessels Y =43 609 mt

When Y=1.0E6 E=9 Y=22556
X=1.5E6 E=506 ‘=195 652
A'=2.0E6 E=98 Y=433735

. M=0.30

No commercial fishery in the long run. Natural mortality too high.

When X=1.0E6 E=13 Y=31657
X=1.5E6 E=77 }Y'=262 887
X=2.0E6 E=132 =563 536

Y. p=8%100 mt ™!

No conunercial fishery in long run. Price too low.

When X=10E6 E=0 Y=0
X=1.5E6 E=352 Y=183 544
X=20E6 E=98 ¥'=436 090

K.p=$120 mt !

Ap=921 131 mt E, =12 vessels Y =26 289 mt

When X=10E6 E=122 Y=52823
X=1.5E6 E=281 ¥'=273 585
X=20E6 E=132 Y =561 549

Vessel numbers are rounded to ncarest whole vessel. Catch is rounded to nearest whole metric
ton. Catch is calculated before rounding effort. Thus. fractional effort less than 0.5 vessels may
give rise to slightly different catch for same biomass (Subcase H to J when V= 2.0E6).

harvesting 14 083 metric tons per year. These values are significantly below
those observed in the previous decade (see Table 1).

When the current biomass increases from 1.0 to 2.0 million metric tons the
adaptive rule recommends that fleet size increase from 11 to 115 vessels and
that catch be allowed to increase from 27 128 to 501 441 metric tons. When
current biomass is 1.5 million metric tons, a recommended fleet of 67 vessels
would harvest 230 159 metric tons. These latter values are very similar to the
“observed” values for catch, biomass and effort in 1989 from Table 1.

From this single piece of analysis we might hazard a characterization of the
whiting fishery. 1t is a fishery that will be strongly influenced by current
bioeconomic conditions. It should be managed opportunistically. When
stochastic recruitment “deals a full house™, maximization of expected present
value says the fleet should significantly expand to harvest the windfall. The
downside, of course, is that when recruitment deals nothing, the fieet must “fold
’em” and walk. To quote the Kenny Rodgers song, fisheries managers have to
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“know when to hold ‘em and know when to fold 'em™. In the U.S. and
elsewhere, unfortunately. managers and fishermen have been slow to walk,
trying to stay in the game when bioeconomic conditions indicate one should
leave (at least temporarily).

The program in Table 3 indicates when fishing would reduce present value
by returning a negative value for effort and catch. This can occur in the long-
run stochastic equilibrium or in the short-run under adaptive management. In
fact. for a given set of bioeconomic parameters a fishery that is unprofitable in
the long-run may continue to be fished if strong recruitment or favorable prices
prevail. Conversely, a fishery which is profitable in the long-run (stochastic
equilibrium) may be shut down in the short-run because biomass has declined
below a level that would support positive effort and catch along the optimal
approach path. Recall the interpretation of X _, in Figs 1 and 2.

The first situation is shown in Subcase B where, when vessel productivity
declines from 0=0.25E-2 to x=0.20E-2, there is no fishing in the stochastic
equilibrium. If a run of strong recruitment (or a temporary moratorium)
pushes biomass up to 1.5E6 metric tons a fleet of 43 would be allowed to
harvest 122 881 metric tons. In Subcase C. where a=0.30E-2. the stochastic
equilibrium has a biomass of 883 051 metric tons supporting 15 vessels and an
annual yield of 38 983 metric tons. If recruitment pushes biomass up to 1.5E6
metric tons, adaptive managers would send out 81 vessels to harvest 321 930
nietric tons.

In Subcase E, with an annual vessel cost of $300 000 there would be no
fishing in the stochastic equilibrium. A biomass level of 1.0E6 is still below
X, -0- At a biomass of 1.5E6 a fleet of 40 vessels is allowed to harvest 142 002
metric tons.

The value for X,_, when p=S8100 is precisely 1.0E6 metric tons (see
Subcase J). The fishery is not profitable in the long run at this price. but short-
run biomass levels of 1.5E6 and 2.0E6 would support fleets of 52 and 98 vessels.

A systematic analysis of the results in Table 4 will reveal:

(i) an increase in a will reduce equilibrium biomass while increasing fleet
size and catch (Subcase A to C);

(ii) an increase in cost. c. will increase equilibrium biomass. reducing effort
and catch (Subcase D to A);

(ifi) an increase in the discount rate has relatively little impact, reducing
equilibrium biomass slightly. causing a fractional increase in effort and
a slight increase in catch (Subcase F to G):

(iv) an increase in natural mortality might shut down the fishery in the long
run and has the effect (similar to an increase in the discount rate) of
increasing effort and catch in the short run (before fish die of natural
causes; see Subcase H to I). finally:
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(v) anincrease in price may make the fishery tenable in the long run and will
increase eflort and yield when adaptively managed at the same level of
biomass (Subcase J to K).

It is a bit diflicult to compare the results of Table 4 to the results of Francis
(1983), Swartzman et al. (1983, 1987) and Dorn and Methot (1989). All of the
modeis are cohort models and none are bioeconomic, in the sense of
maximizing a present value measure. Perhaps the only common denominator
is average yicld. This is dilficult to calculate in anything but a naive way
because the cohort models are frequently run with constant fishing mortality or
with constraints that prevent the biomass from declining below some bound.
With that caveat in mind, we note that a simple average of yields listed in the
first row of Table 3 from Swartzman et al. (1983) is 193 666 metric tons. The
average yield from Table 2 of Swartzman er al. (1987) is 184 000 metric tons.
From Dorn and Methot (1989) we have previously noted that average yield
ranges [rom 178 000 to 244 000 metric tons [or low risk runs and from 205 000
to 251 000 metric tons for high risk runs. If one averages the 44 yields (including
zero yield when the fishery ts shut down in the long or short run) from Table 4
in this paper one obtains 195 552 metric tons. While the models are very
different in their biological and economic details, from the perspective of
average yield they would appear to be in the same ballpark.

5. Conclusions. The Pacific whiting has become an important commercial
species for both the U.S. and Canada. Both countries participate in joint-
venture fisheries, where domestic trawlers capture whiting and ofl-load onto
foreign processing vessels. Several papers published in the 1980s have
examined population dynamics within age-structured models. Recruitment is
thought to be independent of spawning biomass. and has been treated as a
random variable. Because older and larger fish migrate further north, the age-
structure of the resource can influence the availability of fish in Canadian
waters.

While these models have been rich in biological detail, they have not
adequately incorporated the economic factors which alffect the commercial
value of the resource. nor have they tried to determine optimal fleet size. The
biological detail present in these models necessitates numerical analysis, such
as Moute Carlo simulation, to determine the properties of the model and to
develop average yields that might be used in making recommendations for
allowable catch.

In this paper we have traded-off the biological detail of a cohort model in
order to incorporate some of the economic factors thought to be important in
the Pacific whiting fishery. The simple bioeconomic model of Section 2
permitted us to: (1) pose a stochastic optimization problem that sought to
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maximize the present value of expected net revenue: (2) solve the certainty-
cquivalent problem for the stochastic equilibrium and an approximately-
optimal rule for adaptive management; and (3) portray the equilibrium (Fig. 1)
and show how the adaptive-management rule would operate (Fig. 2).

Data on catch, mean annual biomass and vessel numbers allowed for the
direct estimation of a fishery production function. Cobb-Douglas and an
exponential function both gave reasonable fits. The exponential form makes
more sense biologically, gave a slightly better fit and for the parameter estimate
was strictly concave in effort. This form was used and a range of values for the
other bioeconomic parameters was obtained from previous biological and
economic research.

In the bioeconomic model, long-run (stochastic) equilibrium depended on
the production parameter. annual vessel cost, the discount rate, natural
mortality, exvessel price and long-run average recruitment. In the short-run.
using the adaptive-management rule, fleet size and allowable catch depended
on the first five parameters and current biomass (instead of recruitment).
Recommendations for short-run fleet size and allowable catch could fluctuate
widely depending on the bioeconomic parameters, especially current biomass.
From the Base-Case parameter set we observed that a current biomass of 1.0E6
metric tons would commend a fleet of only 11 vessels harvesting 27 128 metric
tons. If current biomass were |.5E6 metric tons. 67 vessels could harvest
230 159 metric tons and., il biomass increased to 2.0E6 metric tons (perhaps in
the vicinity of “pristine equilibrium™), 115 vessels could harvest a 501 441
metric tons.

Such results characterize what might be called an opportunistic fishery.
requiring a flexible fleet of generalist vessels able to respond to windfall
recruitment and Lo shift to other fisheries when bioeconomic conditions are no
longer favorable. Such flexibility has not been present in the U.S. or Canadian
fishing industry. where eflort seems quick to expand, but slow to contract.
Managers and the fishing industry need to explore ways of increasing
fexibility. »

To use the adaptive-management rule we need an estimate of current-year
biomass. The cohort models, especially the stock-synthesis model of Dorn and
Methot (1989). can provide such an estimate. The age-structured models also
have the advantage of being able to project changes in the abundance of
particular cohorts. Such information might be important in determining
spawning potential and the availability of whiting in Canadian waters.

This model should not be viewed as a replacement or even as a competitor
for the niche occupied by the more complex biological models within the
current “management landscape”. Rather, it should be used to complement the
analysis of such models in seeking the economically efficient and equitabie
distribution of the Pacific whiting resource.
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APPENDIX

The Lagrangian for the certainty-equivalent problem has first-order conditions requiring:

¢ . . -
(?E = /){:/’I'l{_""/’/-l = /U)l';;: =0

“411 X
:?I:;—p’{plf‘,+p/"‘“ (L=MY[1=F}—p'7,=0
1

[y 5
iy

= [l = M)[X,—F(X,.E)]+R-X,,,]=0.

In steady state these conditions imply:

pi=(pFy— ) L1 = A

Pl (L= AN[1=F]=(1+8)]= —pF,

R=MX+{1=M(X. E).
The second steady state equation can be further simplified to:

—pi[O+ AN+ = ANF] = —ply.
Multiplying through by —1 and substituting the first steady-state expression for p/ yiclds:
(pF— ) [O+ M+ (1 = MFT=pF (1 - M.

This last expression can be further simplificd to:

—-ANF
(“—" =3+ AM

(pFe—c)
which ts given as equatton (4) in the text. Equation (5} in the text is the third of the steady-state
equations listed above.
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