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Fish spotters are pilots in small aircraft employed by commercial fishermen to locate, identify, estimate the size 
of, and direct boats toward pelagic fish schools. Data describing species, location, and size of schools can be 
inexpensively obtained from fish spotters but are difficult to interpret statistically. We developed an index of 
relative abundance from fish spotter data based on extended delta-lognormal models and applied the method to 
data for northern anchovy (Engraulis mordax). In contrast with previous approaches, our method used all available 
data, provided an index for northern anchovy that was proportional to abundance, and explicitly modeled factors 
(pilots, regions, seasons, and time of day) that affected observations by fish spotters. We also included information 
about mixed layer depth and sea surface temperature in models for a reduced study area and found that envi- 
ronmental data, where available, can be used to improve estimates of relative abundance from fish spotter data. 
Simulation results indicated that our approach is a cost-effective way to improve biomass estimates for pelagic 
species like northern anchovy. 
Les observateurs de poissons sont des pilotes de petits avions employes par des pecheurs commerciaux pour 
localiser, identifier, evaluer la taille et diriger les bateaux vers les bancs de poissons pelagiques. Des donnees 
indiquant I’espece, I‘emplacement et la taille des bancs peuvent &re obtenues a peu de frais des observateurs 
de poissons, mais elles sont difficiles a interpreter statistiquement. Nous avons elabore u n  indice d’abondance 
relative a partir des donnees des observateurs de poissons base su r  des modeles delta-lognormaux etendus et 
nous avons applique la methode a des donnees sur I‘anchois du Nord (Engraulis mordax). Contrairement a celles 
utilisees precedemment, notre methode utilise toutes les donnees disponibles, fournit u n  indice pour I’anchois 
du Nord qui est proportionnel a I’abondance et modelise explicitement les facteurs (pilotes, regions, saisons et 
heure) qui influent sur  les observations effectuees par les observateurs de poissons. Nous avons egalement inclus 
de I’information sur la temperature en surface et en profondeur des couches melangees dans les modeles pour 
une aire detude reduite et nous avons decouvert que les donnees environnementales, lorsque disponibles, peu- 
vent Ptre utilisees pour  ameliorer les estimations d’abondance relative faites a partir des donnees fournies par les 
observateurs de poissons. Les resultats des simulations ont indique que notre methode constitue une facon eco- 
nomique d’ameliorer les estimations de la biomasse d‘espkes pelagiques comme I’anchois d u  Nord. 
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nformation about changes in abundance of fish stocks is an 
important part of information required for fisheries man- I agement. Catch-per-unit-effort (CPUE) data from fisheries 

have traditionally been used to measure changes in relative 
abundance, but accumulated evidence indicates that interpret- 
ing CPUE data from commercial fisheries is difficult, partic- 
ularly for pelagic fish, because commercial CPUE data are 
affected by changes in fishing efficiency over time and tend to 
decline more slowly than abundance (Bannerot and Austin 
1983; MacCall 1984). A number of alternative fishery- 
independent procedures for estimating relative abundance of 
fishes have been developed including scientifically designed 
acoustic surveys, trawl surveys, egg and larva surveys, aerial 
surveys, and tagging experiments (Ulltang 1977). These 
approaches may provide good results but are expensive. In con- 
trast, aerial “fish spotters” are a potential source of large quan- 
tities of inexpensive information about relative abundance of 
pelagic fish that can be obtained from existing commercial 
operations. To date, fish spotter data have received relatively 
little attention from fishery managers. 

Fish spotters are pilots in small aircraft employed by com- 
mercial fishermen to locate, identify, estimate the size of, and 
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direct boats towards pelagic fish schools (Squire 1961; 
Maughan and Mmelstein 1971). Fish spotters are used in the 
Australian southern bluefin tuna (Thunnus rnuccoyii) fishery: 
the southern California purse-seine fishery for northern anchovy 
(Engruulis rnordar), Pacific (chub) mackerel (Scornber jupon- 
icus), jack mackerel (Trachurus symmetricus), Pacific bonito 
(Surdu chiliensis), bluefin tuna (Thunnus rhynnus), and Pacific 
sardine (Surdinops sugar); the South African purse-seine fish- 
ery for anchovy (Engruulis cupensis) and pilchard (Surdinops 
ocelluru): the Japanese sardine (Surdinops rnelunosticu) fish- 
ery; the U.S. Atlantic menhaden (Brevoortiu ryrunnus) and 
swordfish (Xiphius gludius) fisheries, and other pelagic fish- 
eries around the world (Squire 1961, 1972, 1983; Maughan and 
Marmelstein 1971; Agenbag 1980; Anonymous 1981; Williams 
1981: Habib et al. 1982; Agenbag et al. 1984; Hara 1985). 

It is important to emphasize the differences between data 
from fish spotters and data from aerial surveys conducted for 
scientific purposes. Methods are available for using data from 
scientifically designed aerial surveys, usually in connection 
with acoustic data, to estimate biomass or relative abundance 
of pelagic fishes (Cram and Hampton 1976; Rivas 1978; Hamp- 
:on e: al. 1979; Hara 1986; Scottet al. 1989; Hara 1990). Data 
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collected during such surveys are relatively easy to interpret but 
costly. In contrast, data collected opportunistically during the 
search for fishable schools by fish spotters are harder to inter- 
pret but inexpensive (Anonymous 1981). 

Accuracy and precision of fish spotter data are reinforced 
because inaccurate species identification and poor estimates of 
school size inconvenience fishermen who employ fish spotters. 
Difficulties with interpretation of fish spotter data arise, how- 
ever, because of factors that are unique to fish spotter data 
(imprecise nature of visual biomass estimates and differences 
among fish spotters) and other factors (patchy distribution of 
pelagic fish, lack of systematic sampling design, environmental 
variables, differences among regions, seasons, and time of day) 
that hinder interpretation of other types of data (e.g. commer- 
cia1 CPUE) as well. Flights are conducted only when environ- 
mental conditions are good enough for fishing, but environ- 
mental conditions still affect observations by fish spotters. 
Changes in fish spotters employed by a commercial fishery are 
another important problem because changes in abundance may 
be confounded by changes in fish spotters who collect the data. 
Despite problems in interpretation, fish spotter data can be use- 
ful and cost-effective tools for management purposes (Barnes 
et al. 1992), particularly, as in our analysis, when adjustments 
are made for differences among fish spotters, regions, and other 
important factors. 

An important advantage of fish spotter data over commercial 
CPUE data is absence of saturation (increased abundance but 
no increase in CPUE due to limited hold capacity, trip limits 
for catch, market demand, or processing capacity) because fish 
spotters can record the size and location of all schools seen. 
This important characteristic makes it relatively easy to con- 
struct indices of abundance based on fish spotter data that are 
linear measures of fish biomass (i.e. change in proportion to 
biomass). Another advantage is that technical improvements to 
equipment used by fish spotters, such as aircraft and naviga- 
tional gear, have probably not substantially increased their effi- 
ciency in locating fish. Fish spotters may purchase new aircraft 
and better navigational or radio equipment, but schools are still 
located visually while flying at reduced speeds and low alti- 
tudes. In contrast, changes in commercial CPUE due to changes 
in fish abundance are often confounded by technical improve- 
ments to fishing gear such as nets and acoustic equipment 
(Kimura 1981; Jacobson et al. 1987). 

We developed delta-lognormal linear models (Shimizu 1988) 
for fish spotter data based on the delta distributipn (Aitchison 
and Brown 1957; Pennington 1983) and lognormal linear 
models (Bradu and Mundlak 1970; Kerlinger and Pedhazur 
1973; McCullagh and Nelder 1983). Our approach extends 
delta-lognormal models and breaks new ground in fisheries 
because we model components of the delta distribution as func- 
tions of factors and covariates in lognormal linear models 
(Lambert 1992) and provide approximate variances for esti- 
mates. Lognormal linear models are similar to analysis of var- 
iance models fit using linear regression and often used by fish- 
ery scientists and managers to derive a single index of fishing 
effort for a group of heterogeneous vessels or to derive a single 
index of relative abundance for a fish stock from two or more 
types of data (Gulland 1956; Robson 1966; Kimura 1981, 1988; 
MacCall and Prager 1988; Hilborn and Walters 1992). Although 
we used lognormal linear models for components of the delta 
distribution, other linear or nonlinear models based on other 
statistical distributions could be used instead. 

The delta distribution is often used to estimate abundance of 
planktonic organisms whose spatial distribution is highly con- 
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tagious (Dennis and Patil 1988). Survey data for planktonic 
organisms typically have statistical distributions with a large 
fraction of “zeros” (samples in which no organisms are 
observed) and may be so distorted that conventional methods 
based on the sample mean yield inefficient estimates of abun- 
dance. The delta distribution avoids problems with contagion 
by treating zero and nonzero data separately; final estimates of 
abundance are obtained from the product of the proportion and 
mean for nonzero observations. The delta distribution is used 
in many disciplines to model processes that generate more zero 
observations than might be expected on the basis of distribu- 
tional assumptions (Lambert 1992). 

Our approach used two lognormal linear models: the first to 
estimate the proportion of flights in which fish were seen by 
fish spotters and the second to estimate density (tons per area) 
of fish from data for flights during which fish were seen. Anal- 
ogous to the delta distribution, our index of relative abundance 
from fish spotter data was based on the product of these quan- 
tities (adjusted for the size of the survey area as described 
below). 

We applied our models to data for northern anchovy off the 
coast of southern California. In addition. we applied an 
expanded version of the model to a subset of the fish spotter 
data and two environmental variables (sea surface temperature 
and mixed layer depth) to determine if environmental infor- 
mation could potentially be used to improve estimates. Other 
types of environmental data (e& sea state and wind speed) 
were not available but may have been useful. The amount of 
data available and models used in our analysis enabled us to 
obtain useful estimates from fish spotter data and to account 
for differences among fish spotters, regions, seasons, time of 
day, and other variables. 

Previous analyses of fish spotter data used a simple CPUE- 
like index (tons sighted per block area flight or TIBAF) to meas- 
ure relative abundance (Squire 1961, 1972, 1983). The TIBAF 
index was corrected for time of day by excluding data for day 
flights and corrected for differences among regions by restrict- 
ing the analysis to a “core” region where the species of interest 
was naturally abundant. A significant advance in our analysis 
was that all available information was used to estimate abun- 
dance; corrections for differences between time of day, among 
regions, and seasons were made without excluding data. 

Another important difference between our analysis and pre- 
vious ones was that we made corrections for differences among 
fish spotters. Our records indicated consistent differences 
among fish spotters in mean reported weight of anchovy schools 
and the proportion of flights during which schools were sighted 
(Fig. 1). Moreover, fish spotters participating in the monitoring 
program changed over time so that, for example, some fish 
spotters participated only during the 1960’s and 1970’s, while 
others did not begin to participate until the late 1980’s. If indices 
of abundance from fish spotter data were not corrected for dif- 
ferences among fish spotters, then temporal changes in abun- 
dance may have been confounded by changes in fish spotters. 
As shown below, effects of fish spotters were important for 
anchovy. 

The original motivation for our work was to improve spawn- 
ing biomass estimates used to manage the fishery for northern 
anchovy. Data for biomass estimates were reduced in recent 
years and precision and accuracy of biomass estimates deteri- 
orated (Jacobson and Lo 1990). For this reason, we conducted 
simulation experiments to determine if our new index based on 
fish spotter data could be used to improve biomass estimates 
and management advice for northem anchovy. 

Can. J .  Fish Aquar. Sci , Vol 49. 1992 
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The area co~ered by fish spotters was divided into six regions 
(Fig. 2).  During 1963-90. fish spotters collected data from the 
area between 27 and 37”N latitude. but anchovy were most 
common in the area north of region 6 (30”33’N latitude). Data 
for region 6 were excluded from our analysis because anchovy 
were seldom seen there. 

Sea surface temperature and mixed layer depth were esti- 
mated for each block using data collected during routine 
California Cooperative Oceanic Fisheries Investigations 
(CalCOFI) research cruises (L. Eber. NMFS. Southwest Fish- 
eries Science Center. P.O. Box 271. La Jolla. CA. 92038 USA. 
pers. comm.). CalCOFI cruises were conducted throughout the 
study period (with some interruptions) on a quarterly basis 
(Hewitt 1988). Environmental data could be obtained for 
regions 2 and 3 (Fig. 2) only because CalCOFI cruises have 
been limited to these regions since 1987. Years with no 
CalCOFI environmental data were omitted from our models 
when environmental data were included. 

Sea surface temperature and mixed layer depth were treated 
as categorical. rather than continuous. variables because initial 
estimates of the functional form of the relationships between 
anchovy biomass and sea surface temperature or mixed layer 
depth were erratic when environmental data were treated as 
continuous variables. Although preliminary estimates of func- 
tional forms were uninterpretable. it was clear that anchovy 
abundance varied with sea surface temperature and mixed layer 
depth when the environmental data were treated as categorical 
variables. Sea surface temperature data were. therefore. aggre- 
gated in 2°C categories and mixed layer depth data were aggre- 
gated into 20-m categories. lntervals for the categories were 
chosen so that there was a sufficiently large number of obser- 
vations in each category. 

FIG. I .  Mean log tons of anchovy sighted per block (top panel) and 
proportion positive blocks (bottom panel) for fish spotters in region 2 
(see Fig. 2) during 1963-90. Some fish spotters did not participate 
during the entire time period. Vertical bars show means i 2 SE. 

described above. relative abundance of northem anchovy 
was expressed as the product of density and a measure of area: 

Materials and Methods 

The anchovy data used in our analyses were collected by fish 
spotters paid a nominal wage ($1 to $4 per hour) to participate 
in a pelagic resource monitoring program initiated in 1962 by 
the Tiburon Marine Laboratory, U.S. Fish and Wildlife Service 
(now Southwest Fisheries Science Center, National Marine 
Fisheries Service. or NMFS), in central and southem California 
(Squire 1961, 1972). Data were collected during the course of 
routine fish spotting and involved little additional effort by fish 
spotters. The data set (called the “complete” data set below) 
included records from about 16 000 flights conducted during 
1963-90 (records for fish spotters with less than 20 flights were 
omitted). The subset of fish spotter data used with environ- 
mental data consisted of records from about 3700 flights over 
a smaller geographic area (records for fish spotters with less 
than 10 flights were omitted). 

Fish spotters recorded the species (most pelagic schooling 
fishes of commecial importance can be identified from the air), 
location, time of day, and estimated weight of all fish schools 
encountered during flights in special flight logs (Squire 1961, 
1972). Locations were specified by “blocks” which are 10’ 
latitude by 10’ longitude. Time of day was either day or night 
(fish schools are visible at night due to bioluminescence; Squire 
1972). Flight log data for each sighting were checked for errors 
and entered into a computer database. 
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(1) I = DA 

where I is the index of relative abundance for a given year 
(tons). D is density of anchovy (tons per block). and A is the 
area (blocks) covered by fish spotters. We assumed that fish 
spotters flew over an area that was at least as large as the area 
occupied by the anchovy stock in each year. Units for the index 
(I) are tons of anchovy sighted by fish spotters. 

Density of anchovy ( D )  for each year was 

(2) D = dP 

where d is a standardized measure of anchovy density (tons per 
block) for positive flights (flights during which anchovy were 
seen) and P is a standardized measure of the proportion of 
blocks that were covered by positive flights (referred to as pro- 
portion positive). As described above, density of anchovy ( D )  
was calculated from the product of density in positive blocks 
(d) and proportion positive ( P )  in order to avoid problems that 
arise from including a large number of zeros. Moreover, area 
of the stock (A).  density for positive flights (d),  and proportion 
positive (P) are all useful measures of relative abundance for 
pelagic species (MacCall 1990: Mangel and Smith 1990: Smith 
1990), while area (A )  and proportion positive (P) provide infor- 
mation about spatial distribution. 

The complete data set was used to obtain standardized esti- 
mates of anchovy density for positive blocks (d)  and proportion 
positive (P) for each year using lognormal linear models 
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FIG. 2 .  Study area, regions, and blocks covered by fish spotters in 1989. Regions are outlined and 
denoted by numbers. Blocks are denoted by dots. 

described below. Five factors were treated as main effects: 
years, fish spotters, regions, seasons, and time of day (day or 
night). Factors were allowed to cross in the model so that any 
combination of years, fish spotters, regions, seasons, and time 
of day could be accommodated. In addition to main effects, 
first-order interactions between regions, seasons, and time of 
day were included in the models. Other first-order and higher 
order interactions were not included to avoid overparameteri- 
zation of models and problems with parameter estimation as 
well as to limit the amount of computer memory required. 

Data used to estimate density of anchovy for positive flights 
(d) were aggregated by flight. The model was 

In (d )  = Xp + Za + E 
where d is a vector for observations, X is the design matrix for 
main effects and p is the parameter vector for main effects, 2 
is the design matrix for interactions and a is the parameter 
vector for interactions, and E is a vector of independent nor- 
mally distributed errors with expectation zero and variance u2. 

(3) 

For record k,  we have 

In(dA) = InO;,/b,) = f ( P ,  a. A',) + 
2518 

where dA is tons of anchovy sighted per block for positive flight 
k,  bk is the roral number of blocks searched during positive flight 
k (not the number of positive blocks), y, is total tons of anchovy 
sighted, and is a normally distributed error with expectation 
zero and variance u2. The number of positive blocks (6,) was 
incremented each time a fish spotter left one block and entered 
another so that an individual block searched twice during a flight 
would be counted twice. 

Subscripts i and L in (4) index main effects (years, fish spot- 
ters, regions, seasons, and time of day), w and v index factor 
levels (e.g. spring, summer, and autumn for seasonal effects), 
J ,  is the number of levels for factor i, JL is the number of levels 
for factor L ,  and k is used to index flights or records. The coef- 
ficient Po is the mean log density (In(dk)) of anchovy sighted 
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TABLE I .  Symbols and descriptions for main effect and interaction 
parameters in lognormal linear models. The symbols “M”’ and “ Y ”  

are used to subscript factor levels. The symbols “a” and ”p” are 
used in models for density, while “y” and ‘ I T ”  are used in models 
for proportion positive. 
Parameter Description 

Vector for interaction parameters 
Vector for main effect parameters 
Mean log density (ln(d,)) or mean log propor- 

tion positive (In(?‘, + I ) )  of anchovy 
sighted for a reference year (1963). region 
(region 2). season (winter, January-March). 
time of day (nighttime), fish spotter (fish 
spotter I ) .  and, if applicable, set of envi- 
ronmental conditions 

Year effects: N = 1-27 for years 1964-90 
Region effects: w = 1-4 for regions I ,  3. 4. 

and 5 
Seasonal effects: n. = 1-3 for spring (April- 

June), summer (July-September), and 
autumn (October-December) 

Dayinight effect: w = 1 for daytime 
Fish spotter effects; w = 1-21 for fish spot- 

ters numbered 2-27 (some fish spotters with 
less than 20 flights excluded) 

Temperature effects; w = 1-4 for tempera- 
tures S12”C. >I2 and S14”C, >I6 and 
s 18°C. and > 18°C 

Mixed layer depth effects; w = 1-3 for mixed 
layer depths s 2 0  m. >20 and s40 m. and 
>60 m 

Interaction between regions and seasons; 
w = 1-4and v = 1-3 

Interaction between seasons and time of a day; 
w = 1-3andv = 1 

Interaction between regions and time of a day; 
w = I-4andv = 1 

for a reference year (1963), region (region 2). season (winter, 
January-March), time of day (nighttime), and fish spotter (fish 
spotter 1). The vectors p and a hold parameters for main effects 
and interactions (see Table 1 for details). The vector X, holds 
the dummy variables Xi*l (Weisberg 1980) for main effect i, 
level w, and positive flight k .  The number of parameters and 
dummy variables for each main effect was equal to the number 
of categories minus 1. There were, for example, three param- 
eters for seasonal effects with three dummy variables that were 
O,O,O for winter (January-March) flights l,O.O for spring 
(April-June) flights, 0 , l  ,O for summer (July-September) 
flights, and O,O, 1 for autumn (October-December) flights. 

We used a stepwise linear regression program (BMDP2R; 
Dixon et al. 1988) to obtain maximum likelihood estimates for 
parameters in (3) and (4). The stepwise regression program 
sequentially applied forward selection and backward elimina- 
tion algorithms to avoid problems associated with using one or 
the other exclusively (Weisberg 1980; Draper and Smith 1981). 
and statistical significance was established if the F-value for 
parameters associated with a main effect or interaction exceeded 
4.0. The stepwise regression program made it easy for us to 
identify and select groups of parameters for main effects and 
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interactions in the model that were statistically significant (i .e. 
explained a significant amount of variance in the dependent 
variable; see Kerlinger and Pedhazur 1973). In a few cases. we 
forced the program to include an insignificant main effect or 
effects associated with a significant interaction so that, for 
example, both main effects A and B would be included if the 
interaction between A and B was significant. Changes in the 
coefficient of determination (R’) and order in which the step- 
wise regression procedure included variables and interactions 
were used as crude measures of their relative importance. 

A standardized and unbiased measure of anchovy density in 
positive flights during year j is d = exp(P, + pi, + 0 - / 2 )  
where Po is mean log density (Inid,)) for the reference year. 
region, season, time of day, and fish spotter and pi, is the main 
effect for year j .  This measure was estimated by 
(5 )  4 = exp & + 6,) ~4 
where “hats” (”) denote estimates from fitting the lognormal 
linear model (3) to.data and Vd is a correction for bias. The 
correction for bias and variance of d, were calculated as 
described in Appendix 1.  

Data used to estimate proportion positive ( P )  were aggre- 
gated by year, fish spotter, region. time of day, and season in 
order to reduce the size of the data set. Preliminary analyses 
indicated that effects of different approaches to aggregating data 
were minimal. A lognormal linear model similar to (3) and (4) 
was used to estimate proportion positive: 

(6)  In ( P ,  + 1)  = In (f,/B, + 1) = f ( ~ ,  y .  X,) + <, 
where P ,  is proportion positive for record k .  Positive blocks 
(f,) is the total number of blocks searched duringpositive flights 
and B, is the total number of blocks searched during all flights 
that contribute to record k .  The additive constant 1 in (6) 
allowed logarithmic transformation when P ,  was zero. Choice 
of additive constant can effect results from analysis of variance 
models (Berry 1987). The additive constant 1 was a reasonable 
choice for our data because it usually reduced and never 
increased skewness after the transformation, while smaller val- 
ues (e.g. 0.1) sometimes increased skewness. The linear func- 
tionf( ) in (6)  is the same as in (3) and (4) except that the 
vectors T and y hold parameters for main effects and interac- 
tions (Table 1). The term <, was assumed to be a normally 
distributed error with expectation zero and variance 6’. 

The assumption of normally distributed errors (ei and <J in 
(3) and (6)  was reasonable because of the Central Limit Theo- 
rem (values of P ,  were averages usually computed from a large 
number of observations) and because scatter diagrams of resid- 
uals were symmetric. A natural alternative would have been to 
assume binomial-distributed errors and estimate proportion 
positive (P  ,) by logistic regression or other likelihood-based 
procedures (McCullagh and Nelder 1983). We chose to assume 
normally distributed errors because software for lognormal lin- 
ear models facilitated computation of approximate variances for 
proportion positive and our index of relative abundance 
(Appendix I ) .  The assumption of constant variances in (3) and 
(6) was reasonable because scatter diagrams of residuals did 
not show any trend when plotted against predicated values or 
independent variables. 

A standardized and unbiased measure of proportion positive 
during year j is P, = exp(7, + T], + 6*/2) - 1 where T, is 
the mean of log proportion positive (In(P, + 1) for a reference 
year, region, season, time of day, and fish spotter and is the 
main effect for year j .  This measure was estimated by 

(7) P, = exp(+, + iU) Urp - I 
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where Tp is a correction for bias and estimates were obtained 
by fitting the lognormal l inea model (6) to data. The correction 
for bias and variance of P, were calculated as described in 
Appendix 1. 

Substituting ( 2 )  into (1) and replacing parameters with their 
estimates from ( 5 )  and (7) gives the following estimate of rel- 
ative abundance for anchovy in year j :  

(8) i, = 4 PJAi  

Variance of (8) was estimated as described in Appendix 1. 
Models and procedures used with environmental and fish spot- 
ter data were similar to those used with the complete data set. 

The structure of models (3) and (6) allowed us to estimate 
abundance of anchovy in the last year of the time series from 
data for only one season in that year. The estimates obtained 
in our analysis for 1990, for example,were based on data for 
January-March, while estimates for all other years were based 
on data for January-December. Use of data for one season or 
partial season in the last year decreases precision but makes it 
possible for managers to make estimates, which may be impor- 
tant in some circumstances, of relative abundance during the 
most recent or current fishing season. Another approach is to 
use annual periods other than calendar years so that the last 
season with data is the end of the last annual period (Jacobson 
and Lo 1991). 

Results and Discussion 
For the complete data set, the stepwise regression procedure 

included the same variables and interaction terms in the model 
(3) for density (d) and as in the model (6) for proportion positive 
( P )  (Table 2). Effects due to time of day, regions, seasons, and 
fish spotters were all more pronounced than year effects (which 
are used in (8) to estimate relative abundance) in both models 
(Table 2). Final estimates for all indices (corrected for bias) are 
given with standard errors in Table 3. 

Results for the environmental and subset of the fish spotter 
data were similar to those for the complete data set except that 

= [exp I& + &,) q41 [exP (io + i t , )  T p ,  - 11 A,. 

the stepwise regression procedure included sea surface tem- 
perature in the model (3) for density ( d )  and both temperature 
and mixed layer depth in the model (6) for proportion positive 
( P ) .  Although effects due to sea surface temperature and mixed 
layer depth were less pronounced than year effects in both 
models, these results indicate that environmental data were use- 
ful in interpreting fish spotter data. Final estimates for all indices 
(corrected for bias) are given with standard errors in Table 4. 

Additional information about the importance of environmen- 
tal variables can be obtained by examining results for 1983 
which was an El Nino year with unusually warm water tem- 
peratures in the study area (Fiedler et al. 1986). The estimate 
of relative abundance ( I )  for anchovy during 1983 from the 
complete data set was implausibly low relative to the estimates 
for 1981, 1982. and 1984 due to low density (d)  and proportion 
positive ( P )  (Fig. 3; Table 3). while the coefficient of variation 
(CV) for 1983 was higher than for adjacent years (Table 3).  In 
contrast, the estimate of relative abundance ( I )  during 1983 and 
the coefficient of variation from fish spotter and environmental 
data (Fig. 3; Table 4) were more similar to estimates for 1981 
and 1984 (no estimate for 1982 was available because of no 
environmental data). This result indicates that environmental 
data may be important in interpreting fish spotter data, partic- 
ularly, as in El Nino years, when unusual environmental con- 
ditions exist. 

Total area covered by fish spotters in each year ( A )  increased 
from 180 blocks in 1963 to around 350 blocks in the late 1980's 
(Table 3; Fig. 4). The number of blocks in which anchovy were 
sighted averaged about 100 blocks during 1963-84 and about 
150 blocks during 1985-90. Since the number of blocks cov- 
ered by fish spotters in each year was larger than the number 
of blocks in which anchovy were seen, we concluded that there 
was little bias in our estimates of relative abundance ( I )  due to 
fish spotters failing to cover the entire range of the anchovy 
stock. 

Evaluation of Indices . 

We evaluated indices of relative abundance from fish spotter 
data by comparing them with estimates of total anchovy bio- 

9, 
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TABLE 2. Summary of lognormal linear models for density in positive blocks (d )  and proportion positive 
( P )  fit to the complete fish spotter data set for northern anchovy. Columns give the order of entry and 
change in R' for main effects and interactions included in the models. Numbers in parentheses indicate 
the number of parameters estimated for each variable or interaction. The row labeled "Records" gives 
the total number of flights (in the model for density) or records (in the model for proportion positive) 
used to estimate parameters. 

Density (d)  Proponion positive (P) 

Change Change 
Order in R' Order in R' 

Intercept Included in all models 
Time of day 1 0.088 ( 1 )  3 0.0016 (1) 
Regions 3 0.028 (4) 1 0.056 (4) 
Fish spotters 2 0.26 (21) 4 0.105 (21) 
Seasons 5 0.0127 (3) 2 0.025 (3) 
Years 6 0.058 (27) 5 0.058 (27) 
Region by time 

of day interaction 4 0.0217 (3)" 6 0.0172 (4) 
Scason by time 

ol' day interaction 8 0.0016 (3) I 0.009 (3) 
Region by season 

interact ion 7 0.015 (IO)' 8 0.011 (IO)" 
Records 6793 3733 
Total R' (adjusted) 0.48 0.24 

"Some coefficients were not estimated because of collinearity with other independent variables 
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TABLE 3. Relative abundance of anchovy during 1963-90 and other estimates from the complete fish 
spotter data set. A is the area (number of unique blocks) covered by fish spotters in each year. number 
positive is the number of blocks in which anchovy were seen. d is densit! (tons per block) of anchob! 
for positive flights. P is proportion positive. I is relative abundance of anchovy. and CV is the coefficient 
of variation. Estimates of density ( d )  and proportion positive (P) were corrected for bias as described 
in the text. 

Number 
Year A positive d" CV(d)(%) P CV(PI(7r) / CV(/)(%) 

1963 
1964 
1965 
1966 
1967 
I968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
I985 
1986 
1987 
1988 
1989 
1990 

180 
206 
208 
224 
200 
22 1 
223 
143 
I75 
184 
338 
304 
280 
388 
289 
283 
288 
196 
232 
249 
340 
34 1 
357 
332 
352 
335 
379 
35Ih 

I26 
I18 
112 
106 
108 
106 
90 
75 
82 
87 

146 
96 
68 
97 
99 
84 
88 

loo 
I I O  
88 
19 
82 
I51 
122 
1 I9 
20 1 
142 
147h 

13 
76 
67 

109 
132 
50 

163 
167 
156 
154 
339 
255 
392 
22 I 
248 
358 
590 
455 
313 
264 
78 

176 
349 
132 
1 I4 
275 
81 

227 

22 
26 
25 
24 
23 
25 
23 
24 
23 
23 
23 
23 
23 
23 
23 
25 
25 
29 
29 
28 
36 
32 
30 
29 
31 
31 
32 
42 

0.47 
0.61 
0.56 
0.60 
0.71 
0.48 
0.51 
0.71 
0.70 
0.67 
0.64 
0.76 
0.84 
0.63 
0.71 
0.52 
0.54 
0.69 
0.46 
0.42 
0.27 
0.29 
0.44 
0.42 
0.43 
0.50 
0.47 
0.41 

15 
16 
17 
16 
I4 
19 
18 
16 
15 
16 
I5 
14 
I4 
16 
15 
18 
19 
19 
23 
21 
33 
31 

23 
24 
22 
23 
33 

77 -- 

I 129 
9 569 
7 851 

I4 643 
19 IO5 
5 260 

18 663 
16 965 
19 082 
19 025 
73 493 
58 892 
91 789 
53 966 
50 683 
52 898 
91 366 
61 345 
33 281 
27 846 

7 I25 
17 373 
54 261 
18 289 
17 103 
46 164 
I4 373 
32 527 

27 
30 
31 
29 
27 
31 
29 
29 
27 
28 
28 
27 
27 
28 
27 
31 
31 
33 
37 
37 
49 
45 
38 
38 
40 
38 
40 
54 

~~~ 

"Rounded to nearest integer 
bArea (A )  and number positive for 1990 estimated From the average balues for 1985-89 

mass during 1964-86 (Fig. 3) obtained independently by catch- 
at-age analysis using a stock synthesis model (Methot 1989). 
The stock synthesis model is a form of catch-at-age analysis 
that incorporates information about relative abundance of 
spawning or schooling anchovy from four fishery-independent 
surveys, commercial fishery data. and environmental data in a 
single maximum likelihood based procedure. Although the 
stock synthesis model for northern anchovy was designed to 
estimate spawning biomass. total biomass estimates are pro- 
duced as well (Methot 1989: Lo and Methot 1989). Stock syn- 
thesis estimates of anchovy biomass have been used to set catch 
quotas since 1986 and were the best estimates available. 

We also compared our estimates of relative abundance with 
updated versions of the simple TiBAF index from fish spotter 
data (Fig. 3) described by Squire (1972. 1983) to determine if 
our more complex approach was any better. 

When comparing indices, it is important to remember that 
estimates of relative abundance from fish spotter data measure 
changes in schooling biomass rather than total, catchable, or 
spawning biomass. These distinctions may be important if. for 
example, young fish do not school or a large fraction of the 
stock is immature. 

The first step in evaluating indices was to determine which 
were linear measures of relative biomass for northern anchovy. 
We fit a quadratic polynomial (parabolic) regression model to 
each index of relative abundance: 

(9) L, = l,B, + LIB: + E, 
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where L, is an index that measures biomass in year .v (e.g. Ti 
BAF). B ,  is anchovy biomass during year! estimated by Methot 
(1989) using a stock synthesis model. L ,  and i2 are parameters. 
and E ,  is a normally distributed statistical error. The important 
features of this model are that it intersects the origin (indices 
have zero value at zero anchovy biomass) and nonlinearity in  
the relationship between an index and anchovy biomass is indi- 
cated by the sign and statistical significance of the estimate of 
L?. If the index of abundance (L) is not a linear estimate of 
anchovy biomass (B) .  then the estimate of iz should be signif- 
icantly different from zero. Negative values of L, indicate sat- 
uration. The parabolic model (9) worked well for our data 
because the inflection point of the fitted line fell outside the 
range of the data for each index and the line was always increas- 
ing in the range from zero to the largest observed biomass level. 

Results from the regression analyses (Table 5 )  indicate that 
our index of relative abundance from fish spotter data ( I )  and 
TiBAF were linear measures of relative anchovy biomass 
(Table 5 ) .  Parameter estimates for L? were not statistically sig- 
nificant @-value > 0.05) for our index of relative abundance 
from fish spotter data (1. with and without environmental data). 
T/BAF, and, in the case of fish spotter with environmental data. 
proportion positive (P). 

To further evaluate linear measures of relative biomass for 
anchovy, we computed correlation coefficients between indices 
from fish spotter data and stock synthesis estimates of anchovy 
biomass: 
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TABLE 4. Relative abundance of anchovy during 1963-90 and other estimates from a subset of the 
complete fish spotter data plus environmental data. Column headings and definitions as in Table 3. 
Area (A in (8)) used to estimate relative abundance from fish spotter and environmental data was the 
same as listed in Table 3 for a complete data set. Estimates for some years are unavailable due to a 
lack of environmental data. 

Year d" Cv(d)(%) P CV(P)(%) I CV(O(%) 
1963 41 33 0.19 9 1366 34 
1964 532 43 0.16 14 17 452 45 
I965 368 45 0.16 15 12 076 47 
1966 864 35 0.15 12 29 311 37 
1967 820 40 0.17 13 28 634 42 
1968 24 5 40 0.08 25 4 126 48 
1969 943 33 0.13 13 27 583 36 
1970 
1971 
1972 810 35 0.13 13 19 449 37 
1973 No environmental data available 
1974 819 37 0.30 9 74 747 38 
1975 2 564 34 0.25 8 179 773 35 
1976 676 41 0.10 25 26 526 48 
1977 645 40 0.11 21 20 91 1 46 
1978 1 804 39 0.06 30 29 046 49 
1979 1 153 77 0.06 48 19 729 91 
1980 I 809 57 0.17 19 60 890 60 
1981 I057 52 0.11 22 26 877 56 
1982 
I983 520 57 0.03 75 5 389 94 
1984 562 57 0.04 57 8 387 81 
I985 89 I 56 0.05 50 16 123 76 
1986 794 57 0.05 52 12 687 77 
1981 868 57 0.05 53 14 566 78 
1988 434 63 0.02 129 3 166 144 
1989 2 052 67 0.06 46 45 568 81 
1990 I 445 63 0.07 48 33 333 79 

"Rounded to nearest integer 

Correlation with 
stock synthesis 

estimates 

other type of catch-at-age analysis with auxiliary information 
(Deriso et al. 1985; Pope and Shepherd 1985; Gavaris 1988) 
would have been just as suitable. Our results are general enough 
to indicate the relative benefits of including fish spotter data in 
catch-at-age analysis with auxiliary information for fisheries 
similar to the anchovy fishery. A detailed description of the 
simulations is eiven in Auuendix 2. 

Index 

TIBAF 0.60 
I (no environmental data) 0.67 
I (with environmental data) 0.63 

Indices of relative abundance ( I )  for anchovy based on delta- 
lognormal linear models appear superior to the TiBAF index 
because correlations with stock synthesis estimates of total bio- 
mass were slightly higher and because the TiBAF index dropped 
to implausibly low levels after 1982 (Fig. 3). 

The correlation between stock synthesis estimates of biomass 
and our estimates of relative abundance ( I )  from environmental 
plus fish spotter data was almost as good as the correlation with 
estimates from the complete data set even though the sample 
size for each year was smaller. This result indicates that envi- 
ronmental data, if readily available, could be used to improve 
the precision of relative abundance indices from fish spotter 
r l a t i  --.- 

Simulation of Anchovy Biomass Estimates 

Two simulation experiments involving the stock synthesis 
model for anchovy were conducted to determine if our index 
of schooling biomass ( I )  could be used to improve spawning 
stock biomass estimates for northern anchovy. The stock syn- 
thesis model was used in the simulation experiment because it 
was convenient and actually used to manage anchovy. but any 
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Simulation results indi'cated that fish spotter data increased 
the precision of biomass estimates from the stock synthesis 
model by about 10% on average (Fig. 5 ) .  Coefficients of var- 
iation for spawning biomass estimates with fish spotter data 
ranged from 7.8 to 40% in the last year and ranged from 7.6 
to 54% in the last year without fish spotter data. 

Fish spotter data may have reduced bias in stock synthesis 
estimates of spawning biomass for northern anchovy. Bias of 
stock synthesis estimates for each year was measured by the 
percentage difference between the mean estimate from the sim- 
ulations and the "true" value assumed in the simulation exper- 
iment. i.e. as (Invenigr - I,,,,)/I,,, x 100. Percentage differ- 
ence is a reasonable measure of bias when the number of 
simulations employed is large but may be misleading when the 
number of simulations is as small as 50 because the mean of a 
small sample will differ from the underlying population mean 
due to sampling error only (Efron 1982). 

The absolute value of our measure of bias ranged from 0 to 
10% (0-63 000 tons) of true values in the simulation for rel- 
ative abundance estimates from fish spotter data and from 0 to 
12% (0-75 OOO tons) for relative abundance estimates without 
fish spotter data (Fig. 5 ) .  As explained above, however, these 
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FIG. 4. Number of blocks in regions 1-5 covered by fish spotters (A) 
and number of blocks where anchovy were found during 1963-90. 

results were based on relatively few simulations and may be 
misleading. Additional work is required to determine the nature 
and extent of possible bias in the stock synthesis model. 

The most imponant effect of using fish spotter data in the 
simulations was increased precision and potential reduction in 
bias for the last year's estimate. The biomass estimate for the 
last year is the least precise in most stock assessments (e.g. 
Rivard 1989) but also the most important because it is used to 
set the next catch quota. Use of fish spotter data in our simu- 
lation experiment resulted in an improvement of 26% in the 
precision of spawning biomass estimates for the last year and 
may have reduced bias by 17% (i.e. [121  - 10%]/12%). 
These results indicate that indices of relative abundance based 
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TABLE 5. Sign ( +  or - ) for l2 and itsp-value under the null hypothesis 
that l2 = zero for regression analyses of anchovy abundance indices 
(equation (91). Negative estimates indicate saturation. Small p-values 
(e.g p < 0.05) indicate nonlinearity. 

Estimate for iZ 

Index Sien 
TiBAF - 
Area (A )  - 
Indices from fish spotter data only 

Density for positive blacks ( d )  - 

Relative abundance ( I )  - 
Proportion positive (P) - 

Indices from fish spotter and environ- 
mental data 

Density for positive blocks ( d )  - 
Proportion positive (PI - 
Relative abundance ( I )  + 

p-value 
0.910 
0 000 

0.01 1 
O.OO0 
0.317 

0.049 
0.793 
0.266 

* WITHOUT 
0 WITH 

-4% 

I -6%' , , , , , , , , , , , , , , /  , 
64 66 68 70 72 74 76 78 80 82 84 86 88 90 

YEAR 

FIG. 5. Coefficients of variation (top panel) and percent bias (bottom 
panel) for estimates of anchovy total biomass during 1964-90 from 
the stock synthesis model. Coefficients of variation and percent bias 
were calculated by simulation for estimates made with and without 
fish spotter data. 

on fish spotter data are cost-effective ways to improve biomass 
estimates used to manage the fishery for northern anchovy. 

Our work extended the delta distribution models proposed 
by Aitchison and Brown (1957) and Pennington (1983) because 
both density of anchovy in positive blocks ( d )  and proportion 
positive (P)  were estimated using models that allowed us to 
include factors (e.g. pilots) that affected estimates of density 
and proportion positive and increased the precision of our esti- 
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mates .  Our approach should b e  applicable whenever the  statis- 
tical distribution of da ta  is dis tor ted by excessive zeros (e .%.  
ichthyoplankton surveys)  and affected by external  factors or 
covariates ,  b u t  care should be taken t o  ensure that the distri- 
bution of nonzero d a t a  is as assumed for est imat ion procedures 
(Meyer s  and Pepin 1990). 

Future Research 

The models we developed for fish spotter da ta  may be best 
sui ted for relatively short t ime series because the number of 
parameters  will increase as data are collected for more years 
and pilots. At some point, the number of parameters may grow 
large enough t o  make the models cumbersome and t o o  large 
for small compute r s .  Future  work could usefully be directed 
towards  reducing the number of parameters ei ther  by restricting 
the number of years included in the analysis or developing alter- 
native statistical approaches.  

For sufficiently long collections of fish spot ter  data, i t  may 
be possible and advantageous t o  develop t ime  series models 
(Abraham and Ledolter 1983). Our approach estimated relative 
abundance for each year separately and may no t  have fully uti- 
lized the  da t a  because relative abundance of fish in adjacent 
years is usually similar enough to be used for making est imates  
(Roff 1983). 
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Appendix 1. Corrections for Bias and Variance 
Calculations 

Approximate estimates for the variance of relative abundance 
in each year ( I  in (8)) were computed by the delta method (Seber 
1982): 

where hats (*) denote estimates, Var ( ) denotes variance, I is 
the index of relative abundance for anchovy in each year, A is 
area of the anchovy stock, d is the density of anchoyy in pos- 
itive blocks, P is the proportion positive, and Cov(d,P) denotes 
the within-year covariance of estimates for density (d )  and pro- 
portion positive (P). Variances for estimates of d and P were 
calculated as described below. The covariance term in (AI) was 
estimated approximately from the correlation of d and P among 
years and the wirhin-year standard deviation of d and P: 

(A2) COV(~,P) p2.p [ S E h  SE(P)I 

where denotes the correlation and se( ) denotes a standard 
error. 

Unbiased estimates of anchovy density in positive blocks (d 
in (5)) and proportion positive blocks ( P  in (7)) as well as var- 
iance estimates for d and P were calculated as described by 
Bradu and Mundlak (1970). The correction for bias in ( 5 )  and 
(7) involves a correction factor Y (Yd for density and Yp for 
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proportion positive). Assuming lognormal-distributed errors, 
the correction factor is 

where g,( ) is a function described below, is the residual 
variance (a' in (3) for density or ti2 in (6) for proportion pos- 
itive), rn is (legrees of freedom for the estimate of residual var- 
iance, = P, + 6, for density (d) or ii = io + i,, for pro- 
portion positive, and (** is the variance of % 

The function g,( ) in (A3) is 

644) g, ( t )  
rnp(m + 2p) = q  p = o  m(m + 2 ) .  . . (rn + 2p) 

c 

where t i s  the argument fqr the functiop. 

as 
Variance estimates ford in (5) and P in (7) were calculated 

where Var( ) is the variance of either 2or P. 

Appendix 2. Simulations 

First, the stock synthesis model for northern anchovy was 
modified to include the new index of schooling biomass from 
fish spotter data. The original stock synthesis model for anchovy 
included an index of schooling biomass based on a sonar survey 
conducted by the California Department of Fish and Game dur- 
ing 1969-85 (Mais 1974; Methot 1989). Sonar and fish spotter 
indices both measure relative schooling biomass, so the pattern 
of age-specific availability of anchovy to the fish spotter index 
was assumed to be the same as for the sonar survey (age-spe- 
cific availability patterns are used in the stock synthesis model 
to relate the index of schooling biomass to stock age structure). 
This assumption allowed us to include the new fish spotter index 
for anchovy with a minimum of additional programming. The 
fish spotter index was given the same relative weight as other 
types of information about abundance in the stock synthesis 
model. 

The modified stock synthesis model was fitted to data, 
including the index based on fish spotter data, for 1964-90. 
After the model was fitted, predicted values for each type of 
data were calculated and stored. Standard deviations for the fit 
of the model to each type of relative abundance data were cal- 
culated (assuming a lognormal distribution for discrepancies 
between observed and predicted values). 

Fifty simulated data sets with fish spotter data and 50 sim- 
ulated data sets without fish spotter data were generated (the 
number of simulations conducted was limited by available com- 
puter time). A pseudorandom number generator, predicted val- 
ues from the original fit, and standard deviations calculated as 
described above were used to generate relative abundance data 
for the simulation experiment. Age composition data were gen- 
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erated from predicted age compositions by assuming multi- 
nomial sampling errors. The stock synthesis model was fit to 
each of the simulated data sets and coefficients of variation for 
estimates of spawning biomass during 1964-90 were calculated 

to evaluate precision. This approach to estimating coefficients 
of variation for spawning biomass estimates is a “parametric 
bootstrap” approach in the language of Efron (1982). 
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