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A theoretical framework is proposed for analyzing fish movement and modeling the associated dynamics using
tagging data. When tagged fish are released in an area small compared with the domain of the fish population and
over a period short compared with the time they take to disperse throughout their domain, the pattern of movement
approximates a point-source solution of the underlying population dynamics. A method of point sources (Green
functions) is invoked for representing the solution of the tagged and untagged fish field equations (partial differential
equations) in terms of integral equations. As an approximate representation of a tagging experiment, the Green
function is interpreted as the probability density of survival and movement from point to point in space-time. The
Green functions are constructed empirically using one parameter, catchability, as the ratio of population density
of tagged fish divided by the number of tagged fish released. The number of tagging experiments necessary to
characterize the population is dictated by the dependence of catchability on space-time. The moments of the
Green function are used to calculate model parameters and lead to the identification of a closed form expression
for the transition probability densities of the model assumed.

Un plan de travail théorique est proposé pour analyser les déplacements des poissons et modéliser la dynamique
connexe au moyen de données de marquage. Lorsque des poissons marqués sont relachés dans une zone de faibles
dimensions par rapport au domaine occupée par la population de poissons et sur une courte période par rapport
au temps de dispersion nécessaire dans leur domaine, le profil de déplacement correspond a peu prés a une
solution de source ponctuelle de la dynamique des populations sous-jacente. Une méthode de sources ponctuelles
(fonction de Green) est retenue pour représenter la solution des équations de mouvement des poissons marqués
et non marqués (équations aux dérivées partielles) en fonction d’équation intégrales. A titre de représentation
approximative d’une expérience de marquage, la fonction de Green est interprétée comme la densité de probabilité
de la survie et du déplacement d’un point a 'autre dans 'espace et dans le temps. Les fonctions de Green sont
établies de facon empirique 2 I'aide d’un parametre, la vulnérabilité, qui correspond au rapport entre la densité
de population des poissons marqués divisée par le nombre de poissons marqués relachés. Le nombre d’expériences
de marquage nécessaires pour caractériser la population est dicté par [a dépendance de la vulnérabilité & I'égard
du temps et de "espace. Les moments de la fonction de Green sont utilisés pour calculer les parametres du modele
et permettent |'établissement d’une expression fermée des densités de la probabilité de transition du modele
hypothétique.
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1. Introduction

Considerable effort has been devoted to understanding animal
movement patterns (Okubo 1980; Murray 1989). In particular,
the study of fish movement patterns by the use of tagging
experiments has been reviewed by Hilbomn (1990), who dis-
cussed recent studies on the subject (Bayliff 1979; Ishii 1979;
Sibert 1984; Hunter et al. 1986; Kleiber et al. 1987). These
studies require the assumption of a model (a partial differential
equation, or, in general, a field equation) parameterized in such
ways so that it accommodates the movement of tagged fish and
the catch and natural death rate densities. The model parameters
are typically evaluated by means of the tagging data and such
extreme value principles as maximum likelihood estimators.

A field equation is also employed in the empirical method
discussed here. It is one of great generality that can be stated
simply as the inhomogeneous advection—diffusion equation
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(Okubo 1980) with mortality for dilute populations with spatially
and temporally varying coefficients. The empirical method that
will be exposed in this work is a one-parameter model and is
adequate for answering the question on fisheries interaction
posed in Section 2. It is also the first step that would be taken to
prepare the data for fitting a multiple parameter model.

In a typical tagging experiment, tagged fish are released over
atime interval short in relation to the time they disperse through-
out their domain and into an area small in relation to the domain
of the population. Under these conditions, the release and
recovery data from the experiment approximate a point-source
solution of the field equations that represent the population
dynamics of the fish. The method of solving inhomogeneous
linear differential equations by use of their point-source solutions
has been known for many years, and the subject is referred to as
the method of Green functions (Feynman 1949; Courant and
Hilbert 1953; Morse and Feshbach 1953; Bjorken and Drell
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1964: Garabedian 1964; Feynman and Hibbs 1965; Byron and
Fuller 1970: Gilbarg and Trudinger 1979). The Green function
associated with a linear differential equation is the solution of
the differential equation under the influence of a unit impulsive
source at one point (i.e., a source of unit strength applied at one
space—time point) and therefore is the point-source solution.

In general. if tagged fish were released at every space-time
point, the subsequent recapture results would differ between
points owing to uneven distributions of fishing effort in space~
time. In addition, there may be other influences that affect the
patterns of the point sources such as geographic (e.g., bound-
aries) and cyclic factors (e.g., seasonal, El Nifio). Nevertheless,
each of the release and recovery measures still represents a
point-source solution of the field equations that describe the
underlying fish dynamics and, therefore, in some manner must
be approximately a Green function associated with the dynamics.

Apparently, Green functions have never been used in modeling
tagged fish populations, the reason probably being that the use
of the method of Green functions requires linearity, and fish
population dynamics processes, such as recruitment, are thought
to be nonlinear. By separating the linear and the nonlinear parts,
and by considering the nonlinear portion as being part of the term
that makes the field equation inhomogeneous, the method of
Green functions becomes not only useful, but conceptually
simple, in fish population modeling.

The following symbols are used:

A = domain of the population

R? = infinite plane

s = boundary of sf

n, = unit vector normal to dsd pointing outward

R = infinite line

ded, = portion of 3¢ on which population is absorbed
094, = portion of 9 from which population is reflected
o, = neighborhood of point r, referred to as a cell

n = number of nonoverlapping cells defined in 4

i, j = unit vectors respectively in the +x and +y directions

{O0:i=1,2,...}=set whose members are 0,, 0, . ..
€ = member of

C = subset or equal to

U = union

< = less than

> = greater than

< =much less than

> = much greater than

< = less than or equal to

2 = greater than or equal to

~ = similar to, of the same order of magnitude
r = xi + yj = position vector € s

r=vNr-r= magnitude of vector r

rr = x4 + y;j =location of tag release €
1 =time

a=age

tr = time of tag release

[ty =1 —1,

T=1ut]

Tr=[tr21C T,

F;=[14;]

9 = interval of time of arbitrary length; a period
m = number of intervals of time 7 into which 7, is subdivided
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¢ (r,t) = fishing effort density field

cr(r,t ) = tagged fish catch density rate field

o{r,t } = untagged fish catch density rate field

pr(r.r) = tagged fish population density field

p(r.r) = untagged fish population density field

dl = infinitesimal line element

d’r = infinitesimal surface element = dxdy in Cartesian
coordinates

¥ = differential operator id/dx + jo/dy

A=V-V=0Y0x*+d¥dy?

jr.) =fluxof p

s(r.f) = source and/or sink density rate of field p

d(r,t) = natural death density rate field

m(r,t), m(f) = natural death rate

q(r.t) = catchability

f(r.n) = fishing death rate field = g(rr ) e(r,r)

z(rt)y = m(r,g) + f(r.0)

Nr(rpty) = number of tagged fish released at space-time point
(rrty)

Ny = number of tagged fish recaptured in the interval of time 7,

L, = spatial differential operator dependent on f

L = spatial differential operator independent of f

N(r',0?) = two-dimensional normal distribution centered at r’ =
X'i + y’j and variance G*

&r — r') = 8(x - x)8(y — y') = two-dimensional Dirac deita
function which can be represented as lim 4_,, N (r’,67)

go(r.tlr’.t”) = effort-dependent Green function, which represents
the probability density that a fish will survive the movement
to point r from point r’ in the interval of time I when fishing
takes place during that time interval

g(rzir’ s’y = effort-independent Green function, which repre-
sents the probability density that a fish will survive the
movement to point r from point r’ in the interval of time J” if
no fishing takes place during that time interval

r(r,r) = recruitment density rate field

uy(r.t) = population density due to recruitment = superposed
recruitment density rate field with the effort-dependent Green
function g,

u(r.r) = population density due to recruitment = superposed
recruitment density rate field with the effort-independent
Green function g

h(t — ") = Heaviside step function which can be represented as
dh(t—t)dt=8(—1t")

v(r.a), v(t) = vi+ v,j = drift velocity

k(r.2), k(t) = diffusivity

E={err):i=1.2,....m j=1,2,...,m+ 1} =setof effort
density measurements

C={cr,r):i=1,2,...,mj=1,2,...,m+ 1} =setof catch
density rate measurements of untagged fish

Gty ={cr(roy)i=1L2,....mj=L1+1,...,m+ 1} =set
of catch density rate measurements of tagged fish released in
cell «, in the interval of time J ..

Gr=(Gr(rtu,):5=1,2,..., n} = set of catch density rate
measurement of tagged fish for » tagged fish releases in zones
s4,, correspondingly in the intervals of time J,, , fors =1, 2,

P /A

A ={g(rut,.):s=1,2,...,n} = set of catchabilities com-
puted from tagging experiments in cells &, correspondingly
in the intervals of time J,, fors=1,2,..., n

R=1{rr):i=1.2, ... ,mj=l+nil+n+1,... . m+1}=
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set of recruitment density rates computed at $¢, in the intervals
oftime J;forj=!+nl+n+1,....m

Go(ri,t) = {go(rotdrty 1 i=1,2,.. .. ms=1.2.....m—-1+1}
= set of values of the effort-dependent Green function
computed from a release of tagged fish in cell &, in the interval
of time 7,

Gy = { Gy, dpey) i s =1,2,. .., n} = set of values of n Green
functions from tagged fish releases in cells &4, correspondingly
during the intervals of time J fors =/, /+1,....1+n~1

GNT ) = {gritlryt) i k=12, ..., n} = set of effort-
dependent transition probability densities for the interval of
time

% =% (T VST U, U (T )= {goridiIrt) i,
k=1,2,...,mj=l+nl+n+1,...,m}=setof
effort-dependent transition probability densities in the inter-
valsof time J;forj=/+nl+n+1,....m

G* = {grialrge) 1 i, k=1,2, ..., nj=1+n
I +n+ 1,...,m} =setof effort-independent transition
probability densities in the intervals of time J; forj = [+ n,
I+n+l, ...,m :

(fr)) (@r'yy= Lj & f(r)g(raxr’ )

(FED) Guleat) =3 sof (E)g(Edilrit)
Lh.s., r.h.s. = left-hand side, right-hand side.

2. Problem Statement and Formulation

Assume that almost all of a fish population is contained in a
domain & € R Although in reality, fish populations inhabit
three-dimensional space, this work will deal with highly
migratory species whose vertical movement is negligible com-
pared with their horizontal motion. Such is the case, for example,
of pelagic species of fish.

Assume also that the population is being exploited with effort
density e(r,) over the time interval F, = [1;,t] = t — ;. During that
time interval, a catch density rate c(r,t) is realized. Because I wish
to determine how an increased fishing effort in a portion of &
will affect the catch density rate in another portion of &, the
movement patterns of the population must be determined. To this
end, a tagging experiment with distinguishable tags is initiated
attime & € I, which resuits in a tagged fish catch density rate
¢r(r,f) in the interval of time I = [t7.1] C I . In addition, I wish
to calculate the recruitment density rate r(r,f) and estimate
parameters assuming that the fish population is accurately
modeled by a diffusive population that drifts.

I have previously considered the fisheries interaction problem
formulated above making no use of differential equations by
applying the principle of linear superposition (Salvadé 1994).
Here, I will go about solving this problem by use of the Green
functions associated with population field equations derived
from the Rayleigh transport theorem (Okubo 1980). This
theorem states that any population that is in motion and
distributed in a space-time continuum must satisfy the
relationship

(1) 9%@+V-j(nt) = s(rt)
T

where p is the population density, j is the flux of p (the amount
of transport of population across a unit area in unit time), and s
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is the source (+) or sink (—) rate densities of p at space~time point
(r,1). The flux j will be assumed to be the resuit of an operation
on the spatial distribution of p that results in a differential
expression that is linear in p.

For a population whose movement and distribution in space—
time are structured by age, the transport equation given in (1)
must be modified. If p(r.t,a) is the population density of individ-
uals of age a at space-time point (r,?), the transport equation is
given by (Murray 1989)

ap(r.ta) . ap(rit.a)

@ = 2

+Vij(rna) = s(rna).

However, because aging is at the same rate as the passing of time,
transforming (2) with the set of transformations for 7 > a

’

N
It

1
t—a
r

]

’
,

L I~

leads to the transport equation

pr' 't —d
3) op(r L~ ) 5 ) +Vj'tt —a’y =8’’’ —a’).
1

Equation (3) is of the same form as (1) except that the latter has
fields with two arguments of time. It follows that the solutions
of the age-dependent field equations can be inferred from those
expressions corresponding to age-independence. Therefore, for
simplicity, this exposition will be for the age-independent case.
A population density is said to be conserved if the source
and/or sink term s in Eq. (I) vanishes, but in the general
treatment here. population density may be nonconservative.
With d(r,t) as the natural death density rate, and r(r.r) as the
recruitment density rate, s(r,7) is generally given by

sr) = r@en) = [dr) +cmn].

The biomass volume of fish populations is small in comparison
with the volume of water they inhabit and, therefore, I shall
assume that the population is dilute. As a consequence of this
assumption, I can make some linear approximations. Because the
catch density rate must be a function of population density (i.e.,
there can be no carch if there are no fish), expanding c(p) in a
Taylor series about p = 0 up to the linear term yields c(p) = fp
(c(0) = 0 necessarily), where f = [dc(p)/0p],o is the death rate
due to fishing. Because f must be a function of effort density (i.e.,
there can be no fishing death if there is no fishing), expanding
f(e) in a Taylor series about e = O up to the linear term yields
f(e) = ge (f(0) = 0 necessarily), where g = [0° c(p.€)/dpde},-—
is the catchability. Therefore, for low population and effort
densities, one can assume the model for catch density rate to be

@ o) = fr)pEn) = gy e®) pn).

Similarly, the natural death density rate 4 must be a function of
population density. Therefore, with m the natural death rate (i.e.,
natural mortality) and d(p) expanded in a Taylor series about
p = 0 up to the linear term (where d(0) = 0 necessarily), at low
population density the model for natural death density rate can
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be assumned to be
(5) dcn) = m@wn) pEs) .

In the method of analyzing the dynamics of populations in space—
time that follows, it is not necessary to invoke a particular model
for the source term corresponding to recruitment density rate.
However, as I shall show, it is possible to determine empirically
the recruitment density rate once the population density due to
recruitment is calculated.

I shall further assume that the population drifts with velocity
v(r.r). The population is also assumed to disperse diffusively
with diffusivity k(r,r). Then. consistent with the assumption of
linearity due to diluteness used in the formulation of the catch
density rate and natural death density rate, the flux of the
population density is

©®) jEm) = Vo) -k@e)Vp@Es .

Therefore, the field equation the population density is assumed
to satisfy is

@) B+ Lo} ps) = r@y)

in the spatial domain r € &, where £, is a differential operator
that operates only on the spatial distribution of p(r.r) and is given
by

®) Ly = br)+b (6 -V +b,(ry) A

where
Jd .0
v=iZlyil
lax+‘l3y
a: az
A=V -V =$+$

9 brn) = e+ V- v(r)
b (r) = vy -V
b, () = —krp)

and z(r,r) = m(r,t) + f(r,1). The restrictions on the parameters of
' t
the field equation are that _[ dtz{rt) = O,J dtk(r,t) = 0, and

that V-v(r,7) and Ak(r.n) exist. For by(r,t) = r(r,t) = 0, field
equation (7) is a Fokker—Planck equation used in the study of
stochastic processes where probability is conserved (Gardiner
1990). In the general treatment of this work, by(r.r) # 0 and
r(r,r) # 0. Because these terms represent sources and/or sinks of
population, probability will not be conserved.

The domain of the population is finite, so I must discuss the
boundary ds{f of «. For the purposes of this paper the boundary
dsd is defined as the line at the edge of # (i.e.. 9 C o) beyond
which the population is unlikely to inhabit due to unfavorable
physicobiological conditions. In general, fish populations have
two types of boundaries: well-defined ones delineating, for
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example, the water-land interface and fuzzy ones demarcating.
for example, lines beyond which if a member of the population
strays is likely to perish due to unfavorable environmental
conditions. It can be shown (Appendix A) that with a prescribed
population density at an initial time (initial condition) the
solution of (7) is unique and “simply” represented when p(r.?) or
the component normal to 0 of Vp(r,z) vanish on dsf. By
“simple” representation of the solution, I mean that the Green
function associated with (7) is a simple function of measurable
quantities, a concept that will become evident when I discuss the
solutions. However, the required simplicity does lead to physico-
biological pertinent boundaries of fish population domains.
Consider the first boundary condition

(10) p(ry) =0

for r € ds4. The drift v(r.z) could be the motion of the medium,
relative to a fixed coordinate system, that the population is riding
or fighting. The diffusivity k(r,?) is ultimately an environmental
variable that could be negatively correlated with the amount of
food encountered by the population at space~time point (r.t).
Low food availability in aregion of the population domain would
mean that the random motion of a foraging fish population in that
region could increase and, according to (7), would be “pushed”
in the opposite direction in which k(r,¢) changes the fastest to-
wards a region of lower k. As I shall later show in an example,
an increased diffusivity at a particular space—time point results
in a decrease of the population density at that point. Although the
natural death rate m(r,) has limits imposed by evolution, it is
dependent also on environmental factors such as food avaii-
ability and probability of encounters with predators. Ahigh value
for m(r,?) could mean low food availability and/or high proba-
bility of encounter with a predator at space—time point (r.t).
Therefore, the boundary condition (10) would be a good model
of a “fuzzy” population boundary preceded by regions of in-
creasing diffusivity and/or natural death rate. A boundary on
which (10) holds is aptly known as the perfectly absorbing
boundary (Okubo 1980; Gardiner 1990). In the mathematical
literature, this boundary condition is known as homogeneous
Dirichlet conditions.

A second boundary condition mentioned above that leads to
unique simple solutions of (7) (together with an initial condition)
is formulated by considering the integral over & of equation (1)
and applying the Divergence Theorem (Courant and Hilbert
1953) to the term containing the divergence of j(r.7). Letting n |
be the unit vector normal to d&d pointing outward, then

L d%% = jﬂ drs(e) - {>M din, -j@n .

This states that the change in population density over time is due
10 the sinks and sources of population in & and the flux of p(r,)
across dsd. However, because & is the domain of the population,
the flux of p across ds§ must vanish and the change in population
density is due to the sources and sinks. Therefore,

n, - jr) = 0

for r € os4. Using (6), it can be written as
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n - v(r.r)

n -Vprs) = “ren

p(r.)

in the domain r € d{. Furthermore, because # is the domain of
the population the vanishing of the flux must be due to the
inability of any member of the population to cross 4. Therefore,
the component of the drift velocity normal to ds{ must also
vanish (i.e.. n * v(r,;/) = 0 for r € d{) and the boundary con-
dition reduces to

(1) n -Vprn =0

for r € osd. A boundary on which (11) holds is aptly known as
the perfectly reflecting boundary (Okubo 1980; Gardiner 1990).
In the mathematical literature, this boundary condition is known
as homogeneous Neumann conditions. This boundary condition
is appropriate for the ocean—land boundary.

I shall assume throughout this work that the boundary of the
domain of the population is composed of segments or portions
which are perfectly absorbing and the remainder perfectly
reflecting. If 954, is the total of the absorbing segments, and 0six
is the total of the reflecting segments, then 04 = dsd,, + 0y .
The solution of the field equation (7), with a prescribed initial
condition, satisfying the mixed boundary conditions is unique
(Appendix A).

Using this formulation, I shall show that data from a tagging
experiment properly performed may be used to construct an
approximate representation of a Green function. I shall, there-
fore, develop an empirical technique to construct Green
functions using tagged fish catch and effort data and use these
results for a fishery interaction problem and the calculation of
model parameters.

3. Problem Solution

In this section, I will develop the Green function as an
approximate representation of a tagging experiment, list its prop-
erties, and use it to represent the tagged and untagged fish
population densities. For an intuitive approach to the develop-
ments in this section which makes no use of differential
equations, see Salvadé (1994).

3.1. Effort-Dependent Green Function

In this subsection, I formulate and find representations of the
solutions for the tagged and untagged portion of the population
in terms of a point-source solution that is dependent on the death
rate due to fishing. I shall also show how the point-source
solutions are constructed from the fields ¢; and e. Although these
are correct solutions to model the population field at one level of
fishing effort, unless m(r,t) > f(r,1), they are not of much use for
the case of considering the interaction between different cells (for
the time being defined as a small subset of $) of the domain of
the population at various levels of effort.

3.1.1. Tagged fish dynamics

Consider a tagging experiment in which Ny tagged fish are
released in an area small compared with s{ about position ry
beginning at time 7 € J,. The duration of the tagged fish release
is short conpared with I, where ¢ > 1, I shall index the number
of tagged fish, location, and initial time of release by writing
NLrr.27).
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Let £, be alinear differential operator which contains the terms
of the field equation that describe the natural and fishing death
rates and the spatial dynamics. Consistent with (7) and the
general fish population problem formulated in Section 2, the
tagged fish population density pr(r,) must satisfy a field
equation of the form

(12) [%JrLOJpr(rJ) =0
in the space—time domainr € &, 12 t7.

The initial condition of the tagged fish release process will be
approximated as if the release is at one point (i.e., at r = ry) and
instantaneous (i.e., at ¢ = f7): an approximate representation of
the initial condition of the population density of tagged fish is

(13) p(ry) = N (ro) 8r — 1)

in the space domain r € & and where 8 is a two-dimensional
Dirac delta function (Lighthill 1964; Butkov 1968). The discre-
tization of space-time will relax the condition of an instan-
taneous release at a point of all the tagged fish.

The boundary 9 = dsd, + 0sd; is assumed composed of
segments on which it is absorbing (ds4,) and those on which it
is reflecting (3sd,). Therefore, p(r,r) satisfies

14) p.(r5y =0
on the space-time domain r € 9sd,, ¢ 2 17, and
(15) n - \Y p,(xt) =0
in the space~time domain r € osdg, 1 > #r.

1 seek the solution of (12) that satisfies conditions (13), (14),
and (15). To this end, I consider the Green function that is
associated with (12) for a source space-time point at (r’,r"). With

respect to the receiver space-time coordinates (r.), the Green
function associated with (12) satisfies (Appendix A)

) .
(16) [E+ Lo}go(r,tlr',t') =3(r-r)d-1)

in the domain r € ¥, a causality condition
(A7) g(rir't) = Oifr<r’
in the domain r € &, and boundary conditions
go(r,tlr’,t =0
forr € 0,and
n - v g,(rtlr 't =20
forr € dsdz.

The solution that satisfies (12), (13). (14), and (15) is given by
(Appendix A)

(18)  pr(nt) = go(nitlvnty) Ny (erty) .
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As an example, if 4, is given by
(19 L, = z2n)+v(Q)- V-kh,

then the solution of (16) in an unbounded domain that satisfies
the causality condition (17) and boundary condition

: PN
h_x)xl grir'ay =0
where » = Vr-r for a source at (rr.t7) is

(20) g (rAr.r) = exp [ _LT d‘c:(r)jl

x N(rT+L_ dwv (z),cr’) hi-1),

N(rr,0?) is the normal distribution centered at r; with variance
o? given by

Q) ) = 2JT drk(T) ,

and h(z — 17) is the Heaviside step function defined as

Oifr<t,
ht—1) =
1ifrze .

As can be appreciated the amplitude of (20) decreases when m
and/or kincrease. Itis initially (i.e., at 7 = ;) a normal distribution
centered at r = ry with vanishing variance (i.e., a Dirac delta
function). For ¢ < 77 the distribution vanishes, while for ¢ > 17 the
distribution spreads at a rate that depends on the diffusion co-
efficient &, and the mean drifts at a rate determined by the drift
velocity v. While the distribution N is normalized for all 7 2 ¢,
the distribution g, does not conserve probability. Because z(f) =
m(r) + f(2) > 0, the exponential function or survivability coef-
ficient (Ricker 1975) leading N in (20) decreases with increasing
time from an initial value of unity. I shall show that these
properties of g, are general properties of the point-source
solutions associated with (19). To see this, I solve for g, from
(18). With the use of (4), I can express g, as a function of the
measured fields e and ¢y as

pr(r.t) _ o (ry) )
N (r.)  g(rn) ern) Nr("r’r)

(22) g (rtr,t) =

Because I know the number N; of tagged fish released at
space—time point (r1.t7), and I have c{r.r) and e(r,?) in the inter-
val of time J7, I can construct empirically the Green function
8o(r.Airr,27) in the interval of time J 7 if [ have g(r,?).

The Green function g, has a series of properties that can be
inferred. The first of these properties will allow the estimation
of ¢(r,r) as follows.

A. Initial — Assuming tagged fish disperse at a finite rate,
initially they must be present at the point of release only.
Therefore, for a source space-time point at (rr,f7), go must satisfy
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g (Rl = dr-r.).

Analtytically this can be deduced by dividing through (13) by
the number of tagged fish released. Therefore, muitiplying
expression (22) by g(r.r) and integrating over the spatial domain
and application of the initial property of g, for r — 7 yields

, cAne)
(23) glrur) = ! Ld-r-—-—r L

NAr.1) e(rt)

Dimensional analysis of (23) reveals that ¢ has the dimensions
of area x time™'. The dependence of its value on spatiotemporal
location will ultimately dictate in how many cells and intervals
of time must tagged fish be released in order to characterize the
pattern of fish movement within &{. The empirical construction
of go(r.;7lr",t”) requires knowledge of g(r.r) for all r € s and all
t € I . The calculation of g by (23) requires that it be done at
the space-time point of the tagged fish release. It follows, there-
fore, that to construct ¢(r.r) forallr € ¢ andalls € J; in prin-
ciple requires performing nondenumerably infinite tagging
experiments if g depends strongly on (r.r). However, as will be
discussed later, discretization and weak dependence of g on (r,7)
will allow some approximations.

The accurate estimation of g using (23) requires that the loss
of tagged fish due to natural mortality during the time of release
be negligible. It is, therefore, important to release the tagged fish
in as short a time as possible. If [t, #r,5] is the interval of time
over which the tagged fish are released, the required condition
of small loss of tagged fish due to natural death rate during the
time of release will be fullfilled if m(r.;;) < 1/[tr,tr,s]. Other
properties of g, are as follows.

B. Dimensional — Dimensional analysis of (22) reveals that
g is a density. That is, g, has the dimensions of area™.

C. Causal — Because tagged fish can exist in their domain
only if they are present at an equal or earlier time, for a source
time ¢y, go must satisfy

go(r,tlr t

iy =0forr<z, .

D. Normalization — As a consequence of the initial property,
J‘ﬁ drg(rtlrr) =1.

E. Probabilistic — Because the number of tagged fish recap-
tured cannot be greater than those released, forz 2 ¢,

0< g (1) <8(r-rp
and therefore,

0<f drg i<t

Hence, g, (r,fIry,ty) can be regarded as the probability density of
atagged fish surviving the movement to position r from rrduring
the interval of time J, when fishing takes place in that interval
of time. Assuming that the recaptured tagged fish are not
rereleased, I will call g, the effort-dependent Green function.

F. Nonconservation of probability — Because tagged fish are
being removed from their domain by natural and fishing deaths,
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in general it must be true that for ¢ > 1,
2
L d'r go(r,nrr.tr) <1.

In order to derive the property of linear superposition of Green
functions, consider the solution (18) which I will write as

(24) pT(r’.t = go(r',z 'IrrtT) N (r.t).

Suppose I wanted to use the final condition py (r’t”) of (24) as
the initial condition of a tagged population problem. The popu-
lation density must then satisfy field equation (12) and initial
condition

, o (r't")
pr't’) = ——t——
g(r't"ye(r't’)

forr’ € « (or some other estimate at (r’,¢") of p;) and boundary
conditions (14) and (15). The solution is given by (Appendix A)

@5) p,x) = le:r'go(r,tlr’,t Yo ).

Dividing (25) by Ny (rt;) and vsing the definition of g, given
by (22) leads to the following property.

G. Linear superposition of probability densities — The proba-
bility density satisfies

(26) gt = | d’r g (rar ) g (et ).

Another important property of g, is its periodicity.
H. Periodicity — A Green function is said to be periodic in
time, of period 7, if 7 is a constant such that

grdr' s ) = grr+ Jir' g ' +J)

(Tolstov 1962). A spatial periodicity can also be defined.

3.1.2. Untagged fish dynamics

Consistent with (7) and the general fishery problem formu-
lated in the foregoing section, I would like to find expressions
for the population density of the untagged portion in the interval
of time I,. However, because the empirical Green function is
constructed for ¢ 2 £ 2 1, in general it is not possible to define
empirically the population density in the interval of time
1, <1 < 1, from a tagging camnpaign initiated at time #;. Therefore,
I shall pose the problem for the untagged portion of the
population in the interval of time Jr.

The population density of untagged fish p(r,#) obeys the field
equation

27 {% + Lo] p(rt) = r(rr)

in the space-time domain r € &, ¢ > #; subject to initial
condition

c(rty)
q(riy) e(rtr)

in the domain r € & (or some other estimate at (r,7;) of p) and

(28) p(rip) = py(r) =
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boundary conditions
(29 pryy =0
in the domainr € 0, t 2 ¢, and

(30) n -Vpry =0

inthe domainr € osdg. 1217,

Because the differential operators for the tagged and untagged
portions of the fish population are identical, even though their
inhomogeneous term and initial conditions differ, this means that
the movement and survivability of tagged and untagged fish are
linked through the equality of their Green functions. In practice,
this is true only if sufficient numbers of tagged fish are released
so that g, constructed as indicated by (22) approximately repre-
sents the average movement and survivability of the total fish
population.

The solution that satisfies (27), (28), (29), and (30) is
(Appendix A)

GO prn) = [ drg, e’ ) p e+ ued)

where the field ue(r,r) is the contribution to the population den-
sity due to recruitment and is given by

G2) urn) = [ ' | drgmarayraiy.

Multiplying (31) by the fishing death rate f(r,) yields the
expression for the catch density rate:

(33) cm) = f(r) [ J; &' g (i 1) p(r) + uo(r,t):l

The contribution to the population density due to recruitment at
the level of exploitation at which the empirical probability
density g, was constructed can be computed by use of (33).
Solving for u,, I have

c(nt)

(34) uyrn) = e

= J @ gyndr ) p ().

Because in the interval of time 77, I know f(r.#) and the resulting
c(r,1), (34) can be used to calculate uy(r,) at the level of effort
for which go(r,fir’ t;) was constructed. However, in general, I

cannot use equation (33) to compute the catch density rate at a

new level of effort unless I perform another tagging experiment
at the desired level. The survivability embedded in g, depends
on the level of exploitation during the recapture of the tagged
fish. Therefore, although these equations using g, are valid for
modeling the movement and distribution of a fish population,
they are in general useful only at the level of effort for which g,
was constructed. In general, no other case can be rigourously
considered. In Section 4, I shall show that if the natural death rate
is much greater than that due to fishing, the equations derived in
this section can be used for a fisheries interaction study. How-
ever, in order to be able to consider the general fisheries inter-
action problem formulated in Section 2 without having to
perform tagging experiments for all the levels of effort that wish
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to be considered. I need to reformulate the problem so that the
solutions for the population density are in terms of a Green
function that is effort independent.

3.2. Effort-Independent Green Function

In this subsection, I shall find the solutions for the population
density for tagged and untagged fish in terms of a Green function
that is effort independent. I shall also show how to construct the
effort-independent Green function from knowledge of the effort-
dependent one. This new Green function satisfies. other than the
fact that it is independent of fishing death rate, properties iden-
tical to those of g,.

3.2.1. Tagged fish dynamics

Consider again a tagging experiment in which N; tagged fish
are released in an area small compared with &l about position ry
beginning at time # € J, with a duration short compared with
J; where 7 > t;. Here again. I shall index the number of tagged
fish, location, and initial time of release by writing Ny(rr.ty).
However. in this case, I shall pose the problem with a differential
operator that is independent of the fishing death rate, and I shall
pass on to the inhomogeneous part of the field equation the
responsibility for embedding into the solution for the population
density the information of catch density rate.

Let £be a linear differential operator which contains the terms
of (7) that describe the natural death rate and the spatial
dynamics. In terms of operator £,, operator L is given by

L= L, ~fr]).

Consistent with (7) and the general fishery problem formulated
in Section 2. the tagged fish population density must therefore
satisfy a field equation of the form

(33) li% + L:lpT(r,t) = —¢, (ry)
in the space—time domain r € &, 1 2 1y, subject to initial
condition (13) and boundary conditions (14) and (15). The
tagged fish catch density rate is now the inhomogeneous term of
the field equation. It is a negative contribution because it is a sink
of population. The solution that satisfies (35), (13), (14). and (15)
is given by (Appendix A)

(36) po(rn) = g(rAr.t) LA

Jp a [ s ey

I need to determine how the effort-independent Green function
is related to g,. On dividing equation (36) by Ny and using the
definition of g, given by (22), the relation between the effort-
dependent and effort-independent Green functions becomes

(37) glrtir) = g(rfr.r)

1
I -
Nr(rptr) * 9
which is an integral equation where g(r,fir’,#") is the unknown.
The exact solution to integral equation (37) is given by the

Neumann series (Courant and Hilbert 1953; Byron and Fuller
1970)

dr’ J dr'g(rdr 't Yer(r'it’)
s
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(38) glrdenty) = 3. g(rdry)

=0
where

1
(39) g(rdr.t) - _dr’
TN (xt) I

x J-ddlr’g,-‘l(ntlr’,t Ner(r'p?)

for i = 1, 2, . . .. The series (38) converges over an arbitrary
interval of time whenever the number of tagged fish recaptured
is less than the total number of tagged fish available at the
beginning of the interval (Appendix B). and therefore, it
converges uniformly to the solution under that condition (Byron
and Fuller 1970).

To discuss some approximations, consider the total number of
tagged fish recaptured in the interval of time

N = ar [ dre e,

If Ny < Ny but N # Ny, the approximation

glrdr,r) = g (rir, 1) +g (var,r)

1
=g rtIrt)+—J It
RG-S 5
N (1) 9,

X L drig (ner' ) (")

can be used. However, if Ny € Ny, which implies m(r,f) > f(r 1),
then the approximation

grdr.r) = go(r,tlrrtT)

is adequate. In a practical computational sense, the expansion is
stopped at the term whose contribution is negligible.

The properties of g can be determined with the help of (37). It
satisfies all the properties of g, listed in Subsection (3.1.1.).
However, because g does not have fishing death rate included,
the survivability associated with it must be in general of larger
magnitude than that of g, except initially. It therefore satisfies

griir, 1) > g (rr 1)

where the equality holds for ¢ = #;. Therefore, g(r,tiry,fy) can be
regarded as the probability density of a tagged fish surviving the
movement to position r from ry during the interval of time J in
the absence of fishing during that interval of time. [ will therefore
call g the effort-independent Green function.

On multiplying (36) by the fishing death rate, the tagged fish
catch density rate is the solution of integral equation

ot = f(rn) I:g(r,tlrr,tr) N (r.1)

_LT a | drgeae 1) et ')].
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3.2.2. Untagged fish dyvnamics

Consistent with (7), the general fishery problem formulated in
Section (2) and the fact that the empirical Green function is
known only for ¢ 2 #, the population density of untagged fish
must obey a field equation

(40) I:% + L:I p(ry) = —c(rt) + r(r)

in the space~time domain r € «, 1 2 t5,, and the conditions (28),
(29), and (30). The solution is

@) ped) = [ dgtwde’ 1) p )+ urn

- a L drg(rAir 1Y e(r' 1)

where

42) (i) = jg dt’-"ﬂdzr "o(rdr ) (e )

represents the contribution to the population density attributable
to recruitment.
The untagged fish catch density rate is the solution of

2

@3) o) = [ [ [ draar sy p )+ u(r,t)]

o[ arr | gy e,

Because the catch density rate is known for the level of effort
employed during the time interval Jr, then (43) can be applied
to those data to determine empirically the field u using

orn

44) ur) = e

- -La dr'g(rdr t)p, b

+ L,7 dr’ jﬂ dr g(rAr 2 Y e(r' t) .

Assuming that the recruitment does not change significantly at
other levels of effort, catch density rate ¢ can then be computed
for differing effort densities e because (43) is valid for any level
of effort as opposed to equation (33), which applies only to the
measure of effort for which the effort-dependent Green function
was constructed.

4. Example: Skipjack Tuna Fishery in the Eastern
Tropical Atlantic

The following example shows how a subset of the type of
fishery models considered in Section 3 can be reduced toa simple
calculation whenever the effort density is sufficiently low. The
fishery of interest is the skipjack tuna (Katsuwonus pelamis)
fishery in the five cells of the eastern tropical Atlantic (ETA)
indicated in Fig. 1. As a politically interesting question, A.
Fonteneau (C.R.O.D.T., B.P. 2241, Dakar, Senegal) asks in a per-
sonal communication what effect the doubling of effort in one
cell might have on the catches from the other four.
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FIG. 1. Eastern tropical Atlantic (ETA) geographic cells: 1, Senegal;
2, Liberia; 3, Ghana; 4, Cape Lopez: 5, Angola.

The data required for the analysis consist solely of the mark
and recapture measures from the International Skipjack Year Pro-
gram, conducted over a 3-yr period by the International Com-
mission for the Conservation of Atlantic Tunas (Symons et al.
1986). Although the corresponding catch and effort densities are
also given in Symons et al. (1986), the only information needed
here is the reported 5% tag return, together with the assumptions
that almost all of the tagged fish survived the trauma of tagging
and that almost all of the recaptured tags were reported. As I will
show, the fishing effort expended during the experiment was
sufficiently low to permit me to regard the dynamic catch density
rate as approximately a linear function of effort density.

In the most extreme case, all of the Ny =5 X 1072 Ny recovered
tags could have been taken in just one of the five cells over a
single time interval corresponding to the space—time point (g, Zz)
for g 2 tr. Accordingly, the catch density rate of the tagged fish
would then be c{r,f) = Npd(r — rz)d(r — 1z). Therefore, on
substituting those values in (37) and integrating, I can conclude
that the difference between the effort-independent and effort-
dependent Green functions is no greater than

griir,r) — g (rAr ) = 5x 107 g(rair,z,) .

Because 5x 1072 < 1, g = g, which in turn implies that the natural
death rate is much greater than the fishing death rate. In that limit,
(33) becomes

e = fF(rd) [ jm dr'g(rir 1) p(r) + u(r,t)} .

The catch density rate, under the condition of low fishing death
rate in relation to the natural death rate, is approximately a linear
function of effort density. Had the tag return been double its
reported value, the approximation of catch as a linear function
of effort would still hold because Ng/N; = 0.1 is an order of
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FiG. 2. Domain & of the population is divided into n nonoverlapping
cells. The vector n . is the unit vector normal to the boundary ds{ of
the domain pointing outward.

magnitude smaller than 1. Should the recruitment density rate
not change sigificantly, doubling the effort would have the effect
of approximately doubling the catch. Thus, in answer to the
Fonteneau question. if the effort in one or more of the five cells
were doubled, the catch from the remaining cells would remain
approximately constant.

5. Discretization of the Fields

Should the fishing death rate approach or exceed the natural
death rate, the field equations of Section 3 must be treated in
much more detail to address the general fishery problem outlined
in Section 2. A numerical solution is proposed in this section.

With reference to Fig. 2, the individual cells of area &, of the

domain &, where i=1,2,.. ., n, are such that
d=3 4
=1
(i.e., no overlap of cells), and {r, € &f,: i=1,2,.... n}. Here,

cell 4, is defined as a neighborhood around point (or nuclei) r,.
A cell is defined about every data collection nucleus. An
economic zone can be composed of more than one cell. The
closed time interval I; = [t1,t] = [#)1,,.1], Where [ > 1 and the
equality holds only if Iy = J,. The m time intervals {J; =1, —
t:j=1,2,...,m} are such that

g, = Z ET; = [tt,n] -

=1

The value of a field ¢ within cell &, in the interval of time J ;=
[7,;,1] will be written &(r..;). Henceforth, (r;.1)) is interchange-
able with (4,7 )).

I will assume that N number of tagged fish are released in cell
A, at time ¢, The following discrete fields are available for the
analysis: € ={le(r,7):i=1.2,....mj=1,2,... . m+1}, %=
{e(rg) 1 i=1.2,.... nj=1,2,...,m+ 1}, and €rr, 1) =
fefrut)i=12..... nj=1I01+1,...,m+ 1}. These are,
respectively, the measurements of effort density, the untagged
fish catch density rate, and tagged fish catch density rate for the
release of tagged fish in cell &, at time . It will soon become
evident that at the very least there should be as many tagging
experiments as there are cells in the domain, one per cell.

As 1 showed in Section 3, I first need to evaluate the
catchability in order to construct the effort-dependent Green
function. The discrete version of (23) is

ort)
s )

Lo
4 2£) =
@9 qre) = g5 X

=]

However, by its very definition. I can calculate only one value
of g from every tagging experiment. If the tagged fish release is
only at (r.,), then I can only calculate g(r,,z;). So in the case of
the single tagging experiment, I am left with the necessity of
assuming g constant throughout space-time.

The discrete version of (22) for g, for a tagged fish release at
(ret) is

& (r )

46 rrt)y= ————————-
@0 &) = ety Ny

If only the one tagging experiment has been performed, then, as
mentioned above, it is necessary to assume g(r,t) = g(rut) =
constantfori=1,2,...,nandj=1171+1,...,m+ 1. Thus,
using the set €, of a single tagging experiment and set €, I can
construct an approximate g,. The set of values calculated for g,
for a release of fish at (r.z) will be called the set Gy(r.t) =
fgolru vt i=1,2, ... n;5=1,2,...,m—1+1}. Todescribe
the elements of 4y(r.2), it is helpful to use the Kroenecker delta
function:

1 ifi=k

0 otherwise .

0 for 1<y
gyrstiror) =
8. /94, for L=t

and
é’o("u’,|’1~f/) <8, /4, for t>1.

As a consequence of this last property, for 1,27 :
0< z A golmafn ) < 1.

i=1

The discrete version of (37) is given by
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1
YN 4 r ir.)+
g In1) = gy(rg In.r) N r0)

5m

x2 7 2 sl g dylrats) 7 (Bt -

=1 =i

Therefore, for an arbitrary single interval of time, say J,, the
relationship between g and g, is

o

ATy =g Ir )+ ‘

47 —_—
“n et AN (i)

7

X Y, s, g(FtulTat) o7 (Tul)

v=1

where N(r,.rir,, t) is the number of tagged fish at (r,.z)) from a
release conducted at (r..t,). From (18), this is

NT(rw,tl_Irk,t[) =d, pr(rw,tj) =4, go(rw.tjlrk,tl) Np(r1)

The exact solution of (47} is given by the series

@8) g jra) = 3 g(r, 1)

r=90
and
B0 = ” Z o8 (i) ¢ ()
forr=1,2,.... For cases where m < f, that is, if the number of

tagged fish recaptured in the interval of time J is
~ O
(IM) =7 Z 4, CT(I‘I,ZJ) .
i=}

the approximation
T
j

8wt | N
NT (rw,tjlrk.tl)

o) = 80, I0.0) +

X Z o, gttt cr (T.)

v=1

will give accurate results if Vg < Ny but Np » Ny. As Imentioned
in Section 3, if N < Ny, implying that natural death rate is much
greater than that due to fishing, then the approximation
grutlr, 1) = go (rutlr,.n) is adequate. However, in general,
one can proceed by expanding and stop the expansion with the
term whose contribution is negligible.

Either the exact or approximate solution for g requires the
knowledge of the transition probability density elements
G ={gorptiirut) t i v=1,2,. .., mj=11+1, ,m}. For
tagged fish releases starting in the interval of time J, the
empirical construction of g, by (46) yields only 6y(r..). So it is
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necessary to calculate the transition probability density elements.
This will be done with the property of superposition of prob-
ability densities (Property G in Section 3).

The discrete version of the superposition property of
probability densities for consecutive time intervals is given by

@9) graing) = 3, A grr e, ) r, ).

v+l

In order to define a completely determined system of
equations for the transition probability densities 65(7 ..} =
{go(rutialr b)) t i, v=1,2, ..., n} from the information of a
single tagging experiment, it is necessary to assume that the
Green function is spatially translationally invariant. That is, it is
necessary to assume that no matter where the tagged fish are
released, the results are identical. However, the concept of
translational invariance of the Green function is incompatible
with the presence of boundaries, for the results of a tagged fish
release away from the boundaries, for example, will be different
from the results if the release were close to a boundary.
Furthermore, fishing effort is not uniform throughout s{. Thus,
one cannot possibly define a completely determined system of
equations for the transition probability densities %5(T,,) from
the information of a single tagging experiment if the population
has a bounded domain or there is an inhomogeneous distribution
of fishing death rate. Investigation of (49) leads to the conclusion
that at least » tagging experiments are necessary to perform, one
per cell, to define a completely determined system of equations.
As can be appreciated in (49), if # simultaneous tagged fish
releases were done, one per cell, the data at the initial interval of
time and all subsequent intervals define completely determined
systems of n equations. However. it is not necessary to perform
the tagged fish releases simultaneously. To see this, it 1s best to
consider an example.

For simplicity, I will suppose that the release at time ¢, is in cell

s, the release at time 7, is in cell 4, . . ., and the release at
time #,.,-, is in cell &,.. To determine the complete set of transition
probability densities for an interval of time, it is necessary that
there be as many tagging experiments as there are cells in the
domain, one per cell, but it is sufficient that there be only one
experiment per interval of time. Some or all can be done
simultaneously. With the catch data of each experiment, because
I have assumed distinguishable tags, one has the set of sets €, =
{€r(rolim) :5=1,2,...,n}, that is, the set of catch density
rates of the n tagging experiments. Use of € and % in equation
(45) will yield a set of computed catchabilities given by 2 =
{g(rot.) :5=1,2,...,n}. Ican use these 1o compute a set of
discrete Green functlons ‘@0 {Go(rotiey):s=1,2,...,n}as
indicated by (46). However, the catchability of the ith cell at
time 1; should be used for the computation of terms of all n
Green functions evaluated in the ith cell (i.e., receiver point
r) at time ¢,
Assuming the tagged fish live longer than [z,.2,,,], the second
transition when there is data from all » tagging experiments is
during interval of time J,,.. I am arbitrarily using the transitions
at 7, rather than those at J,,,_, for the sake of uniformity of
notation in the analysis that follows. From (49), for the release
of tagged fish in 54,:

]
Y A olEitinn Fostinn) GVl .

v=1

8olFitionnlryt) =
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For the release of tagged fish in &4,: This is a system of equations of the form
8Tl Tt) = X o 8Tt 00, ) (8 0 ) 50 d =Y, B m fors= 1,2 0.
° v=) v=1
In this equation, identify by comparison with (49)

gO(rx'll-M-t] Irl ’[[)

and finally, for the release of tagged fish in &d,,: 2t et

d
n .
&l IOt ) = 2 ‘Sﬁ‘go(n‘twmirﬁtm) go(r«.-’tzmlrn'tm-l) ' grt, v, )
v=1
as the data vector.
Hygo(rplirint)  Sago(Ealinri t) : A, 8o(Gtienlti 1)
P = 1 goTstienl ot HogoWotinltotin) 8Nl liy)
8o tienllnstiing) Hao(Fotienllistion)  + Hno(CisnlFoslivns)

as the n X n matrix of coefficients, and

8o(Ttiansti Ty tisn)

m = 80Tt isnarB2slin)

gO(ri-Ilwllrmtl-m)

as the model vector. Solving this system of equations fori = 1, 2, . . . , n gives the set G (T = {8o(Titismi Pty i, v=1,2,...,n}.
Following the previous procedure for the next time step (i.e., J . ,.1), solve (50) with

8o tineally 1)
d = 8o(Falinialo i)

8o(TitienalCastisn)

as the data vector,

S 18o(Ftrennilryit) o Bstinnttit) - HaGo(Tstivnar 1)
P = Aigolistinalintio)  SagoMlinallti)) - oo linmilTati)

AT CSTRMRY) A Y Q-6 SE Y] 8 JAUIPY SRR € A0 TORY) % Y |

as the matrix of coefficients, and

8olTiliamally Lisnst)
8o T2l Ba e}

Zo(NttemalCastienss)

as the model vector. Its solution for i =1,2,. .., n will yield the set G5(Tun1) = {QoCilimalFulions) s 5, v=1,2... ., n}. Proceeding
successively to the last system of equations, which in the interval of time 7, are given by
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8olTit eIy 1)
d= LA RN SR/

8ot Mstien )

as the data vector,

A8o(ry Ty 1)
P = -ﬂlgo(rhtmire,t,ﬂ)

ROy R M W)
&Q_'go(l'v,l Irw,tm) . S&ngo(

-ﬂxgo(rl-t A &‘l.go(r%t M tienet)

as the matrix of coefficients, and

&t )

m+

&(rt,, et )
go(ri’trm-l |rn’tm)

as the model vector. Solving these for i =1, 2, ..., n will yield
theset e (T ,,) = {2o(Tutmallintn) 1, v=1,2.... ,n}. Any number
of numerical techniques can be used to solve (49), or the integral
equations of Section 3 for those cases in which an analytical
model is chosen (Franklin 1970; Tikhonov and Arsenin 1977;
Lavrentev et al. 1986; Parker 1990; Wahba 1990; Press et al.
1992). For noisy data characteristic of fisheries, stable solutions
resulting from the inversion of the above systems of equations
will have the effect of smoothing the solutions at the expense of
resolution. In the end of this process of solving these m — [~ n
systems of n equations, I will have constructed the set G; =
G T UG T U UG (T ={GT)j=l+n,
l+n+1,. .. omy={gor,ulr,, ) 1 i,v=1,2,...,n =l+n,
! + n+ 1,..,m} necessary to generate the set G* =
{gruleat) i i,v=1,2,....mj=l+nl+n+1,...,m)of
effort-independent transition probability densities by use of (48).

If the population exhibits periodic behavior of period
J < tp — I, then some of the transitions will be repeated
because

8,(Ts er B = FACEN +§Irv,tj+€T).

It is desirable that tagged fish persist in their domain as long as
possible but at least for two periods. This means that, in general,
some transitions will have more than one value, one for each
period that the tagged fish persist in their domain and there is
catch of tagged fish. Due to statistical fluctuations, they will be
generally unequal and can be averaged.

Natural periods, such as seasonal, are at best approximate. Due
to the inherently stochastic nature of fish movement, the approxi-
mate repetition of their seasonal movement may be advanced or
retarded. However, the transition probability densities may help
decide the duration of a period by the consistent lack or peaks of
a subset of 9%, the set of effort-independent transition proba-
bility densities. For the estimation of periods the set G4 should
not be used because some of the periodic nature of its subsets
could be due to seasonal application of fishing effort.
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Once the set %§* of effort-independent transition probability
density elements for the fish dynamics are determined, they can
be used to determine the contribution to the population density
due to recruitment. The discrete version of (44) for a single time
interval is

O,
1) wre ) =

i pree) - 2‘ s glrr e )

8 i3l /+I)

1
i [f ) gj} Tt -

Because I have sets 6, 2, %, and 4™, I can compute with (51) the
setWU = {u(r,r,):i=1,2,... . mj=l+nl+n+1,...,m}
To compute the catch density rate €’ = {c'(r,1,)):i=1,2,...,
mj=l+nl+n+1,...,m} atanew level of effort density
E={eWstn):i=1,2,...,mj=l+nl+n+1,...,m}, the
population density at the different level of effort density can be
computed with the discretized version of (41) which for a single
interval of time 7, is given by

(52) p'(r.t )~2&ﬁg(r‘t ) [1-9

i j1

;a,L)

X e '(T.1)] p(6.5) + u(Eyti)

and is applied recursively forj=/+n,l+n+1,...,m. In (52),
one assumes that the recruitment density rate does not change
significantly at the new level of effort. The catch density rate €’
at the different level of effort density €’ is computed by
multiplying the result of (52) by q(r,,t,‘,)e'(r,-,t,-,l).

To summarize the previous example, the following steps must
be taken to solve the fisheries interaction problem:

1. Using the set of tagged fish catch density rates of n tagging
experiments (€;) and the set of effort density measurements (%),
the set of catchabilities (2) is constructed by use of (45). There
will be one catchability associated with each cell and interval of
time where tagged fish are released. If only one tagging experi-
ment is conducted in each cell, then one is forced to assume that
the value of each catchability in each cell is time independent.

2. Using the sets 6r, €, and 2, the set of discrete Green
functions (%,) for the » tagging experiments is constructed by
use of (46).
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3. The set of effort-dependent transition probability densities

(4%) is constructed by application of %, 1o (49).
4. The set of effort-independent transition probability densities

(%™) is constructed by application of 4§ to (48).

5. With the set of catch density rates of untagged fish (€) and
sets 2, 6, and 9*, the set of population densities due to
recruitment YU is constructed by applying (51).

6. Assuming a new level of effort given by the set €” * ¥, the
resulting catch €’ is computed using €, 2. and U in (52) and
multiplying the population densities p’(r.t;,) by f(r.4..) =
GE )€ (Faln).

The recruitment density rate R = {r(r,t) :i=1,2,....m
j=l+nl+n+1,..., m}is computed by inversion of the
system by inversion of the system of equations

il P \"t/) r(r\t])

urt ) =9 Ag(rr Ir
J = ¥

which is the discretized field u(r.r) given in (42) for a single time
interval J . For this system of equations, identify in (50)

( ur, )

u(r:.tﬁ‘)

Lu(r”-rﬂn

as the data vector,

A\ gt lne)  daglr.r, o)

P=g A grtynr) sdyg(nt,, In.)

4

A glr, ,1MIr”,t].)
oA, et ) ‘

& g(rt,lne) doglr,r

faal

as the n x n matrix of coefficients, and

r(rI .Ij)
r(l'z,tj)

r(r”,lj)

as the model vector. The system of equations must be solved for
thej=/+nl+n+1,..., m time intervals. However, in order
to be able to accurately resolve the population density due to
recruitment from the population at large by use of (51), it is
essential that the Green function also be a measure of the sur-
vivability and movement of the untagged portion of the popu-
lation. As has been discussed before, this condition is true only
if sufficient numbers of tagged fish are released.

Once the recruitment density rate is resolved from the above
inversions, I am free to interpret it as a nonlinear function of
population density. The same result is achieved by inverting for
the recruitment density rate using the corresponding algebraic
equations that involve the effort-dependent Green function.

6. Estimation of the Field Equation Coefficients

In this section, I will show how to calculate the coefficients of
the field equation using tagged fish data. This method is a
modification of an analytical technique that is used to construct
solutions of stochastic differential equations from Fokker—
Planck equations (Okubo 1980; Zwillinger 1989) by the use of
moments. The modification developed here will lead to the iden-
tification of a closed-form expression for the transition proba-
bility densities for small intervals of time. I will show that
because the moment method is unable to resolve the divergence
of the drift velocity and the Laplacian of the diffusivity, I am left
with two alternative models that do equally well interpreting the

2504

I, o slglr. )

data.

1 assume that I have resolved a smooth set ¥ of the effort-
independent transition probability density elements. However,

this analysis can also be done with %65 The Green function of the
dynamics the population follows is given by

(53) [—;); + L} gntr’t’) = &r - )8 ~ ")

in the space-time domain r € &, where operator £ is
L= b +b(ry)-V+b(rn) A

subject to causality condition
grar )y = 0ifr<t’

and boundary conditions
gridr't’y =0

forr € 954, and

n -Verdr't’) =0

for r € dsis. The only difference between this field equation and
(7) is that here, by(r,t) = m(r,t) + V - v(r,0).

The even moments of g are found by multiplying (53) by =¥
and integrating over space & in the interval of time J_, = [—eo,1].
Once these integrations are performed. space—time discretization
of the resuiting equation for a single interval of time and invoking
the initial property of g, for a source in cell s¢, in the interval of
time &, leads to the equation for the 2 Nth moment of g
(Appendix C) given by
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(54) r@m(r,t) =2 Nr 2 - vin.g) = A N 2k(n,t) — 2 Nrd¥e, - YV, kng) =

for r, & osl. where

.
Y (det) = 3 sl g(rutlnag) .
=t

9 [

s

The odd moments are calculated by going through the same process after multiplication of the field equation for g by r*'r. The result

is (Appendix C)

(55) rPmem(rt) — r@vint) — 2 Nr&2r, - V{tt)] —4 NIV + 1) r2n k(n.z)

for r, & 05, where

(RE) @ in) = 3, sdrr g

s erk,t)) .

=]

Because data are collected only at the points that are interior to
4, 1 will consider only those source points r, & dsd. For points

=B Vet - 2Nl Vb)) = o [ = () (in)
K
with

1=(1) @, )

x—{(x) {t,,Ir.t)

PR U (8 int)

9'] ’f = rj ) (rﬁ-llrk’tj)

)’:_ x,—{r;x) (t,nh'k”/)

r, & 9sd, corrections are necessary (Appendix C). However, for
the purposes of this work. they are unnecessary.

'With the moments of the transition probability densities for a
single interval of time & ,, it is not possible to estimate the values
of V- v(r,.1) and Ak(ry,z) in cell &,. As can be appreciated in
(54) and (55), the even- and odd-moment equations are
independent of these parameters. For the remaining parameters,
{mr), Ve, k(rg.t), V‘k(rk,tj) }, there are restrictions to their
resotvablility. To see this, construct from the moment equations
(54) and (55) a completely determined system of linear
equations. Because the even-moment equations are scalar and
the odd moments generate two component vector equations, it is
only necessary to compute up to the third order moment. It Jeads
to a system of linear algebraic equations

d = % m s=12...,6
vl
( 1 0 0 (] 0
X -1 Y 0 -1
| % 0 -1 0 0
# = rkz -2, -2y -4 ~2x,
rix rE-2E 24y -8x  ri-2x
e Wy i By —2X Y,

as the matrix of coefficients. The matrix of coefficients P has
der® = 0. Therefore, the equations are not linearly independent.
Keeping natural death rate and diffusion, there are two
alternatives regarding the fields v and V& within cell %, during
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-y

Y=y, )

as the data vector

m(rk,t’)
",(rk~t,)
vy(rk.tj)
k(rz)
Ok(r,t)/ ox,
(e, £)/3y,)

as the model vector, and

4]
0
-1
=2y,
2X.

2
—r

=2y

the interval of time J : either v(r, t;) is constant and V k(r,.7;) =
Oorv(r.t) =0and V,k(r.z)is constant. In either case, it is only
necessary to consider up to the second moment to define a
completely determined system of equations. The matrix of
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coefficients given by

x. -1 0 0
bA 0 -1 0
reoo2x, 2y, - 4

which has a determinant given by der® = —4, and the data vector
given by

1={1) ()
d—i x—(x)(t Irt)
_G‘Ij h‘(V)(l‘l ol

r=(r) (tmlrkt)

are sufficient to define uniquely

m(rk,tl.)
v
v (Tet)
k(rk.tj)

in the first alternative or

m(x,.t)
ok(r, 4 )ax,
Ok(r,.)/9y,

k(rk,zl)

in the second altemative. Because the moment method cannot
resolve the derivatives V,-v(r.2) and Ak(r,.t) , either of the
alternatives above will interpret the data equally well. In other
words, because the divergence of v and the Laplacian of k are
unresolvable by the moment method, the inverse will interpret
the data equally well if v=5b(z) and k=a() or v =0 and
k= a(t) — b(t)ry/2. This does not mean that the entire domain of
the population has {m,v,k} or {m,V k} that are independent of
position. It means that within each cell of the domain, each, in
principle, arbitrarily small, the resolved coefficients {m,v,k} or
{m,V .k} are constant within an interval of time.

The solution to the systemn of equations for the case of the first
alternative is

m(r,t) = é [1 -{1) (¢, )]

.

—r (1)@ Irt)]

ST

vr,.t) = Ll A #
g

1
kr) = —g_[<r ) It =2, (1) (1 I

+r(1)(r] s }
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These are the same results. linearized in J;

transition probability density

, that the discrete

(56) g(r. tjﬂlr‘, ) = exp[-T m(r,t)] Nar+7T v(r 1)0")

where
=29 i k(rk.tj)

(see equation (20)) yields for the unbounded domain when its
coefficients are calculated using moments. In fact, (56) yields the
moments of g of any order in the interval of time &, but those
derived here (Appendix C) are linearized in J; due to the discre-
tization of the field equation necessary for the derivation. The
fact that the moment equations of this section are correct for
either the unbounded domain, or the domains bounded by
absorbing and/or reflecting boundaries if r, & ol (Ap-
pendix C), leads to the expectation that the closed-form
transition probability (56) is also correct for the bounded domain
of this work. Because J; is small, the transition probability
densities are very nearly Dirac delta functions, so for points r,
not near r, the distributions are nearly vanishing.

Finally, transforming (56) with the transformation m(r.t) —
m(r,,t) + f(r.t) yields the closed-form expression for the effort-
dependent transition probability densities. These results, coupled
with the discrete equations of Section 5, simplify considerably
numerical analysis and simulations for an interval of time of
arbitrary length. This method should be applicable to problems
whose field equation has a Green function with a probabilistic
interpretation: Fokker—Planck equations, but more generally,
any linear field equation with at most a first-order time derivative
but spatial derivatives of arbitrary order. As can be seen by
comparing (20) with (56), it is only necessary to find the Green
function associated with the field equation that is invariant under
space—time translations, and then expressions for small intervals
of time for the discrete transition probability densities associated
with the corresponding field equation that is not invariant under
space—time translations are constructed by inspection. In gen-
eral, it is only possible to construct exact closed-form expres-
sions for the transition probability densities if the differential
operator has spacial derivatives no higher than fourth order.

7. Summary

‘When members of a population are released in an area small
compared with their domain and over an interval of time short
compared with the length of time they take to disperse through-
out their domain, the pattern of movement approximates a
point-source solution (or Green function) of the underlying
population dynamics. The Green functions, one for each release,
can be empirically determined with the mark and recapture data
of tagged members of the population with distinguishable tags.
The assumed field equations for the population dynamics were
inverted to represent the solution in terms of integral equations
for the tagged and untagged portions of the population.

Because for a fish population it is necessary to use catch per
unit effort of tagged fish to construct the Green functions
empirically, the resulting point-source solutions are effort
dependent and, therefore, not practical for a fishery interaction
problem where it is desired to determine the catch resulting from
a different level of effort. the field equations were reformulated
such that the term containing effort was redefined as an inhomo-
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geneous term of the field equation. This leads to a method of
constructing the effort-independent Green function from
knowledge of the effort-dependent one.

Discretization of the integral equations was achieved by
defining non overlapping cells of arbitrary shape in the neigh-
borhood of each point where data were collected. The integral
equations of the theory, upon discretization, result as systems of
coupled algebraic equations which for a single interval of time
coincide with a Markovian formulation of the exchange of
members of the population between the cells of the discretized
space.

For every tagging experiment, it is possible to calculate only
one catchability at the cell and time of release. However, 1o be
able to determine approximately a complete effort-independent
Green function from knowledge of the effort-dependent one in a
bounded population domain, it is required that there be as many
tagging experiments as there are cells defined in the domain.

The Green functions were interpreted as the tagged fish
probability density of surviving movement to the receiver space—
time coordinates from the release coordinates. If sufficiently
large numbers of tagged fish are released, then the tagged fish
dynamics are representative of the population. Both the effort-
dependent and effort-independent Green fuctions can be
decomposed into transition probability densities for a single
interval of time. The transition probability densities can be used
to determine the recruitment density rate which, once resolved,
can be freely interpreted as a nonlinear function of the population
density. The moments of the transition probability densities lead
to the evaluation of model parameters and the identification of
the closed-form transition probability densities.
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Appendix A. Representation Theorem for the
Population Density

The purpose of this appendix is to derive an integral repre-
sentation for the population density. I will show that if on the
boundary of the population domain the population density
satisfies either homogeneous Dirichlet of Neumann conditions,
the integral representation for the solution does not contain a
boundary integral. The proof is not intended to be rigorous, but
follows mathematical procedures well established and eluci-
dated in the literature (Courant and Hilbert 1953; Morse and
Feshbach 1953; Garabedian 1964; Gilbarg and Trudinger 1979).

Let the domain of the population # € R® be bounded by 94
€ R.Letr = xi+yj € A be the receiver or measuring point with
respect to an arbitrarily chosen fixed coordinate system where i
and j are, respectively, the unit vectors pointing in the +x and +y
directions. Let time z be the receiver time. At time 7,, there is an
initial population whose subsequent dynamics I wish to model.
T assume that the dynamics of the population are correctly given
by (7):
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3
(A1) [5 + LO:| p(rt) = r(r.)

where
(A2) L p(rh) = bo(r.t) p(rn)+b,(ry) - V p(r, 1)
+ by(rt) A p(ry) .

In equation (A2) the coefficients {b,b.b,} are related to the
coefficients {z,v.k} by

by(rp) = z(nt) + V - v(rp)
(A3) by(ry) = v(rD)—Viry
by(ry) = —k(ry)
where the derivatives V-v(r,r) and Ak(r,t) are finite.
The general problem for the population density can be formu-
iated as follows: the population density p(r,) satisfies the

inhomogeneous field equation (Al) in the space—time domain
r € d, t 2 1, subject to initial condition

(A4) p(re) =p (D

in the domain r € . I wish to determine boundary conditions
that can be imposed on 0 that leads to a unique representation
of the solution for p(r.?).

Defining r’ = x"i + y)j € & as the source point and ¢’ as the
source time, the Green function go(r fr’,z”) that is associated with
field equation (A1) satisfies field equation

d oo , ,
(AS5) t:EJrLo:lgo(l‘,ﬂr 1) =8(r—r)d(r—-1")
in the domain r € & and the causality condition
grair'r )y = 0ifr<t’

in the domain r € &. The key to constructing an integral
representation of the solution of an initial-boundary value prob-
lem for a field is the ability to construct a bilinear function of the
field and a Green function associated with it. Because the

differential operator associated with field equation (AS) is not
self-adjoint, I must consider the adjoint field equation

(A6) {— 9, L*] g rdr”r”) = $r—r") 8¢t —1")
Jr 0|7
in the domain r € s, where
L, g, (rr”t") = b(rn) g (rir”:”)
-V - [by(r) ge (rdr” s )] + Alb(r.2) gi(rtlr”.1 )]

subject to the causality condition
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grdr"r " = 0ifr>1.

By definition of the field equation that g5 (r.fIr".t’) satisfies, it is
the function adjoint to Green function go(r.fr’,t").

Multiplying field equation (AS) by g¢ (r,fir”.”) and (A6) by
go(r.tlr’,t"), subtracting the former resulting equation from the
latter resulting equation, and integrating over the interval of time
[~eo,c] and over s{ leads, by application of the Divergence
Theorem. to

*
go (rlyt ,|l"”,l ») —go(r",t “Ir't r)

-
= j dt ﬁ.« din, - Plgirdr” “Yaordr )]

"

The bilinear function P[gy (r.ir”.")lgo(r.fr’ )] is given by
(A7) Png(r,tlr",t g (rir't ] = = g,(rair’,t ) b(r)

* 7oy rar * ” o n
X g, (vAlr "t ") + g (rdr "t ) V [b(r1) g, (rair "t )]

—by(r) g (rtlr 2 ") V go(rtr "t )+ C

where C is an arbitrary constant. In order that between g, and its
adjoint g; there be the simple reciprocity relation

(AB) gi(r'2'Ir”s”) = g (r"17Ir' 2"y,
it is sufficient that
(A9) n_ - Pl (rar”.s Mg rir' 1] = 0.

However. because I also demand uniqueness of the solution, it
must vanish in such a way that the conditions imposed that lead
to (A9) specify the behavior of both g and its adjoint. Not doing
s0 leads to a solution that is not unique. For example, specifying
that gy(r,r’,r") satisfy homogeneous Cauchy conditions (i.c.,
golrdir’,t’)y = 0 and n-Vgy(rdr't’) = 0 for r € 9 satisfies

(A9) but leaves gg(r.Ar”,t”) arbitrary. However, the boundary
conditions

(A10) go(r,tl r':tY=0

and

(All) grrdr's’) =0
or,ifn, - v(ry)=0

(A12) n_ Vg (rir't’)y =0
and

(AI3) n_ Vg (rir't) =0
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for r € dsd result in gy and gg uniquely specified, and such that
the reciprocity relation (A8) holds

Now, as a consequence of (A8), gy(r,dr’,t") satisfies the field
equation

[—5?—,—+L;*] g(rir'e’) = 8(r—r) 8 ~ 1"

inthe domaint’ € 4, where £ ;" is operator £} under the change
of variables (r,2) — (r’,¢"). Therefore, the representation of the
solution that satisfies field equation (A1) and initial conditions
(Ad) is given by

(Al4) p(r,) = J; dr g raie ) p(r)

+ J. dr’ J dr'gfete’ Y r(r' ")
g, o

+ f dt ﬁ dl'n, - Plgorr’ s ) p(r't )]
7, ast
where the integral with respect to time is in the domain J, by
virtue of the initial condition and causality. In (A14) the bilinear
function P[g(r.4r’,t"),p(r",t’) is given by

(A15) Plg(rir 't "),p(r' )] = —p(r't b (r'r’)
X g rir’ .ty +p(r't )V b’ t") g,(rlr .t )]

—by(r' ) golrtir 't Y V'pr't )+ C

where C is an arbitrary constant. Furthermore, because (A8)

holds due to boundary conditions (A10) and (A11) or (A12) and

(A13), it follows that g,(r,ir’,") satisfies boundary condition

(Al6) g (rfr’t’) =0

or

(A17) n -Vg(rdr't’) =0

for r’ € dsd, and therefore,

A18) pry) = [ drg e i) p, @)
=

+ jj dr’ 'L dr’go(xdr’ ) r(r't")

is a unique solution of (A1) subject to initial condition (A4) and
homogeneous Dirichlet boundary conditions

(A19) p(rp) =0
or homogeneous Neumann conditions

(A20) n - Vpry =0

in the domain r € 9.
Assume now that the boundary of & is composed of segments,
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denoted d&d,, on which homogeneous Dirichlet conditions are
satisfied, and the remainder of 0, denoted dsd,, on which the
homogeneous Neumann conditions (A20) are satisfied. Pro-
ceeding in the same manner as above. the following conclusion
can be made: (A18) uniquely satisfies field equation (A1), initial
condition (A4), and boundary conditions

pry) =0
forr € 9, and
n - Vpry =0
forr € d g if m, - v(r,)=0.

Appendix B. Convergence Condition of the Neumann
Expansion

Here, I shall show that the expansion given in (38) converges
if the number of tagged fish recovered during an interval of time
is less than the number of tagged fish available at the beginning
of the interval. To see this, consider the perturbation expansion
given in (38):

(Bl) grir.t) =3 g(rir.t)
=0

where
i) = —— [ @[ arg mdr)e, )
N (r,.1) g, o
for i = 1, 2, . . .. Presume now that the maximum number of

tagged fish recaptured at any one time is N, . Then, I can state
the following:

R

N
er't’y s —
AT

-

where N £ N,,J; is the number of tagged fish recovered in the
interval of time J7. It follows from the probabilistic property of
8o (Property E in Section 3) that there exists a constant 0< €' < 1
such that

J dt’j d’rigrdr’t’) £ CT .
T E

By making use of the first inequality, the iteration relation can
be written

1
fr p) € [—E2——,
g‘(r L 7) [N,(I‘TJT)&“] g;
xj dt'J dirg (rir't")
7, s

fori=1,2,...,and from which I can compute all terms of the
iteration:
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g,(rdr, 1)

c N
g rnir t) < - -
VT AT, N{r.t)

Performing the ratio test

IN
=8
(_qﬁ

o
N’

|gN¢l(r‘ter’tT)| - NR
N | g (rr, 1) | NAr, 1) .

which is less than 1 if the number of tagged fish recovered is less
than the number of tagged fish released, and therefore, the series
converges under that condition.

Appendix C. Moment Equations of the Green Function

In this appendix, I will find expressions for determining the
coefficients of the population field equation by computing the
moments of the Green function. I will also show that the inverse
problem of determining the coefficients of the field equation in
every cell at every interval of time, from the moments of the
Green function, leads to nonuniqueness. For source points not
on o4, the moment equations are correct for either the infinite
dornain or the domains bounded by a perfectly absorbing and/or
perfectly reflecting boundaries. For source points on ds4, cor-
rections are necessary.

I consider a linear differential operator

L =br)+b(r)-V+ b(r)A
where the coefﬁcients
bt = mr) +V - v(ry)
(C) by(r) = v(rt) — V k(rr)
b(rp) = - k(r,p) .
The derivatives V - v(r,t) and Ak(r,r) are assumed to exist. The

effort-independent Green function g(r,rir’,¢") satisfies the field
equation

(C2) [% +L } grary) = d(r—-r" Yo —1")

in the space domain r €, subject to the causal condition
grdryy = 0ifr<t’.

The boundary of the domain & is 0 = 94, + 0 . In terms of
the measuring space—time point (r,t), the boundary conditions
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satisfied by g(r.ir’.") are (Appendix A)
grar’'ty =0
in the spatial domain r € ds{, and
n -Vgrdr't) =0
in the spatial domain r € dsd; and where n_ is the unit vector
normal to ds{ pointing outward.
To compute the even moments of g, multiply (C2) by the scalar
r* and integrate over domain & in the interval of time

J .. = [—eo,7]. Explicit integration with respect to time can only
be performed on the term that contains the time derivative of g:

o e 2 2
[ acf awer SEILD g ey
F oo E aT 1

where I am allowed to change the order of integration by Fubinis’
Theorem because the integrand is absolutely integrable (Royden
1968). I then have

| oanf arr® gy = v -2y e
Foo k=l
where
(rygrey = | drr¥gera’y.
o

For the spatial integration in the Lh.s., I apply partial integration
and the Divergence Theorem to those terms containing the gra-
dient and the Laplacian of g. For the term containing the gradient
of g, this results in

j drr¥b(ry) - Vgrtir's’)
o
=%, dir¥n, -brdgreire”)

f dx V- [r¥hnlg (reie's’)
o

while for the term with the Laplacian of g, the same procedure
generates

| drr*banAgdr' sy = § dlr*b(ron
o = EX 2 +
-Ve(rr ') — &N din_ -V [P b)) grtr't’)

+f o byen] g ).
1

The boundary integrals are used to satisfy the boundary con-
ditions. After doing so, I am left with

J d tf drE(r) g(rar 't ') +I T odt Cltr' ")
T oon s Teoo
=r o™y e )
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where

E@rt) = r¥p(rn) - V- [P b (r0)] + A [r 5, (RT)]

and

- ﬁaﬂ dlr¥krn, -V g(eair's ) for dsd,

Ctr'e’) =

+ §N dln, - (Vr™ ) krog(rair 't ) for osd, .

Discretizing time in these expressions for a single interval of
time for a source time ¢, ] have

[jﬂ drEra)g(rajr’ 1) + C,(r ',zj)}

_ L
9‘l
where

(P ) = jﬂ dPrr¥gm ir ).

As can be appreciated, the integrals on the Lh.s. of the expression
have g(rzr'.r) in the integrand. Making use of the initial
property of g:

g(r,t]lr ',t]_) =8(r-r’").
Integrating with the reminder that ds¢ C & , I can conclude

E(r’.tj) =¥ bo(r',tj) -V, [r'”’ bl(l"',lj)}

)
1

+ V’[r’”’ ba(r 1) |

by use of the properties of the gradient of Dirac delta functions
(Lighthill 1964; Butkov 1968) and the assumption that o« is
piecewise smooth:

C o ',IJ,)

il

CE(tjlr',tj)
0 ifr'¢osd
V'l f k)] ifrredsd
n - (V ’r’z’”')k(r',t/) ifr'edsd, -

Evidently, E(r’.t) is correct for points in & regardless of the
boundaries. Therefore, it is also correct for the boundless
domain. Henceforth, I shall ignore the terms with the source at
the boundary of the domain because data are seldomly collected
there.
Using the identities
Vir' =2

s
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which is a consequence of & & R?,

Vrrl’.’!\' - ZNr !ZN—lr/ )
and

V' 'y = 2Nr 2
to expand E(r'.t;) leads to the expression

E(r'a) = r'2byr 1) = 2Nr e’ b(r' 1))

—r Vb )+ AN )]
AN e Vb )+ D).

Discretizing space with r_ as the source point and r, as the
receiver point, and substituting for {b,b .b,} their expressions
interms of {m,v,k}, yields

E(r) = rmrt) =2 Nr2 [r - vn )] =4 N*r 2 kn,e)

=2 N2 1 - Vik(n1)]
where I am using the notation

V,k("p‘,) = [VKrp)], _, -

The scalar equations for the even moments of the Green function
for source points r, & 05{ are then

—_

Ewa) = 5 [ = (r) (1, ir 1))

and where

(P el = 3 drP e In) .

=1

With these, I can generate the zeroth (N = 0) , second (N = 1),
..., moments of the Green function.

To derive the odd-moments equation, I can initially multiply
the field equation for the Green function by r*'r and perform
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analogous operations using the algebra and calculus of dyads.
This leads to the vector O(r.z;) analogous to the scalar E(ry1;)
given by
O(r,1) = rlrmir 1) -2y =2 Nr 2 n - vnn)
y IN-2, e 2
—4 NN + Dr; r‘k(rk.t/) -7, ka(rk,tj)
- 2N, [r V k(1 t)]

for r, & dsd. The vector equations for the odd moments of the
Green function are then
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1

O(rk_z/) = 9___ [,.klxl.‘ _ < r’:\r > (t
7

i/ Ve

Irk.t/)]
where

M
LN, — 2N
(r, r')(tpllr‘,t/) = Z Ar; l',g(l'l,thllr‘,tj).

=l

With these. I can generate the first (N =0) , third N=1), . . ..
moments of the Green function.
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