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A theoretical iramework is proposed for analyzing fish movement and modeling the associated dynamics using 
tagging data. When tagged fish are released in an area small compared with the domain of the iish population and 
over a period short compared with the time they take to disperse throughout their domain, the pattern of movement 
approximates a point-source solution of the underlying population dynamics. A method of point sources (Green 
functions) is invoked for representing the solution of the tagged and untagged fish field equations (partial differential 
equations) in terms of integral equations. As an approximate representation of a tagging experiment, the Green 
function is  interpreted as the probability density of survival and movement irom point to point in space-time. The 
Green functions are constructed empirically using one parameter, catchability, as the ratio of population density 
of tagged fish divided by the number of tagged fish released. The number of tagging experiments necessary to 
characterize the population is dictated by the dependence of catchability on space-time. The moments of the 
Green function are used to calculate model parameters and lead to the identification o fa  closed form expression 
for the transition probability densities of the model assumed. 

Un plan de travail theorique est propose pour analyser les deplacements des poissons et modeliser la dynamique 
connexe au moyen de donnees de marquage. Lorsque des poissons marques sont relaches dans une zone de faibles 
dimensions par rapport au domaine occupee par la population de poissons et sur une courte periode par rapport 
au temps de dispersion nkessaire dans leur domaine, le profil de deplacement correspond a peu pres a une 
solution de source ponctuelle de la dynamiquedes populations sous-jacente. Une methodede sources ponctuelles 
(fonction de Green) est retenue pour representer la solution des equations de mouvement des poissons marques 
et non marques (equations aux derivks partielles) en fonction d'equation integrates. A titre de representation 
approximative d'une experience de marquage, la fonction de Green est interpretee comme la densite de probabilite 
de la survie et du deplacement d'un point a I'autre dans I'espace et dans le temps. Les fonctions de Green sont 
etablies de facon empirique a I'aide d'un parametre, la vulnerabilite, qui correspond au rapport entre la densite 
de population des poissons marques divisee par le nombre de poissons marques relPches. Le nombre d'experiences 
de marquage necessaires pour caracteriser la population est dicte par la dependance de la vulnerabilite a I'egard 
du temps et de I'espace. Les moments de la fonction de Green sont utilises pour calculer les parametres du modele 
et permenent I'etablissement d'une expression fermee des densites de la probabilite de transition du modele 
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1. Introduction 

Considerable effort has been devoted to understanding animal 
movement patterns (Okubo 1980 Murray 1989). In particular, 
the study of f ish movement patterns by the use o f  tagging 
experiments has been reviewed by  Hilborn (1990), who dis- 
cussed recent studies on the subject (Bayliff 1979; Ishii 1979; 
Sibert 1984; Hunter et al. 1986; Kleiber et al. 1987). These 
studies require the assumption of a model (a partial differential 
equation, or, in general, a field equation) parameterized in such 
ways so that i t accommodates the movement of tagged fish and 
the catch and natural death rate densities. The model parameters 
are typically evaluated by  means of the tagging data and such 
extreme value principles as maximum likelihood estimators. 

A field equation is also employed in the empirical method 
discussed here. I t  is one o f  great generality that can be stated 
simply as the inhomogeneous advectiondiffusion equation 
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(Okubo 1980) withmortalityfordilutepopulations with spatially 
and temporally varying coefficients. The empirical method that 
w i l l  be exposed in this work is a one-parameter model and is 
adequate for  answering the question on fisheries interaction 
posed in Section 2. I t  is also the first step that would be taken to 
prepare the data for f itt ing a multiple parameter model. 

In a typical tagging experiment, tagged fish are released over 
a time interval short in relation to the time they disperse through- 
out their domain and into an area small in relation to the domain 
o f  the population. Under these conditions, the release and 
recovery data from the experiment approximate a point-source 
solution of the field equations that represent the population 
dynamics of the fish. The method o f  solving inhomogeneous 
linear differential equations by  use of their point-source solutions 
has been known for many years, and the subject i s  referred to as 
the method of Green functions (Feynman 1949; Courant and 
Hilbert 1953; Morse and Feshbach 1953; Bjorken and Drel l  
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1964: Garabedian 1964; Feynman and Hibbs 1965: Byron and 
Fuller 1970: Gilbarg and Trudinger 1979). The Green function 
associated with a linear differential equation is the solution of 
the differential equation under the influence of a unit impulsive 
source at one point (i.e., a source of unit strength applied at one 
space-time point) and therefore is the point-source solution. 

In general. if tagged fish were released at every space-time 
point, the subsequent recapture results would differ between 
points owing to uneven distributions of fishing effort in space- 
time. In addition, there may be other influences that affect the 
patterns of the point sources such as geographic (e.g., bound- 
aries) and cyclic factors (e.g., seasonal, El Niiio). Nevertheless. 
each of the release and recovery measures still represents a 
point-source solution of the field equations that describe the 
underlying fish dynamics and, therefore, in some manner must 
be approximately a Green function associated with the dynamics. 

Apparently. Green functions have never been used in modeling 
tagged fish populations, the reason probably being that the use 
of the method of Green functions requires linearity, and fish 
population dynamics processes. such as recruitment, are thought 
to be nonlinear. By separating the linear and the nonlinear parts. 
and by considering the nonlinear portion as being part of the term 
!hat makes the field equation inhomogeneous. the method of 
Green functions becomes not only useful, but conceptually 
simple, in fish population modeling. 

The following symbols are used: 

sl = domain of the population 
R’ = infinite plane 
ad = boundary of sl 
n, = unit vector normal to ad pointing outward 
R = infinite line 
adA = portion of ad on which population is absorbed 
392, = portion of 392 from which population is reflected 
sl, = neighborhood of point r, referred to as a cell 
n = number of nonoverlapping cells defined in d 
i , j  = unit vectors respectively in the +x and +y directions 
(0,: i = 1,2. .  . . ] = set whose members are 0,, O2 . . . 
E = member of 
L = subset or equal to 
U = union 
< = less than 
> =greater than 

= much less than 
S = much greater than 
5 = less than or equal to 
2 = greater than or equal to - = similar to, of the same order of magnitude 
r =xi + j j  = position vector E sl 
r = Yr. r = magnitude of vector r 
rr = x4 + y j  = location of tag release E SP 
t = time 
a = age 
r, = time of tag release 
[r,,t, 1 = r: - t, 
T I  = [t,.r 1 
9, = [tr,r ] L 5, 
5, = [ r , ~ , + ~ l  
T‘ = [t’,r] 
9 = interval of time of arbitrary length; a period 
m = number of intervals of time 5, into which 9, is subdivided 

7 
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e (r,r ) = fishing effort density field 
cr(r,f ) = tagged fish catch density rate field 
c(r,r ) = untagged fish catch density rate field 
p r  (r.?) = tagged fish population density field 
p(r.r) = untagged fish population density field 
dl = infinitesimal line element 
d’r = infinitesimal surface element = drdy in Cartesian 

V = differential operator ia/& + ja/ay 

j(r,r) = flux of p 
s(r.r) = source and/or sink density rate of fieldp 
d(r.r) = natural death density rate field 
m(r,r). m(r) =natural death rate 
q(r,t) = catchability 
f(r.r) =fishing death rate field = q(r,r ) e(r,r) 
z(r,r) = m(r,r) +f(r,r) 
Nr(rT,tr) = number of tagged fish released at space-time point 

NR = number of tagged fish recaptured in the interval of time T, 
L,, = spatial differential operator dependent onf 
L = spatial differential operator independent off 
-Y(r’,u2) = two-dimensional normal distribution centered at r’ = 

x’i + y’ j  and variance c9 
6(r - r’) = &x - x’)6b - j’) = two-dimensional Dirac delta 

function which can be represented as lim o4 N(r’,&) 
go(r,r Ir’.r ’) = effort-dependent Green function, which represents 

the probability density that a fish will s w i v e  the movement 
to point r from point r’ in the interval of time 9‘ when fishing 
takes place during that time interval 

g(r.r lr’,r 7 = effort-independent Green function, which repre- 
sents the probability density that a fish will survive the 
movement to point r from point r‘ in the interval of time T‘ if 
no fishing takes place during that time interval 

coordinates 

a = D-v = a?/a.\? +a? /+?  

(rr.tr) 

r(r,r) = recruitment density rate field 
uo(r,r) = population density due to recruitment = superposed 

recruitment density rate field with the effort-dependent Green 
function go 

u(r.r) = population density due to recruitment = superposed 
recruitment density rate field with the effort-independent 
Green function g 

h(r - r ‘ )  = Heaviside step function which can be represented as 
dh(r - t’)/dr = 6(r - t’) 

v(r.f), v(t) = v j  + v , j  = drift velocity 
k(r.r), k ( t )  = diffusivity 
% = {e(r,,rl): i =  1.2, .  . . . n; j =  1.2,. . . .m+ 1 )  =setofeffort 

density measurements 
% = {c(r,,r,) : i = 1,2.. . . , n; j = I ,  2, . . . , m + I ]  = set of catch 

density rate measurements of untagged fish 
~ ~ r ~ , t I ) = [ c , ( r , , r , ) : i = l , 2  ..... n ; j = / , [ + 1  . _ _ _ ,  m + l ) = s e t  

of catch density rate measurements of tagged fish released in 
cell slL in the interval of time 9,. 

% J =  ~%7(rs,rl+J-J : s = 1, 2, . . . . n) = set of catch density rate 
measurement of tagged fish for n tagged fish releases in zones 
SPs. correspondingly in the intervals of time for s = 1.2, 
. . . ,  n. 

3 = { 9 ( r ~ , + ~ - , )  : s = I, 2 ,  . . . , n )  = set of catchabilities com- 
puted from tagging experiments in cells d, correspondingly 
in the intervals of time 

% =  [r(r , . t ) ) : i= 1 . 2 , . .  . , n ; j = l + n . / + n +  1 . . . . .  m +  1 )  = 
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set of recruitment density rates computed at 91, in the intervals 
oftime 5 , f o r j =  I + n. I + n +  1 , .  . . , rn 

%o(rA,rl) = {go(r,,rj+,lrk.rj) : i = I ,  2.  . . , . n: s = 1. 2.  . . . . rn - I +1 ] 
= set of values of the effort-dependent Green function 
computed from a release of tagged fish in cell in the interval 
of time 5, 

%o = [%o(r,,r,+~.,) : s = 1, 2, . . . . n )  = set of values of n Green 
functions from tagged fish releases in cells 92, correspondingly 
duringtheintervalsoftimeT,fors = I , / +  I ,  . . . ,  l + n - l  

%t(Y,) = {g(r,.r,+l~rL,r,) : i. k = I. 2 ,  . . . . n ]  = set of effort- 
dependent transition probability densities for the interval of 
time 5, 

%$ =%:(SI+,) u %t(T,+,+,) u . . . u %,*(T,) = {go(r,,rplirA.t,) : i, 
k =  1, 2 , .  . . , n: j = I + n, 1 + n + 1 , .  . . , rn) =se t  of 
effort-dependent transition probability densities in the inter- 
v a l s o f t i m e 5 J f o r j = l + n , / + n + 1  , . . . .  rn 

%* = {g(r,,rJ+,lrk,r,) : i, k = 1. 2 ,  . . . , n:  j = I + n,  
, m 1 = set of effort-independent transition 

probability densities in the intervals of time 5, fo r i  = I + n,  
l + n + l ,  . . . ,  rn 

(f(r) ) (rlr'f) = &rf(r)g(r.ri,r',r') Id 
(f(r,) ) (t,+,~rk.iJ) = E:, d ~ ( r ~ ) g ( r , , r J + ~ l r ~ , r J )  

1.h.s.. r.h.s. = left-hand side. right-hand side. 

2. Problem Statement and Formulation 

Assume that almost all of a fish population is contained in a 
domain s.4 E R'. Although in reality, fish populations inhabit 
three-dimensional space, this work will deal with highly 
migratory species whose vertical movement is negligible com- 
pared with theirhorizontal motion. Such is the case, for example, 
of pelagic species of fish. 

Assume also that the population is being exploited with effort 
density e(r, t)  over the time interval T, = [r , ,r ]  = r - r,. During that 
time interval, acatch density ratec(r.0 isrealized. Because I wish 
to determine how an increased fishing effort in a portion of d 
will affect the catch density rate in another portion of d, the 
movement patterns of the population must be determined. To this 
end, a tagging experiment with distinguishable tags is initiated 
at time rr E T, which results in a tagged fish catch density rate 
ci(r,r) in the interval of time TT= [r,.r] C 5,. In addition, I wish 
to calculate the recruitment density rate r(r,t) and estimate 
parameters assuming that the fish population is accurately 
modeled by a diffusive population that drifts. 

I have previously considered the fisheries interaction problem 
formulated above making no use of differential equations by 
applying the principle of linear superposition (Salvad6 1994). 
Here, I will go about solving this problem by use of the Green 
functions associated with population field equations derived 
from the Rayleigh transport theorem (Okubo 1980). This 
theorem states that any population that is in motion and 
dismbuted in a space-time continuum must satisfy the 
relationship 

where p is the population density, j is the flux of p (the amount 
of transport of population across a unit area in unit time). and s 
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is the source (+) or sink (-)rate densities o fp  at space-time point 
(r,r). The flux j will be assumed to be the result of an operation 
on the spatial distribution of p that results in a differential 
expression that is linear in p .  

For a population whose movement and distribution in space- 
time are structured by age, the transport equation given in ( I )  
must be modified. Ifp(r.r,a) is the population density of individ- 
uals of age a at space-time point (r,r). the transport equation is 
given by (Murray 1989) 

However, because aging is at the same rate as the passing of time. 
transforming ( 2 )  with the set of transformations for f > a 

r ' = r  
a ,  = t - a  
r' = r 

leads to the transport equation 

ap(r ' ,r ' ,r '  - a ' )  
(3) arc + V '.j(r ' , r  ' , r  ' - a ') = s(r ' ,r ' ,r ' - a '1 . 

Equation (3) is of the same form as (1) except that the latter has 
fields with two arguments of time. It follows that the solutions 
of the age-dependent field equations can be inferred from those 
expressions corresponding to age-independence. Therefore, for 
simplicity, this exposition will be for the age-independent case. 

A population density is said to be conserved if the source 
and/or sink term s in Eq. (1) vanishes, but in the general 
treatment here. population density may be nonconservative. 
With d(r,r) as the natural death density rate, and r(r,r) as the 
recruitment density rate, s(r,r) is generally given by 

s(r,r) = r(r,r) - [d(r,t) + c(r,r)] . 

The biomass volume of fish populations is small in comparison 
with the volume of water they inhabit and, therefore, I shall 
assume that the population is dilute. As a consequence of this 
assumption, I can make some linear approximations. Because the 
catch density rate must be a function of population density (Le., 
there can be no catch if there are no fish), expanding c ( p )  in a 
Taylor series about p = 0 up to the linear term yields c ( p )  = fp 
(c(0) = 0 necessarily). wheref= [ac@)/ap],., is the death rate 
due to fishing. Becausefmust be a function of effort density (Le., 
there can be no fishing death if there is no fishing), expanding 
f(e) in a Taylor series about e = 0 up to the linear term yields 
f ( e )  = qe ( f ( 0 )  = 0 necessarily), where q = [a2c(p,e)/dpae],.,, 
is the catchability. Therefore, for low population and effort 
densities, one can assume the model for catch density rate to be 

(4) c(r,r) = f(r.r)p(r,r) = q(r,r) e(cOp(r.0 . 

Similarly, the natural death density rate d must be a function of 
population density. Therefore, with rn the natural death rate (i.e., 
natural mortality) and d ( p )  expanded in a Taylor series about 
p = 0 up to the linear term (where d(0) = 0 necessarily), at low 
population density the model for natural death density rate can 
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be assumed to be 

( 5 )  d(r,r) = m(r,r) p(r.t) . 

In the method of analyzing the dynamics of populations in space- 
time that follows. it is not necessary to invoke a particular model 
for the source term corresponding to recruitment density rate. 
However, as I shall show, it is possible to determine empirically 
the recruitment density rate once the population density due to 
recruitment is calculated. 

I shall further assume that the population drifts with velocity 
v(r.r). The population is also assumed to disperse diffusively 
with diffusivity k(r,r). Then, consistent with the assumption of 
linearity due to diluteness used in the formulation of the catch 
density rate and natural death density rate, the flux of the 
population density is 

(6) j(r,r) = [v(r,r) -k(r.r)D]p(r,r) . 

Therefore, the field equation the population density is assumed 
to satisfy is 

in the spatial domain r E d, where is a differential operator 
that operates only on the spatial distribution ofp(r,t) and is given 
by 

(8) Lo = bo(r,t)+b,(r,r).D+bz(r,r)LI 

where 

a a  
ax ay V = i-+j- 

(9) bo(r,r) = z(r,r) + V . v(r.r) 

b&r) = v(r,t) - V k(r.2) 

b2(r.r) = -Kr,O 

and z(r,r) = m(r,t) +f(r,t). The restrictions on the parameters of 

the field equation are that j, dsr(r,t) 2 0, d‘ck(r,.r) 2 0, and 

that D.v(r,t) and Ak(r.r) exist. For b,(r,t) = r(r,f) = 0, field 
equation ( 7 )  is a Fokker-Planck equation used in the study of 
stochastic processes where probability is conserved (Gardiner 
1990). In the general treatment of this work, b&,r) # 0 and 
r(r,r) # 0. Because these terms represent sources and/or sinks of 
population, probability will not be conserved. 

The domain of the population is finite, so I must discuss the 
boundary a d  of d. For the purposes of this paper the boundary 
ad is defined as the line at the edge of .d (i.e.. ad  C d) beyond 
which the population is unlikely to inhabit due to unfavorable 
physicobiological conditions. In general, fish populations have 
two types of boundaries: well-defined ones delineating. for 
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example. the water-land interface and fuzzy ones demarcating, 
for example, lines beyond which if a member of the population 
strays is likely to perish due to unfavorable environmental 
conditions. It can be shown (Appendix A) that with a prescribed 
population density at an initial time (initial condition) the 
solution of (7) is unique and “simply” represented whenp(r.r) or 
the component normal to a d  of Op(r,t) vanish on ad. By 
“simple” representation of the solution, I mean that the Green 
function associated with ( 7 )  is a simple function of measurable 
quantities, a concept that will become evident when I discuss the 
solutions. However. the required simplicity does lead to physico- 
biological peninent boundaries of fish population domains. 

Consider the first boundary condition 

(10) p(r,r) = 0 

for r E ad.  The drift v(r.r) could be the motion of the medium, 
relative to a fixed coordinate system, that the population is riding 
or fighting. The diffusivity k(r,t) is ultimately an environmental 
variable that could be negatively correlated with the amount of 
food encountered by the population at space-time point (r,r). 
Low food availability in a region of the population domain would 
mean that the random motion of a foraging fish population in that 
region could increase and, according to (71, would be “pushed” 
in the opposite direction in which k(r,r) changes the fastest to- 
wards a region of lower k. As I shall later show in an example, 
an increased diffusivity at a particular space-time point results 
in a decrease of the population density at that point. Although the 
natural death rate m(r,r) has limits imposed by evolution, it is 
dependent also on environmental factors such as food avail- 
ability and probability of encounters with predators. Ahigh value 
for m(r,r) could mean low food availability and/or high proba- 
bility of encounter with a predator at space-time point (r,f). 
Therefore, the boundary condition (10) would be a good model 
of a “fuzzy” population boundary preceded by regions of in- 
creasing diffusivity and/or natural death rate. A boundary on 
which (10) holds is aptly known as the perfectly absorbing 
boundary (Okubo 1980; Gardiner 1990). In the mathematical 
literature, this boundary condition is known as homogeneous 
Dirichlet conditions. 

A second boundary condition mentioned above that leads to 
unique simple solutions of (7)  (together with an initial condition) 
is formulated by considering the integral over d of equation (1) 
and applying the Divergence Theorem (Courant and Hilbert 
1953) to the term containing the divergence ofj(r,z). Letting n, 
be the unit vector normal to ad pointing outward, then 

This states that the change in population density over time is due 
to the sinks and sources of population in s4 and the flux of p(r,r) 
across ad. However, because d is the domain of the population, 
the flux o f p  across a d  must vanish and the change in population 
density is due to the sources and sinks. Therefore, 

ni . j(r,r) = 0 

for r E ad. Using (6), it can be written as 
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in the domain r E ad. Furthermore. because d is the domain of 
the population the vanishing of the flux must be due to the 
inability of any member of the population to cross ad. Therefore. 
the component of the drift velocity normal to ad must also 
vanish (i.e.. n,. v(r,t) = 0 for r E a d )  and the boundary con- 
dition reduces to 

(11) nL . Vp(r.r) = 0 

for r E ad. A boundary on which (1 1 ) holds is aptly known as 
the perfectly reflecting boundary (Okubo 1980 Gardiner 1990). 
In the mathematical literature, this boundary condition is known 
as homogeneous Neumann conditions. This boundary condition 
is appropriate for the ocean-land boundary. 

I shall assume throughout this work that the boundary of the 
domain of the population is composed of se,ments or portions 
which are perfectly absorbing and the remainder perfectly 
reflecting. If ad,+ is the total of the absorbing segments, and ad, 
is the total of the reflecting segments, then ad = ad, + ad, . 
The solution of the field equation (7), with a prescribed initial 
condition, satisfying the mixed boundary conditions is unique 
(Appendix A). 

Using this formulation, I shall show that data from a tagging 
experiment properly performed may be used to construct an 
approximate representation of a Green function. I shall, there- 
fore, develop an empirical technique to consmct Green 
functions using tagged fish catch and effort data and use these 
results for a fishery interaction problem and the calculation of 
model parameters. 

3. Problem Solution 

In this section, I will develop the Green function as an 
approximate representation of atagging experiment, list its prop- 
erties, and use it to represent the tagged and untagged fish 
population densities. For an intuitive approach to the develop- 
ments in this section which makes no use of differential 
equations, see Salvado (1994). 

3.1. Effort-Dependent Green Function 

In this subsection, I formulate and find representations of the 
solutions for the tagged and untagged portion of the population 
in terms of apoint-source solution that is dependent on the death 
rate due to fishing. I shall also show how the point-source 
solutions are constructed from the fields cy and e .  Although these 
are correct solutions to model the population field at one level of 
fishing effort, unless m(r,r) +f(r,r), they are not of much use for 
thecaseof considering the interactionbetweendifferent cells (for 
the time being defined as a small subset of d )  of the domain of 
the population at various levels of effort. 

3.1.1. Taggedfish dynamics 
Consider a tagging experiment in which Nr tagged fish are 

released in an area small compared with SP about position rJ 
beginning at time rr E 9,. The duration of the tagged fish release 
is short conpared with Tr, where f B f,. I shall index the number 
of tagged fish. location, and initial time of release by writing 
NArr.tr). 
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Let  4 be a linear differential operator which contains the terms 
of the field equation that describe the natural and fishing death 
rates and the spatial dynamics. Consistent with (7) and the 
general fish population problem formulated in Section 2. the 
tagged fish population density pr(r,t) must satisfy a field 
equation of the form 

in the space-time domain r E d, r t tr. 
The initial condition of the tagged fish release process will be 

approximated as if the release is at one point (Le., at r = rr) and 
instantaneous (Le., at f = fr ) :  an approximate representation of 
the initial condition of the population density of tagged fish is 

(13) pr(r.fr) = Nr(r.rr) 6(r - rr) 

in the space domain r E d and where 6 is a two-dimensional 
Dirac delta function (Lighthill 1964; Butkov 1968). The discre- 
tization of space-time will relax the condition of an instan- 
taneous release at a point of all the tagged fish. 

The boundaryad = ad, + ad, is assumed composed of 
segments on which it is absorbing (ad,<) and those on which it 
is reflecting (ad,). Therefore, p,(r,t) satisfies 

(14) p,(r,t) = 0 

on the space-time domain r E 

(15) nl .Vp,(r,t) = 0 

in the space-time domain r E adR, f 2 tJ. 
I seek the solution of (12) that satisfies conditions (13), (14). 

and (15). To this end, I consider the Green function that is 
associated with (12) for a source space-time point at (r’.r’). With 
respect to the receiver space-time coordinates (r.r), the Green 
function associated with (12) satisfies (Appendix A) 

I 2 fr, and 

r .  _I 

(16) I:+ L,,~,(r,tIr‘,r’, = 6(r- r‘) 6(r- t‘) 

in the domain r E d, a causality condition 

(17) go(r,rlr‘,t’) = Oif t< r ’  

in the domain r E d. and boundary conditions 

g&r,tIr’,r ‘) = 0 

for r E ddB, and 

nL . D go(r,rlr ’,t ’) = 0 

for r E ad, 

(Appendix A) 
The solution that satisfies (12), (13). (14). and (15) is given by 
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As an example, if 4, is given by 

(19) Lo = Z(f)+V(f) V - k ( f ) A ,  

then the solution of (16) in an unbounded domain that satisfies 
the causality condition (17) and boundary condition 

go(r.r&.r7) = 6(r - r7) 

Analytically this can be deduced by dividing thmugh (13) by 
the number of tagged fish released. Therefore, multiplying 
expression (22) by 9fr.r) and integrating over the spatial domain 
and application of the initial property of go for r + tr yields 

lim go(r,rlr ’.r ’) = 0 
r+ ~ 

where I’ = 6 for a source at (rr.fr) is 

h^(rr,02) is the normal distribution centered at r, with variance 
d given by 

(21) d(r, t,) = 2J, &k(.r). 

and h(r - r,) is the Heaviside step function defined as 

0 if r < fT 

1 if r2 f 7 .  1 h(t - f7)  = 

As can be appreciated the amplitude of (20) decreases when m 
and/or k increase. It is initially (Le., at f = f r )  a normal distribution 
centered at r = rT with vanishing variance (i.e., a Dirac delta 
function). For f < r, the distribution vanishes, while for r > f r  the 
distribution spreads at a rate that depends on the diffusion co- 
efficient k, and the mean drifts at a rate determined by the drift 
velocity v. While the distribution JV is normalized for all f t r,, 
the distribution go does not conserve probability. Because z(r)  = 
m(r) + f ( t )  > 0, the exponential function or survivability coef- 
ficient (Ricker 1975) leading X in (20) decreases with increasing 
time from an initial value of unity. I shall show that these 
properties of go are general properties of the point-source 
solutions associated with (19). To see this, I solve for go from 
(18). With the use of (4). I can express go as a function of the 
measured fields e and cr as 

Because I know the number NT of tagged fish released at 
space-time point (r7,r7), and I have cdr,t) and e(r,f) in the inter- 
val of time Fr, I can construct empirically the Green function 
go(r,flrr,r,) in the interval of time TT if I have 9(r,r). 

The Green function go has a series of properties that can be 
inferred. The first of these properties will allow the estimation 
of 9(r,t) as follows. 

A. Initial - Assuming tagged fish disperse at a finite rate, 
initially they must be present at the point of release only. 
Therefore, for a source space-time point at (rrrr),  go must satisfy 
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Dimensional analysis of (23) reveals that q has the dimensions 
of area x time-’. The dependence of its value on spatiotemporal 
location will ultimately dictate in how many cells and intervals 
of time must tagged fish be released in order to characterize the 
pattern of fish movement within d. The empirical construction 
of go(r.f71r’,f’) requires knowledge of q(r,r) for all r E d and all 
r E Tr. The calculation of 9 by (23) requires that it be done at 
the space-time point of the tagged fish release. It follows, there- 
fore, that to construct 9(r,r) for all r € d and all r E Fr in prin- 
ciple requires performing nondenumerably infinite tagging 
experiments if 9 depends strongly on (r.r). However, as will be 
discussed later, discretization and weak dependence of 9 on (r,r) 
will allow some approximations. 

The accurate estimation of 9 using (23) requires that the loss 
of tagged fish due to natural mortality during the time of release 
be negligible. It is, therefore, important to release the tagged fish 
in as short a time as possible. If [tr. r,,] is the interval of time 
over which the tagged fish are released, the required condition 
of small loss of tagged fish due to natural death rate during the 
time of release will be fullfilled if m(r,r,) 4 l/[rr,rT+s]. Other 
properties of go are as follows. 

B .  Dimensional - Dimensional analysis of (22) reveals that 
go is a density. That is, go has the dimensions of area-’. 

C. Causal - Because tagged fish can exist in their domain 
only if they are present at an equal or earlier time, for a source 
time f7. go must satisfy 

go(r,rlrr,rT) = 0 for f < rr . 

D .  Normalizarion -As a consequence of the initial property, 

I, dzrgo(r,f,lr,,rr) = 1 

E .  Probabilistic -Because the number of tagged fish recap- 
tured cannot be greater than those released, for r 2 r,, 

0 2 go(r,flrr,r7) I6( r -  rT) 

and therefore. 

Hence, go (r,flrT,rr) can be regarded as the probability density of 
a tagged fish surviving the movement to position r from r,during 
the interval of time 5r when fishing takes place in that interval 
of time. Assuming that the recaptured tagged fish are not 
rereleased, I will call go the effort-dependent Green function. 

E Nonconservation ofprobabilir?; - Because tagged fish are 
being removed from their domain by natural and fishing deaths, 
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in general it must be true that for t > I?. 

In order to derive the property of linear superposition of Green 
functions, consider the solution (18) which I will write as 

(24) p ,  (r ’.t ’1 = g,(r ‘ , r  ‘lr&) Nr(rT,tr) . 

Suppose I wanted to use the final condition pr (r’,r’) of (24) as 
the initial condition of a tagged population problem. The popu- 
lation density must then satisfy field equation (12) and initial 
condition 

for r’ E d (or some other estimate at (r’,t’) of pr) and boundary 
conditions (14) and (15). The solution is given by (Appendix A) 

(25)  pT(r,r) = 5 d’r’g,(r,rlr’,t ’ )p , ( r ’ , t  ‘) 

Dividing (25) by Nr (rr,tr) and using the definition of go given 
by (22)  leads to the following property. 

G. Linear superposition ofprobability densities - The proba- 
bility density satisfies 

(26) go(r,tlrr,tT) = jd  d’r ‘go(r,tlr’,t ‘) g,(r ’.t ‘ir,.,r,) . 

Another important property of go is its periodicity. 
H .  Periodicic - A Green function is said to be periodic in 

time, of period 5, if 5 is a constant such that 

g(r,tlr ’ , t  ’) = g(r,t + 5ir ’ , r  ‘ + 5 ) 

(Tolstov 1962). A spatial periodicity can also be defined. 

3.1.2. Untaggedfish dynamics 
Consistent with (7) and the general fishery problem formu- 

lated in the foregoing section, I would like to find expressions 
for the population density of the untagged portion in the interval 
of time 5,. However, because the empirical Green function is 
constructed for t t tr 2 r,, in general it is not possible to define 
empirically the population density in the interval of time 
t, 5 t 2 f ,  from a tagging campaign initiated at time tr. Therefore. 
I shall pose the problem for the untagged portion of the 
population in the interval of time 5 r .  

The population density of untagged fishp(r,r) obeys the field 
equation 

in the space-time domain r E 92, f 2 t, subject to initial 
condition 

in the domain r E d (or some other estimate at (r,rr) of p )  and 
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boundary conditions 

(29) p(r,r) = 0 

in the domain r E ad,, t 2 tr and 

(30) nr . Vp(r,r) = 0 

in the domain r E ad,. r 2 t, . 
Because the differential operators for the tagged and untagged 

portions of the fish population are identical, even though their 
inhomogeneous term and initial conditions differ, this means that 
the movement and survivability of tagged and untagged fish are 
linked through the equality of their Green functions. In practice, 
this is true only if sufficient numbers of tagged fish are released 
so that go constructed as indicated by (22)  approximately repre- 
sents the average movement and survivability of the total fish 
population. 

The solution that satisfies (27), (28), (291, and (30) is 
(Appendix A) 

where the field u,(r,t) is the contribution to the population den- 
sity due to recruitment and is given by 

(32) u,(r,t) = 5, dt ‘ Jd d’r ‘g,,(r,tIr ‘J ’) r (r ‘,t ’) 

Multiplying (31) by the fishing death rate f ( r , t )  yields the 
expression for the catch density rate: 

The contribution to the population density due to recruitment at 
the level of exploitation at which the empirical probability 
density go was constructed can be computed by use of (33). 
Solving for u,, I have 

Because in the interval of time 5,, I knowf(r, t)  and the resulting 
c(r , f ) ,  (34) can be used to calculate u,(r,t) at the level of effort 
for which go(r,flr’,fr) was constructed. However, in general, I 
cannot use equation (33) to compute the catch density rate at a 
new level of effort unless I perform another tagging experiment 
at the desired level. The survivability embedded in go depends 
on the level of exploitation during the recapture of the tagged 
fish. Therefore, although these equations using go are valid for 
modeling the movement and distribution of a fish population, 
they are in general useful only at the level of effort for which go 
was constructed. In general. no other case can be rigourously 
considered. In Section 4, I shall show that if the natural death rate 
is much greater than that due to fishing, the equations derived in 
this section can be used for a fisheries interaction study. How- 
ever, in order to be able to consider the general fisheries inter- 
action problem formulated in Section 2 without having to 
perform tagging experiments for all the levels of effort that wish 
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to be considered. I need to reformulate the problem so that the 
solutions for the population density are in terms of a Green 
function that is effort independent. 

3.2. Effort-Independent Green Function 
In this subsection, I shall find the solutions for the population 

density for tagged and untagged fish in terms of a Green function 
that is effort independent. I shall also show how to construct the 
effort-independent Green function from knowledge of the effon- 
dependent one. This new Green function satisfies. other than the 
fact that it is independent of fishing death rate, properties iden- 
tical to those of go. 

3.2.1. Taggedjish dynamics 
Consider again a tagging experiment in which N r  tagged fish 

are released in an area small compared with 92 about position rr 
beginning at time f, E 5, with a duration short compared with 
Fr where f % f r .  Here again. I shall index the number of tagged 
fish, location, and initial time of release by writing N,(rr,lr). 
However. in this case, I shall pose the problem with adifferential 
operator that is independent of the fishing death rate. and I shall 
pass on to the inhomogeneous part of the field equation the 
responsibility for embedding into the solution for the population 
density the information of catch density rate. 

Let Lbe a linear differential operator which contains the terms 
of (7) that describe the natural death rate and the spatial 
dynamics. In terms of operator &, operator L i s  given by 

f = Lo -f(r,t) 

Consistent with (7) and the general fishery problem formulated 
in Section 2. the tagged fish population density must therefore 
satisfy a field equation of the form 

L 

in the space-time domain r E d ,  r 2 f,, subject to initial 
condition (13) and boundary conditions (14) and (15). The 
tagged fish catch density rate is now the inhomogeneous term of 
the field equation. It is a negative conmbution because it is a sink 
ofpopu1ation.Thesolutionthatsatisfies (35), (13). (14).and(l5) 
is given by (Appendix A) 

(36) p,(r,f) = g(r.drr.rT) N,(rr3fT) 

- ~ ~ , d r ’ ~ d d ~ r ‘ g ( r , f l r ‘ , r ‘ ) c r ( r ’ , f  ’ ) .  

I need to determine how the effort-independent Green function 
is related to go. On dividing equation (36) by Nr and using the 
definition of g, given by (22),  the relation between the effon- 
dependent and effort-independent Green functions becomes 

(37) g k r  Irrrr) = gn(r,rlrr.tr) 

1 
Nr (r+) 

+ - 15, dr ’ ’g(r,rlr ’.f ‘) cy (r ‘,f ’) 

which is an integral equation where g(r,flr’,t’) is the unknown. 
The exact solution to integal equation (37) is given by the 
Neumann series (Courant and Hilbert 1953; Byron and Fuller 
1970) 
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(38) g(r.rlrr.fr) = g,(r.drr.r,) 
,=o 

where 

x jdd2r’g,-,(r.rlr’,r ’) cr (r ‘,I ’) 

for i = 1, 2, . . _ _  The series (38) converges over an arbitrary 
interval of time whenever the number of tagged fish recaptured 
is less than the total number of tagged fish available at the 
beginning of the interval (Appendix B), and therefore, it 
converges uniformly to the solution under that condition (Byron 
and Fuller 1970). 

To discuss some approximations, consider the total number of 
tagged fish recaptured in the interval of time 5,: 

NR(r) = I dr ’ 5 d‘r’cr(r’,r ‘) . 
5- 

can be used. However, if NR Q Nr. which implies m(r,r) *f(r,f), 
then the approximation 

g(r,flrvfT) = g&fIr& 

is adequate. In a practical computational sense, the expansion is 
stopped at the term whose contribution is negligible. 

The properties of g can be determined with the help of (37). It 
satisfies all the properties of go listed in Subsection (3.1.1.). 
However, because g does not have fishing death rate included, 
the survivability associated with it must be in general of larger 
magnitude than that of go except initially. It therefore satisfies 

g(r,rlrr.rr) 2 go(r.flrp$) 

where the equality holds for f = f,. Therefore. g(r,rlrr,fr) can be 
regarded as the probability density of a tagged fish surviving the 
movement to position r from r, during the interval of time 9, in 
the absence of fishingduring that interval of time. I will therefore 
call g the effort-independent Green function. 

On multiplying (36) by the fishing death rate, the tagged fish 
catch density rate is the solution of integal equation 

-I d t ’  ~dd2~‘g(r ,?~r’ ,r ’ )cr(r‘ ,r ’ )  I . 
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3.2.2. Untaggedfish dxnamics 
Consistent with (7), the general fishery problem formulated in 

Section (2) and the fact that the empirical Green function is 
known only for I 2 f,,  the population density of untagged fish 
must obey a field equation 

(40) [$ + L] p(r.f)  = -c(r,r) + r(r,f) 

in the space-time domain r E 92, f S fr,. and the conditions (28). 
(29), and (30). The solution is 

(41) p(rA = d? 'g(rdr 'J,) pJr '1 + u ( r 4  

- f 5 , d f '  5, d'r'g(r,fIr',f ') c(r',t ') 

represents the contribution to the population density attributable 
to recruitment. 

The untagged fish catch density rate is the solution of 

-f(r,f) I,, d f  ' 1, d'r 'g(r.flr ',f ') c(r ',f ') . 

Because the catch density rate is known for the level of effort 
employed during the time interval 5,, then (43) can be applied 
to those data to determine empirically the field u using 

+ I, d f  ' I, d'r 'g(r,rlr ' , f  ') c(r ' , f  '1 . 

Assuming that the recruitment does not change significantly at 
other levels of effort, catch density rate c can then be computed 
for differing effort densities e because (43) is valid for any level 
of effort as opposed to equation (33), which applies only to the 
measure of effort for which the effort-dependent Green function 
was constructed. 

4. Example: Skipjack Tuna Fishery in the Eastern 
'Itopical Atlantic 

The following example shows how a subset of the type of 
fishery models considered in Section 3 can be reduced to a simple 
calculation whenever the effort density is sufficiently low. The 
fishery of interest is the skipjack tuna (Kafsuwonus pelamis) 
fishery in the five cells of the eastem tropical Atlantic (ETA) 
indicated in Fig. 1. As a politically interesting question, A. 
Fonteneau (C.R.O.D.T., B.P. 2241, Dakar, Senegal) asks in aper- 
sonal communication what effect the doubling of effort in one 
cell might have on the catches from the other four. 

FIG. 1. Eastern tropical Atlantic (ETA) geographic cells: 1, Senegal; 
2, Liberia; 3. Ghana; 4. Cape Lopez: 5, Angola. 

The data required for the analysis consist solely of the mark 
and recapture measures from the International Skipjack Year ho- 
gram, conducted over a 3-yr period by the International Com- 
mission for the Conservation of Atlantic Tunas (Symons et al. 
1986). Although the corresponding catch and effort densities are 
also given in Symons et al. (1986), the only information needed 
here is the reported 5% tag return, together with the assumptions 
that almost all of the tagged fish survived the trauma of tagging 
and that almost all of the recaptured tags were reported. As I will 
show, the fishing effort expended during the experiment was 
sufficiently low to permit me to regard the dynamic catch density 
rate as approximately a linear function of effort density. 

In the most extreme case. all of the NR = 5 x 1W' Nr recovered 
tags could have been taken in just one of the five cells over a 
single time interval corresponding to the space-time point (rR, tR)  
for tR 2 f,. Accordingly, the catch density rate of the tagged fish 
would then be c7(r,f) = NR6(r - rR)6(f - lR). Therefore, on 
substituting those values in (37) and integrating, I can conclude 
that the difference between the effort-independent and effort- 
dependent Green functions is no ,water than 

g(r,rIr& - g,(r.tlr,,r,) = 5 x g(r,rirR,rR) 

Because 5 x Q 1, g = go, which in turn implies that the natural 
death rate is much greater than the fishing death rate. In that limit, 
(33) becomes 

The catch density rate, under the condition of low fishing death 
rate in relation to the natural death rate, is approximately a linear 
function of effort density. Had the tag return been double its 
reported value, the approximation of catch as a linear function 
of effort would still hold because NR/Nr = 0.1 is an order of 
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FIG. 2.  Domain 91 of the population is divided into n nonoverlapping 
cells. The vector nl is the unit vector normal to the boundary ad of 
the domain pointing outward. 

magnitude smaller than 1. Should the recruitment density rate 
not change sigificantly, doubling the effort would have the effect 
of approximately doubling the catch. Thus, in answer to the 
Fonteneau question. if the effon in one or more of the five cells 
were doubled, the catch from the remaining cells would remain 
approximately constant. 

5. Discretization of the Fields 

Should the fishing death rate approach or exceed the natural 
death rate, the field equations of Section 3 must be treated in 
much more detail to address the general fishery problem outlined 
in Section 2. A numerical solution is proposed in this section. 

With reference to Fig. 2. the individual cells of area 92, of the 
domain 92, where i = 1.2, . . . . n, are such that 

d = C d ,  
F I  

(Le., no overlap of cells), and { r, E de : i = 1, 2, . . . . n ) .  Here, 
cell d, is defined as a neighborhood around point (or nuclei) r,. 
A cell is defined about every data collection nucleus. An 
economic zone can be composed of more than one cell. The 
closed time interval YT = [ r r , r ]  = [r,,f-,l, where I 2 1 and the 
equality holds only if ?Tr = TI. Them time intervals { T, = r,,, - 
f, : j = 1,2,  . . . , m )  are such that 

Pi 

2500 

The value of a field $ within cell d, in the interval of time 5, = 
[r,,r,+,] will be written b(rr.r,). Henceforth, (r,.f,) is interchange- 
able with (d,,F,). 

I will assume that N7 number of tagged fish are released in cell 
d, at time t , .  The following discrete fields are available for the 
analysis: % = [e(r,,r,) : i = 1.2, . . . , n; j = 1.2, . . . , m + 1 I .  % = 
(c(r,,f,) : i = 1. 2, .  . . , n; J = 1, 2, . . . , m + l ) ,  and(tZr(r,,r,) = 
{ c,(r,,r,) : i = 1, 2. . . . . n: j = 1, I + 1, . . . , m + 1 1. These are, 
respectively, the measurements of effort density. the untagged 
fish catch density rate. and tagged fish catch density rate for the 
release of tagged fish in cell d, at time f,. It will soon become 
evident that at the very least there should be as many tagging 
experiments as there are cells in the domain, one per cell. 

As I showed in Section 3, I first need to evaluate the 
catchability in order to construct the effort-dependent Green 
function. The discrete version of (23) is 

However, by its very definition. I can calculate only one value 
of 9 from every tagging experiment. If the tagged fish release is 
only at (rk,rl), then I can only calculate 9(r&). So in the case of 
the single tagging experiment, I am left with the necessity of 
assuming 9 constant throughout space-time. 

The discrete version of (22) for g, for a tagged fish release at 
(r,.rl) is 

If only the one tagging experiment has been performed, then, as 
mentioned above, it is necessary to assume q(r8,fj) = q(ril.fr) = 
constant f o r i  = I ,  2 . .  . . , n and j =  I ,  I +  1 , .  . , , m + 1. Thus, 
using the set qr of a single tagging experiment and set 8, I can 
construct an approximate go. The set of values calculated for go 
for a release of fish at (r&) will be called the set %o(rk,rl) = 
lgo(r,,r,+,lr~,rl) : i =  1.2.. . . . T I ;  s = 1,2,. . . , m - I +  1) .  To describe 
the elements of %o(rk,tl), it is helpful to use the Kroenecker delta 
function: 

1 i f i = k  1 0 otherwise. 
SI, = 

Then 

fort, < rr ;" 6,,/d, for r, = r, 
go('.~,lr,,ti) = 

and 

As a consequence of this last property. for r, 2 f, : 

o 5 d, go(c,rjrk,ri) 2 I . 
/=I 

The discrete version of (37) is given by 
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x 2 Tr 5 d, g(C,t,*llr~.i~)cJ(r,.i~). 

Therefore, for an arbitrary single interval of time, say FJ, the 
relationship between g and go is 

_ I  >=I 

for r = 1,2 ,  . . .. For cases where m +f, that is, if the number of 
tagged fish recaptured in the interval of time 9, is 

x C 92, go(wJ+llrv3tJ) c T ( m J )  
,= I 

will give accurate results if N R  < NT but NR + Nr. As I mentioned 
in Section 3, if N R  6 Nr, implying that natural death rate is much 
greater than that due to fishing. then the approximation 
g(r,,i,+llr%,rJ) = go (r,,t,+llrw,r,) is adequate. However, in general, 
one can proceed by expanding and stop the expansion with the 
term whose contribution is negligible. 

Either the exact or approximate solution for g requires the 
knowledge of the transition probability density elements 
%~={go(r, , tJ+,lr , ,rJ): i ,~~=1,2 , . _ . ,  n ; j = l , I +  I, . . . ,  m).For 
tagged fish releases starting in the interval of time 9, the 
empirical construction of go by (46) yields only %o(rL,rl). So it is 

necessary to calculate the transition probability density elements. 
This will be done with the property of superposition of prob- 
ability densities (Property G in Section 3). 

The discrete version of the superposition property of 
probability densities for consecutive time intervals is given by 

(49) g0(q.fii21rL.fi) = C 92, ~ o ( ~ 9 ~ l ~ ~ q . ~ ~ + l )  ~ , , ( r .~~+l~rL3~~ . 
i.+ I 

In order to define a completely determined system of 
equations for the transition probability densities %z(T(+l) = 
{go(r,,il+21r~,t~+,) : i, v = I ,  2. . . . , n )  from the information of a 
single tagging experiment, it is necessary to assume that the 
Green function is spatially translationally invariant. That is, it is 
necessary to assume that no matter where the tagged fish are 
released, the results are identical. However. the concept of 
translational invariance of the Green function is incompatible 
with the presence of boundaries, for the results of a tagged fish 
release away from the boundaries, for example, will be different 
from the results if the release were close to a boundary. 
Furthermore, fishing effort is not uniform throughout 92. Thus, 
one cannot possibly define a completely determined system of 
equations for the transition probability densities %:(Tf+l) from 
the information of a single tagging experiment if the population 
has a bounded domain or there is an inhomogeneous distribution 
of fishing death rate. Investigation of (49) leads to the conclusion 
that at least n tagging experiments are necessary to perform, one 
per cell, to define a completely determined system of equations. 
As can be appreciated in (49). if n simultaneous tagged fish 
releases were done, one per cell, the data at the initial interval of 
time and all subsequent intervals define completely determined 
systems of n equations. However. it is not necessary to perform 
the tagged fish releases simultaneously. To see this, it is best to 
consider an example. 

For simplicity. I will suppose that the release at timet, is in cell 
d,, the release at time r,, is in cell 92>, . . . , and the release at 
timer,,,_, is in cell sl,. To determine the complete set of transition 
probability densities for an interval of time, it is necessary that 
there be as many tagging experiments as there are cells in the 
domain, one per cell. but it is sufficient that there be only one 
experiment per interval of time. Some or all can be done 
simultaneously. With the catch data of each experiment, because 
I have assumed distinguishable tags, one has the set of sets %T = 
[%J(rs,r,+q-l) : s = 1, 2, . . . , n } ,  that is, the set of catch density 
rates of the n tagging experiments. Use of % and % J  in equation 
(45) will yield a set of computed catchabilities given by 2 = 
{q(rs,t ,+,. I )  : s =  1,2, .  . . , n ] .  I canuse these tocompute aset  of 
discrete Green functions go = {%o(rs,il+,-l) : s = 1, 2, . . . , n ] as 
indicated by (46). However, the catchability of the ith cell at 
time 1, should be used for the computation of terms of all n 
Green functions evaluated in the ith cell (Le., receiver point 
r,) at time I,. 
Assuming the tagged fish live longer than [rl,iJ+J, the second 
transition when there is data from all n tagging experiments is 
during interval of time TI+". I am arbitrarily using the transitions 
at 5!+" rather than those at 51+n.l for the sake of uniformity of 
notation in the analysis that follows. From (49), for the release 
of tagged fish in si,: 
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For the release of tagged fish in A?: This is a system of equations of the form 

and finally, for the release of tagged fish in d,: 

as the data vector. 

as the model vector. Solving this system of equations fori = 1, 2, . . . , n gives the set %: (TI+") = (go(r,,fl+,+, Irv,fi+J : i, 1' = 1.2, . . . , n 1. 
Following the previous procedure for the next time step (Le., solve (50) with 

as the data vector. 
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as the model vector. Its solution for i = 1,2, . . ., n will yield the set 
successively to the last system of equations, which in the interval of time T,,,, are given by 
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as the matrix of coefficients, and 

as the model vector. Solving these for i = 1,2, . . . , n will yield 
theset%:(T,,,) = (go(r,,tm+llr,,rm): i,v= 1,2 ... . ,n].Anynumber 
of numerical techniques can be used to solve (49), or the integral 
equations of Section 3 for those cases in which an analytical 
model is chosen (Franklin 1970 Tikhonov and Arsenin 1977; 
Lavrentev et al. 1986; Parker 1990 Wahba 1990, Press et al. 
1992). For noisy data characteristic of fisheries, stable solutions 
resulting from the inversion of the above systems of equations 
will have the effect of smoothing the solutions at the expense of 
resolution. In the end of this process of solving these m - I - n 
systems of n equations, I will have constructed the set %: = 
%:(SI+,) u %:(SI+,+,) u . . . u %: (T,,,) = {%:(T,) : ; = I  + n,  
I + n + 1 , .  . . , m )  = (go(r,, r,+,lr,,, r,) : i, v =  1,2, .  . . , n; = I +  n, 
I + n + 1,. . . . m )  necessary to generate the set %* = 
(g(r,,i,+llrv,rJ) : i, v = 1, 2 , .  . . , n ; j =  I + n, 1 + n + 1, .  . . , m )  of 
effort-independent transition probability densities by use of (48). 

If the population exhibits periodic behavior of period 
3 < rm+l - f,,,, then some of the transitions will be repeated 
because 

go(r,.i,+llr,,r,) = g&.rfiI + 5 lrv,r, + 5 1 . 

It is desirable that tagged fish persist in their domain as long as 
possible but at least for two periods. This means that, in general, 
some transitions will have more than one value, one for each 
period that the tagged fish persist in their domain and there is 
catch of tagged fish. Due to statistical fluctuations, they will be 
generally unequal and can be averaged. 

Natural periods, such as seasonal, are at best approximate. Due 
to the inherently stochastic nature of fish movement, the approxi- 
mate repetition of their seasonal movement may be advanced or 
retarded. However, the transition probability densities may help 
decide the duration of a period by the consistent lack or peaks of 
a subset of %*, the set of effort-independent transition proba- 
bility densities. For the estimation of periods the set %: should 
not be used because some of the periodic nature of its subsets 
could be due to seasonal application of fishing effort. 
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Once the set %* of effort-independent transition probability 
density elements for the fish dynamics are determined, they can 
be used to determine the contribution to the population density 
due to recruitment. The discrete version of (44) for a single time 
interval is 

Because I have sets %. 9, %, and%*, I can compute with (51) the 
set % = {u(r,,r,+l) : i = 1.2,. . . . n; j = I + n, I + n + 1,. . . , m ) .  
To compute the catch density rate %’ = {c‘(r,,r,+l) : i = 1,2. . . . , 
n ; j = I  + n, I + n + 1 , .  . . , m ]  at anew level of effort density 
%’= le’(r,,r,+l): i =  1,2, .  . . ,n; j = l +  n, I +  n +  1,. . . ,m}, the 
population density at the different level of effort density can be 
computed with the discretized version of (41) which for a single 
interval of time T, is given by 

(52) p’(r,.>J = C d&.~,Jq.t,) [I  - T, dry,) 
%=I 

x e ‘(rv3rJ)l p ( w )  + u(r,,rfil) 

and is applied recursively for j  = I + n,  I + n + 1,. . . , m. In (52), 
one assumes that the recruitment density rate does not change 
significantly at the new level of effort. The catch density rate V’ 
at the different level of effort density %’ is computed by 
multiplying the result of (52) by q(r,,r,*l)e’(r,,r,+,). 

To summarize the previous example, the following steps must 
be taken to solve the fisheries interaction problem: 

1. Using the set of tagged fish catch density rates of n tagging 
experiments (qr) and the set of effort density measurements ( E ) ,  
the set of catchabilities (2) is constructed by use of (45). There 
will be one catchability associated with each cell and interval of 
time where tagged fish are released. If only one tagging experi- 
ment is conducted in each cell, then one is forced to assume that 
the value of each catchability in each cell is time independent. 

2. Using the sets %T, 8, and 2, the set of discrete Green 
functions for the n tagging experiments is constructed by 
use of (46). 
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3. The set of effort-dependent transition probability densities 
((9;) is constructed by application of %o to (49). 

4. The set of effort-independent transition probability densities 
(Yx) is constructed by application of (9; to (48). 

5. With the set of catch density rates of untagged fish (%) and 
sets 1. %, and Y*, the set of population densities due to 
recruitment % is constructed by applying (51). 

6. Assuming a new level of effort given by the set %’ # P, the 
resulting catch %‘ is computed using 8’, 2. and % in (52) and 
multiplying the population densities p’(r,.r,+,) by f(rt,r,+:) = 
~(r,.~,*l)e’(r,,rJ+l). 

= { r(r,,r,) : I = 1. 2 ,  . . . . n: 
j = I + n. I + n + 1, . . . , m )  is computed by inversion of the 
system by inversion of the system of equations 

The recruitment density rate 

as the n x n matrix of coefficients, and 

as the model vector. The system of equations must be solved for 
the j = I + n, I + n + 1, . . . . m time intervals. However, in order 
to be able to accurately resolve the population density due to 
recruitment from the population at large by use of (51). it is 
essential that the Green function also be a measure of the sur- 
vivability and movement of the untagged portion of the popu- 
lation. As has been discussed before, this condition is true only 
if sufficient numbers of tagged fish are released. 

Once the recruitment density rate is resolved from the above 
inversions, I am free to interpret it as a nonlinear function of 
population density. The same result is achieved by inverting for 
the recruitment density rate using the corresponding algebraic 
equations that involve the effort-dependent Green function. 

6. Estimation of the Field Equation Coefficients 

In this section, I will show how to calculate the coefficients of 
the field equation using tagged fish data. This method is a 
modification of an analytical technique that is used to construct 
solutions of stochastic differential equations from Fokker- 
Planck equations (Okubo 1980 Zwitlinger 1989) by the use of 
moments. The modification developed here will lead to the iden- 
tification of a closed-form expression for the transition proba- 
bility densities for small intervals of time. I will show that 
because the moment method is unable to resolve the divergence 
of the drift velocity and the Laplacian of the diffusivity, I am left 
with two alternative models that do equally well interpreting the 

u(~.I,+J = 9, C d)g(r,,rp,ly..l) rk.1,) . 
/=1 

which is the discretized field u(r.1) given in (42) for a single time 
interval T,, For this system of equations, identify in (50) 

data. 
I assume that I have resolved a smooth set %* of the effort- 

independent transition probability density elements. However, 
this analysis can also be done with %:. The Green function of the 
dynamics the population follows is given by 

(53) [ $ + L ] g(r.rlr’,r ’1 = q r  - r ’) t i (r  - r ’1 

in the space-time domain r E d, where operator L is 

L = b&r,i) + b,(r.t) . V + bz(r.:r) A 

subject to causality condition 

g(r,rlf ,r’) = 0 iff < r ’ 

and boundary conditions 

g(r,rlr’,r ’) = 0 

for r E 391, and 

ni . Vg(r.rlr ‘,I ’) = 0 

for r E adR. The only difference between this field equation and 
(7) is that here, b,,(r,r) = m(r,r) + V . v(r,f). 

The even moments of g are found by multiplying (53) by i2’ 

and integating over space sd in the interval of time 9- = [--J]. 
Once these integrations are performed. space-time discretization 
of the resulting equation for a single interval of time and invoking 
the initial property of g, for a source in cell s4, in the interval of 
time F,, leads to the equation for the 2Nth moment of g 
(Appendix C) given by 
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1 (54) r?'m(r,,r,) - 2 r, . v(r,.t;) - 4 N2r?'-%(r,,f,) - 2 Nr:'-+, . V, k(b,r,) = - [rlJ - ( r? ) (t,+llrh,r,)] 
9; 

for ri ad. where 

( r;" ) (r,+llrA9t,) = 2 d, e' g(rz,rJ+llw,) 
,= I 

The odd moments are calculated by going through the same process after multiplication of the field equation for g by 1 

is (Appendix C) 
The result 

Because data are collected only at the points that are interior to 
92, I will consider only those source points r, 4 392. For points 
r, E ad, corrections are necessary (Appendix C). However, for 
the purposes of this work. they are unnecessary. 

With the moments of the transition probability densities for a 
single interval of time TI, it is not possible to estimate the values 
of 7,- v(rk,f,) and &k(r,,f,) in cell d,. As can be appreciated in 
(54) and (55),  the even- and odd-moment equations are 
independent of these parameters. For the remaining parameters, 
{m(rL,f,), v(rL,rJ). k(rk,r,): V&(rk,tJ)], there are restrictions to their 
resolvablility. To see this, construct from the moment equations 
(54) and (55) a completely determined system of linear 
equations. Because the even-moment equations are scalar and 
the odd moments generate two component vector equations, it is 
only necessary to compute up to the third order moment. It leads 
to a system of linear algebraic equations 

d 3  = Qnm, s = 1.2 . _ _ . ,  6 
,-I 

Q =  

with 

as the data vectoi 

as the model vector, and 

as the matrix of coefficients. The mamx of coefficients 9 has 
de@ = 0. Therefore, the equations are not linearly independent. 
Keeping natural death rate and diffusion, there are two 
alternatives regarding the fields v and V,k within cell 92, during 

the interval of time 5; : either v(rk, ti) is constant and 7,k(rL,rJ) = 
0 or v(r,,t,) = 0 and V,k(r,,t;) is constant. In either case, it is only 
necessary to consider up to the second moment to define a 
completely determined system of equations. The mamx of 
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coefficients given by 

ak(r,,r,vax, 
ak(r ,qay ,  

m =  

k(rk.r,) 

which has a determinant given by de@ = 4, and the data vector 
given by 

are sufficient to define uniquely 
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These are the same results. linearized in Tj ,  that the discrete 
transition probability density 

(56) g(r.rJ+,lr,,r,) = exp [-T, m(r,,$)J ,hî  (ri + Fj v(q,f).a ') 

where 

CY' = 2 TJk(rrrJ 

(see equation (20)) yields for the unbounded domain when its 
coefficients are calculated using moments. In fact. (56) yields the 
momens of g of any order in the interval of time TJ, but those 
derived here (Appendix C) are linearized in TJ due to the discre- 
tization of the field equation necessary for the derivation. The 
fact that the moment equations of this section are correct for 
either the unbounded domain, or the domains bounded by 
absorbing and/or reflecting boundaries if r, ad (Ap- 
pendix C), leads to the expectation that the closed-form 
transition probability (56) is also correct for the bounded domain 
of this work. Because TJ is small, the transition probability 
densities are very nearly Dirac delta functions, so for points r, 
not near r, the distributions are nearly vanishing. 

Finally, transforming (56) with the transformation m(rk,r,) + 
m(rL,r,) + f(rk,rJ) yields the closed-form expression for the effort- 
dependent transition probability densities. These results. coupled 
with the discrete equations of Section 5, simplify considerably 
numerical analysis and simulations for an interval of time of 
arbitrary length. This method should be applicable to problems 
whose field equation has a Green function with a probabilistic 
interpretation: Fokker-Planck equations, but more generally, 
any linear field equation with at most a first-order time derivative 
but spatial derivatives of arbitrary order. As can be seen by 
comparing (20) with (56), it is only necessary to find the Green 
function associated with the field equation that is invariant under 
space-time translations, and then expressions for small intervals 
of time for the discrete transition probability densities associated 
with the corresponding field equation that is not invariant under 
space-time translations are constructed by inspection. In gen- 
eral, it is only possible to construct exact closed-form expres- 
sions for the transition probability densities if the differential 
operator has spacial derivatives no higher than fourth order. 

7. Summary 

When members of a population are released in an area small 
compared with their domain and over an interval of time short 
compared with the length of time they take to disperse through- 
out their domain, the pattern of movement approximates a 
point-source solution (or Green function) of the underlying 
population dynamics. The Green functions, one for each release, 
can be empirically determined with the mark and recapture data 
of tagged members of the population with distinguishable tags. 
The assumed field equations for the population dynamics were 
inverted to represent the solution in terms of integral equations 
for the tagged and untagged portions of the population. 

Because for a fish population it is necessary to use catch per 
unit effort of tagged fish to construct the Green functions 
empirically, the resulting point-source solutions are effort 
dependent and, therefore, not practical for a fishery interaction 
problem where it is desired to determine the catch resulting from 
a different level of effort. the field equations were reformulated 
such that the term containing effort was redefined as an inhomo- 
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geneous term of the field equation. This leads to a method of 
constructing the effort-independent Green function from 
knowledge of the effort-dependent one. 

Discretization of the integral equations was achieved by 
defining non overlapping cells of arbitrary shape in the neigh- 
borhood of each point where data were collected. The integral 
equations of the theory, upon discretization. result as systems of 
coupled algebraic equations which for a single interval of time 
coincide with a Markovian formulation of the exchange of 
members of the population between the cells of the discretized 
space. 

For every tagging experiment, it is possible to calculate only 
one catchability at the cell and time of release. However, to be 
able to determine approximately a complete effort-independent 
Green function from knowledge of the effort-dependent one in a 
bounded population domain, it is required that there be as many 
tagging experiments as there are cells defined in the domain. 

The Green functions were interpreted as the tagged fish 
probability density of surviving movement to the receiver space- 
time coordinates from the release coordinates. If sufficiently 
large numbers of tagged fish are released, then the tagged fish 
dynamics are representative of the population. Both the effon- 
dependent and effort-independent Green fuctions can be 
decomposed into transition probability densities for a single 
interval of time. The transition probability densities can be used 
to determine the recruitment density rate which, once resolved, 
can be freely interpreted as a nonlinear function of the population 
density. The moments of the transition probability densities lead 
to the evaluation of model parameters and the identification of 
the closed-fom transition probability densities. 
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Appendix A. Representation Theorem for the 
Population Density 

The p w s e  of this appendix is to derive an integral repre- 
sentation for the population density. I will show that if on the 
boundary of the population domain the population density 
satisfies either homogeneous Dirichlet of Neumann conditions, 
the integral representation for the solution does not contain a 
boundary integral. The proof is not intended to be rigorous, but 
follows mathematical procedures well established and eluci- 
dated in the literature (Courant and Hilbert 1953: Morse and 
Feshbach 1953; Garabedian 1964; Gilbarg and Trudinger 1979). 

Let the domain of the population s4 E R’ be bounded by a d  
E R. Let r = xi + yj E s4 be the receiver or measuring point with 
respect to an arbitrarily chosen fixed coordinate system where i 
and j are, respectively, the unit vectors pointing in the +x and +y 
directions. Let time f be the receiver time. At time t,, there is an 
initial population whose subsequent dynamics I wish to model. 
I assume that the dynamics of the population are correctly given 
by (7): 
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where 

(A2) Lo p(r,r) = bo(r.r) p(r,r) + b,(r.r) . V p(r, r )  

+ b2(r,r) A p(r,r) , 

In equation (A2) the coefficients (bo.b,.b2) are related to the 
coefficients ( z ,v .k )  by 

b,(r,r) = z(r,f) + V . v(r,r) 

(A3) b,(r,t) = v (r.t) - Vk(r.r) 

b2(r.r) = - k(r,r) 

where the derivatives V.v(r,r) and Ak(r,r) are finite. 
The general problem for the population density can be formu- 

lated as follows: the population density p(r,r) satisfies the 
inhomogeneous field equation (Al)  in the space-time domain 
r E d, t 2 r,, subject to initial condition 

(A4) p(rJ,) = ptn(r) 

in the domain r E d. I wish to determine boundary conditions 
that can be imposed on dSB that leads to a unique representation 
of the solution forp(r,r). 

Defining r’ = x’i + y’j E d as the source point and r’ as the 
source time, the Green function go(r,rlr‘,r’) that is associated with 
field equation (Al)  satisfies field equation 

in the domain r E 92 and the causality condition 

go(r,rlr ‘,r ’) = 0 if r c r ’ 

in the domain r E d .  The key to constructing an integral 
representation of the solution of an initial-boundary value prob- 
lem for a field is the ability to construct a bilinear function of the 
field and a Green function associated with it. Because the 
differential operator associated with field equation ( A 3  is not 
self-adjoint, I must consider the adjoint field equation 

in the domain r E d, where 

- B . [b,(r,t) g:(r,rlr”,r ’31 + 4[b,(r,t) g:(r.rlr”.t ”)] 

By definition of the field equation that g:(r.tlr’.r’) satisfies, it is 
the function adjoint to Green function go(r,rlr’,i’). 

Multiplying field equation (A5) by g,*(r,rlr”.t”) and (A6) by 
go(r.rlr‘,r’), subtracting the former resulting equation from the 
latter resulting equation, and inregating over the interval of time 
[-,-I and over d leads, by application of the Divergence 
Theorem. to 

g:(r’,r ‘lr’’,r’’) -go(rrf,t”~r’,r ‘1 

= 5‘. dt fad dl n, . P [gz(r.rlr”,r ”)lgo(r.flr ‘,r ‘)I , 

The bilinear function P[g: (r,rlr”.r”)lgo(r,rlr’,r’)] is given by 

(A7) P[s,*(r,rlr”,r ”)lgo(r.rlr ‘,r ’)] = - go(r,tlr ’ ,r ’) b,(r,r) 

- b2(r,r) g;(r.rlr”,r ” ) V go(r,rlr ‘,r ’) + C 

where C is an arbitrary constant. In order that between go and its 
adjoint g: there be the simple reciprocity relation 

(A8) g:(r ’,r ’lr”.r ”) = go(r”,r ”lr ’.r ’) , 

it is sufficient that 

(A9) nl . P[g~(r,rlr”.t “)lgo(r,rlr ‘,r ‘)] = 0 . 

However. because I also demand uniqueness of the solution, it 
must vanish in such a way that the conditions imposed that lead 
to (A9) specify the behavior of both g and its adjoint. Not doing 
so leads to a solution that is not unique. For example. specifying 
that go(r,rlr’,r’) satisfy homogeneous Cauchy conditions (i.e., 
go(r.rlr‘,r’) = 0 and nL.Vgo(r,rlr’,r’) = 0 for r E ad satisfies 
(A9) but leaves g,*(r.rlr”,r”) arbitrary. However, the boundary 
conditions 

(A10) go(r,rl r’,r ’) = 0 

and 

( ~ 1 1 )  g,*(r,rl r’.r ‘1 = o 
or, if n,. v(r,r) = 0 

(A121 nl . Q go(r.tlr’,r ’) = 0 

and subject to the causality condition 
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for E a& result in 
the reciprocity relation (A8) holds 

equation 

and st unique]y specified, and such that 

Now, as a consequence of (A@, g,,(r,rlr’,r’) satisfies the field 

denoted ad,, on which homogeneous Dirichlet conditions are 
satisfied. and the remainder of ad, denoted ad,, on which the 
homogeneous 
ceeding in the same manner as above. the following conclusion 
can be made: (A18) uniquely satisfies field equation (AI), initial 
condition (A4). and boundary conditions 

conditions (A20) are satisfied. 

[- $ + L ”1 go(r.tlr ‘,t ’1 = &(r - r ‘1 &(t - t ‘) 
p(r,r) = 0 

in the domain r’ E 91, where L ;* is operator Lt under the change 
of variables (r,r) + (r’,r’). Therefore, the representation of the 
solution that satisfies field equation (Al)  and initial conditions 
(A4) is given by 

(A14) p(r, f) = 1 d’r ‘go(r.rlr ’,r,) p,”(r ‘) 
si 

+ dr ’ ,/ d’r ’go(r,tlr ’,t ‘) r ( r  ’,t ’) 
3, ,d 

dr ‘ 4 
3, asi 

+ dl ‘n, . P[go(r,tlr ‘ ,r  ’),p(r ’,f ‘)I 

where the integral with respect to time is in the domain 9, by 
virtue of the initial condition and causality. In (A14) the bilinear 
function P[g,(r,rlr’,r’),p(r’,r’) is given by 

(A15) P[g,(r,rlr ‘,t ‘),p(r’,r 71 = -p(r’,t ’)bl(r‘,r ’) 

for r E adA and 

nL . Vp(r,r) = 0 

for r E 3 d, if n, ’ v(r.r) = 0 

Appendix B. Convergence Condition of the Neumann 
Expansion 

Here, I shall show that the expansion given in (38) converges 
if the number of tagged fish recovered during an interval of time 
is less than the number of tagged fish available at the beginning 
of the interval. To see this, consider the perturbation expansion 
given in (38): 

x g,,(r,rIr ’ , r  ’) +p(r ‘,t ’) V ’[b2(r ’ J  ’) g,(r,rIr’,r ‘)] where 

1 g,(r,tlrr,rr) = - dr ’ d2r ’g,-l(r,tlr ’,f ‘) cr(r ’,r ’) - b2(r ’.r ’) go(r,rlr ‘,t ‘) V‘p(r ‘ , t  ’) + C 

where C is an arbinarv constant. Furthermore. because (A8) 
Nr(rTJr)  3. si 

holds due to boundary cbnditions (A10) and (A1 1) or (A12jand 
(A13). it follows that go(r,rlr’,r’) satisfies boundary condition for = 2, , . _ _  hsume that the number of 

tagged fish recaptured at any one time is N,. Then, I can state 
(A16) go(r,tIr’,r ’) = 0 the following: 

or 

(A17) nL . V’g,(r,rIr’,r ‘) = 0 

for r‘ E ad, and therefore, 

(A1 8) p(r,t) = I d’r ’gO(rdr ‘ , I r )  pJr ’1 

where NR 5 N , S ,  is the number of tagged fish recovered in the 
interval of time 9,. It follows from the probabilistic property of 
go (Property E in Section 3) that there exists a constant 0 5 C < 1 
such that 

+ J dt ’ ,/ d’r ’g,,(r,tir ’ , t  ’) r(r ‘.r ’) dr ’ j d2r  ’go(rJlr’J ’1 5 C T r .  
3, ;1 3, ;1 

is a unique solution of (AI) subject to initial condition (A4) and 
homogeneous Dirichlet boundary conditions 

(A19) p(r,t) = 0 

or homogeneous iieumann conditions 

By making use of the first inequality, the iteration relation can 
be written 

(A20) nL . Op(r,r) = 0 x dt ‘ d’r ’g,-l(r,rlr ’,r ‘) 
7, Y 

in the domain r E ad. for i  = 1,2,  . . . , and from which I can compute all terms of the 
iteration: Assume now that the boundary of d is composed of segments. 
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Performing the ratio test 

which is less than 1 if the number of tagged fish recovered is less 
than the number of tagged fish released, and therefore. the series 
converges under that condition. 

Appendix C. Moment Equations of the Green Function 

In this appendix. I will find expressions for determining the 
coefficients of the population field equation by computing the 
moments of the Green function. I will also show that the inverse 
problem of determining the coefficients of the field equation in 
every cell at every interval of time. from the moments of the 
Green function, leads to nonuniqueness. For source points not 
on ad, the moment equations are correct for either the infinite 
domain or the domains bounded by a perfectly absorbing and/or 
perfectly reflecting boundaries. For source points on ad,  cor- 
rections are necessary. 

I consider a linear differential operator 

L = b,(r.r) + b,(r,r) . V + b2(r.r) 4 

where the coefficients 

bo(r,r) = m(r,t) + V . v(r.r) 

(CI) b,(r,r) = v(r,r) - V k(r,r) 

b&r) = - k(r.r) . 

The derivatives V . v(r,r) and Ak(r,r) are assumed to exist. The 
effort-independent Green function gfr,rlr’,r’) satisfies the field 
equation 

in the space domain r Ed, subject to the causal condition 

g(w1f.r’) = 0 if r < r ’ . 

The boundary of the domain .d is d d  = adA + adR. In terms of 
the measuring space-time point (r,r), the boundary conditions 

2510 

satisfied by g(r.rlr‘.r’) are (Appendix A) 

g(r,rlr ’,f ‘) = 0 

in the spatial domain r E ad2, and 

nL . V g(r,rlr ‘ ,r ’) = 0 

in the spatial domain r E ad, and where n, is the unit vector 
normal to dd pointing outward. 

To compute the even moments of g, multiply (C2) by the scalar 
F and inte-pte over domain d in the interval of time 
5- = [-,r]. Explicit integration with respect to time can only 
be performed on the term that contains the time derivative of g: 

where I am allowed to change the order of integration by Fubinis’ 
Theorem because the integrand is absolutely integrable (Royden 
1968). I then have 

where 

( r B ’ )  (rlr’,r ’) = d2rr2Ng(r.rlr‘,t ’) . 
d 

For the spatial integration in the 1.h.s.. I apply partial integration 
and the Divergence Theorem to those terms containing the gra- 
dient and the Laplacian of g. For the term containing the gradient 
of g, this results in 

d’rr’’b,(r,r) - V g(r,r I r ‘.r ’) 
si 

= fad dl r* n_ . b,(r,r) g(r,t I r ’,r ’) 

d * r V .  [r~~bl(r,r)Jg(r,rIr’,r‘) 
si 

while for the term with the Laplacian of g, the same procedure 
generates 

vg(r,tlr ‘ , r  ’) - 4 ad dl nL . V [? b,(r,r)] g(r,tlr ‘,r ’) 

+ jd d2r A [rW b2(r,r)] g(r.rlr ‘ , r  ’) . 

The boundary inteapis are used to satisfy the boundary con- 
ditions. After doing so, I am left with 

= r ‘ w -  ( r m  ) (tlr’,r ‘) 
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and 

Discretizing time in these expressions for a single interval of 
time for a source time ti, I have 

where 

As can be appreciated, the integrals on the 1.h.s. of the expression 
have g(r,rilr’,r,) in the integrand. Making use of the initial 
property of g: 

g(r,rlr‘,r) = &(r-r’ ) .  
I 1  

Integrating with the reminder that ad C d , I can conclude 

by use of the properties of the gradient of Dirac deltfi functions 
(Lighthill 1964. Butkov 1968) and the assumption that 3.d is 
piecewise smooth: 

C,(r ’,r,) = C,(\lr ‘J)  

i f r ’ e a d  I“ 

Evidently, E(r’.r,) is correct for points in d regardless of the 
boundaries. Therefore, it is also correct for the boundless 
domain. Henceforth, I shall ignore the terms with the source at 
the boundary of the domain because data are seldomly collected 
there. 

Using the identities 

V ‘ . r ’  = 2 ,  
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which is a consequence of d a R’, 

v!rm = mr,2\-’r? 

to expand E(r ’ , rJ  leads to the expression 

- r  ’ w V ’  . b,(r’,r.)+4 N’r ‘w-’bz[r‘,r)] 

+ 4 ~ r ‘ ” - ’  [r ’ . V’b,(r ’,r)] + rk’” A’b2(r ’ , 5 )  . 

Discretizing space with ri as the source point and rt as the 
receiver point, and substituting for { b,,b,.b?) their expressions 
in terms of [ m,v,k), yields 

-2 N 3  *-2 [r, V&(q,rJ)] 

where I am using the notation 

V,Nr.r,) = [V&~J,)I~ = I  

The scalar equations for the even moments of the Green function 
for source points r, e a d  are then 

and where 

With these, I can generate the zeroth ( N  = 0) , second (N = I), 
. . _. moments of the Green function. 

To derive the odd-moments equation, I can initially multiply 
the field equation for the Green function by r% and perform 
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analogous operations using the algebra and calculus of dyads 1 

Thls leads to the vector O(rL,r,) analogous to the scalar E(rL,r,) 
given by 

o(r~‘rj = - 9, “L% - ( ’j’? ) (r~+l’rk’rI)’ 

- Nr~a-zr~ [‘L v~k(r~’r,)l Wth these. I can generate the first ( N  = 0) , third (N = I), . . .. 
moments of the Green function. 

for r, 
Green function are then 

ad. The vector equations for the odd moments of the 
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