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h S T R A C I  

Ranges of the ratio of maximum net productivity level (MNPL) to carrying 
capacity ( K )  are explored in general models for pinnipeds and odontocetes. 
MNPL/K is used in management of marine mammals but no empirical evidence 
exists to limit the range of values expected. Density dependent changes in age- 
specific birth and death rates have been used to infer MNPL/K. Non-linearities 
in these rates do not translate directly to population growth curves. The simple 
models demonstrate: (1) density dependence is likely to involve more than a 
single parameter (such as binh rate), (2) MNPL/K can be greatly reduced from 
that inferred from one strongly non-linear parameter when changes in other 
parameters are linear, (3) ranges of MNPL/K depend on biological limits on 
ranges of fecundity and survival rates, and (4) the magnitude and sign of bias 
incurred by inferring MNPL/K from functional forms of single parameters cannot 
be determined. Given current empirical evidence the range of MNPL/K for 
marine mammals as a group is large. Although MNPL/K should not be inferred 
from single parameter non-linearities, distributions of MNPL/K values can be 
generated through models which account for single species ranges for birth and 
death rates and maximum population growth rate. 

Key words: demography, density dependence, logistic, marine mammal, non- 
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Density dependent population dynamic models are used routinely in the 
management of marine mammals (Gerrodette and DeMaster 1990). Populations 
are typically managed relative to the population level where the maximum 
sustainable yield is realized (Donovan 1989) or the population level where net 
productivity is maximized. Maximum net productivity level (MNPL) is defined 
as (Gehringer 1976), “. . . the greatest net annual increment in population 
numbers or biomass resulting from additions to the population due to repro- 
duction and/or growth less losses due to natural mortality.” Empirical data 
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concerning population growth rates at different population sizes for marine 
mammals are limited. Population growth is usually represented by deterministic 
models which describe the future state of a population given the current state. 
The state is given in terms of numbers of individuals. These population growth 
models, such as the logistic or various modified logistic models, consider all 
individuals to be equal with respect to future prospects of birth and death, that 
is, age structure is not explicitly used in the models. 

Although the data for the relationship between population growth and pop- 
ulation size are sparse for marine mammals, data on some age-specific birth and 
death rates are available for a few species. Based on these data, MNPL has been 
inferred to be above 0.5K (Fowler e t  al. 1980, Fowler 1987). From a model 
using an evolutionary argument, Fowler et al. (1980) state: “We would expect 
a whale population with a maximum specific productivity of 0.04 to show its 
greatest productivity levels between 88 and 92 percent of its equilibrium level.” 
However, using the relationship from Fowler (1987), with a generation time 
of 20 yr and a maximum specific productivity of 0.04, would result in MNPL/K 
of 0.67. The purpose of this paper will be to explore the range of MNPL/K 
values possible for different combinations of density dependent age-specific 
changes in birth and death rates. Special attention will be given to biases which 
could result from inferring MNPL/K from density dependent changes in a single 
age-specific parameter. Two simple models will be used to explore whether what 
is known about non-linearities in age-speafic birth and death rates justifies 
acceptance of any particular range of MNPL/K values. The first model is a 
generalized pinniped model which represents the marine mammal life history 
with the fastest population growth rate. At the other end of the spectrum, a 
generalized odontocete model is used to represent life history strategies with 
slow growth rates. 

Empirical evidence4eneral reviews of empirical evidence for density de- 
pendence in large mammals, with separate sections on marine mammals, are 
presented in Fowler (1987) and Fowler et al. (1980). The intent of this paper 
is not to focus on any particular species but rather to present what general forms 
may pertain to specific demographic parameters. Fowler (1984) reviews density 
dependence in marine mammals and finds evidence of regulation for fecundity 
in nine species, age of first reproduction (AFR) in ten species, juvenile survival 
in five species and adult survival in one species. These frequencies may reflect 
ease of gathering data. For example, although adult survival may be density 
dependent, estimation is diffidt  and power to detect a change wouId be low 
for the amount of change required to affect population growth rates. The lack 
of empirical evidence makes the form of density dependence for adult survival 
purely speculative. 

A recent reanalysis (de la Mare 1992) of some data reviewed by Fowler et 
al. (1980) shows the inability to draw general conclusions about the shape of 
recruitment functions. The following statements can be made based on empirical 
data (Fowler et al. 1980, de la Mare 1992): (1) marine mammals show density 
dependent responses, (2) for species for which data are available over a range 
of population sizes, density dependent responses are not abrupt (knife-edge), 
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Fzgnve I .  Curves for the Allen equation (Equation 3) for different p-values for birth 
rates for pinnipeds. The horizontal line indicates the point of 50% change in the parameter 
range. Note the intersections of the functions for different p-values with this line. 

and (3) density dependent responses have not been shown to be concave (higher 
rates of change at low density), though the power is low. In this paper, a concave 
curve is one in which the value for any point between two endpoints is less than 
the value which would be a linear interpolation. Given the endpoints (0, 1) 
and (1, 0), a linear relation would yield a y-value of 0.5 when x = 0.5. A 
curve passing through any y-value <0.5 at x = 0.5 would be concave. None 
of the curves in Figure 1 are concave. A theoretical argument has been given 
by de la Mare and Cooke (1992) that concave responses are possible by allowing 
spatial variation in the environment. For the purposes of this paper, responses 
are limited to range from linear to strongly convex (most density dependent 
response at levels very close to K > .  Given current quantities and qualities of 
empirical data, it is not possible to further limit functional forms of age-specific 
density dependent responses for marine mammals as a group. 

Theoretical arguments-Although MNPL is defined in population terms, 
empirical data exist primarily for age-specific demographic rates. We now con- 
sider how each approach is represented theoretically. Density dependent pop- 
ulation growth is commonly represented by the generalized logistic equation 
(Pella and Tomlinson 1969, Gilpin et al. 1976) (altered below for discrete 
growth). 



TAYLOR AND DEMASTER: NON-LINEAR DENSITY DEPENDENCE 363 

where N = population size, t = time, K = carrying capacity, A,, = maximum 
discrete rate of population growth, and 6 = shape parameter. Goodman (1980) 
showed distortion in the population growth curve caused by age structure: a 
linear change in birth rate caused the popularion growth curve to be convex. 
The convex shape of density dependent birth and survival functions argues 
generally for a maximum growth rate which is greater than K / 2  (6 > 1). 

The 6-logistic equation does not include age-specific mortality or fecundity, 
but rather uses a single parameter, discrete population growth rate (A, where 
X N ~  = N,, 1 / N t ) ,  to predict the next population size given the current population 
size. For any given set of age-specific birth and death parameters there is a 
unique population growth rate which satisfies the equation: 

w 

1 = 2 IxmxX-X 
x=AFR 

where x = age, AFR = age of first reproduction, w = oldest age, I = survivorship, 
m = fecundity, and X = discrete rate of growth. Population growth is sensitive 
to different parameters in varying strengths. For example, equal proportional 
changes (called elasticity, Caswell 1989) in adult and juvede survival rates will 
result in different changes to A. For long-lived animals which have high adult 
survival rates and typically relatively low maximum population growth rates, X 
is most sensitive to changes in adult survival rate (Goodman 1981). Relatively 
large changes in birth and juvenile survival rates result in rather small changes 
in A. For example, consider a case where the survival rate for the first year is 
0.50 and is 0.95 thereafter. Let AFR = 1, w = 20, and m = 0.5 giving A = 
1.051. A 10% reduction in adult survival, juvenile survival, and birth rate 
results in X values of 0.972, 1.026, and 1.038 or changes of -7.5%, -2.4%, 
and - 1.2% respectively. For this reason it is difficult to intuit how non-linear 
changes in birth or juvenile survival rates will affect X and the MNPL. Therefore, 
simple models will be used to investigate the translation of density dependent 
changes in birth and death rates into population growth rates. 

METHODS 

Introdaction t o  the fife histmy modefs-The translation of several age-specific 
density dependent functions into a single population growth function is best 
illustrated with simplified population models. The following parameters char- 
acterize the demography: mean fecundity (m), annual adult smival rate (PII), 
annual juvenile survival rate (pi-from age zero to one), AFR, oldest age (0) 
and maximum &mete rate of growth (Ama). We chose paramerer values based 
loosely on the life history of fur seals (Callorbinu~ ur5inus) for the pinniped 
model (Ragen 1990), and the bottlenose dolphin (Tursiop~ truncatw) for the 
odontocete model (Scott et a f .  1990, Wells and Scott 1990). Default values 
for each parameter were selected to give the growth rate expected at K / 2  within 
known ranges for pinnipeds (Ragen 1990) and odontocetes (Scott et a f .  1990, 
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Table 1. 
capita growth. 

Default parameters to yield h at K/2 assuming a linear decrease in per 

Model X(hT = K / 2 )  m AFR P J  Pa W 

Pinniped 1.05 0.40 5 0.423 0.960 20 
Odontocete 1.02 0.12 10 0.593 0.980 50 

Brault and Caswell 1993) (Table 1). Density dependent population growth was 
achieved by adjusting one or more of the above parameters. 

Changer in single parameters-We begin examining the effect of changes in 
age-specific parameters on population growth rate by changing only a single 
parameter. The required single parameter changes needed to obtain growth rates 
from X = X,, to X = 1 could then be solved given equation 1. Change between 
the minimum and maximum parameter values was governed by: 

where N = population size, K = carrying capacity (X = l),  X N = ~  = the value 
of the parameter when N = 0, XN=K = the value of the parameter at K, and 
z = shaping parameter. Because z-values are difficult to interpret, we have used 
a different scale. Let p be the N / K  value reached when the z-value has changed 
half its range. Equation 3 can be rearranged to solve for z given the desired 
p-value. 

Using Equation 4, we find that if we want a given parameter to have changed 
50% of its range when N / K  = 0.9 then z = 6.58. We investigated p-values 
between 0.50 ( z  = 1) and 0.95 ( z  = 13.5). The knife-edge limitation is therefore 
defined as p = 0.95, when the parameter has changed 50% of its range in 
0.95 (N/K) .  Equation 3 (Allen 1976) is shown for different p-values in Figure 
1 for birth rate for pinnipeds. 

Changes in rnzlltiple parameters--In order to reduce the number of permu- 
tations of multiple parameters, changes were allowed which met two criteria: 
(1) parameter values must be biologically reasonable, and (2) changes in z must 

Minimum and maximum values allowed to maintain biological realism. 
Birth rate parameters assume a sex ratio of 0.5 and a maximum pregnancy rate of 90%. 
For the odontocete model calving interval is three years when N = 0 and five years when 
N = K .  

Table 2. 

m m Pi Pj  x AFR AFR 
Model x N - 0  XN-0  Xj+K XN-0 XN-K XN-o XN-K 

Pinniped 1.10 4 6 0.45 0.35 0.67 0.24 
Odontocete 1.04 8 12 0.15 0.09 0.66 0.51 



TAYLOR AND DEMASTER: NON-LINEAR DENSITY DEPENDENCE 365 

0.751 

0.71 

z 2 0.6- 

0.554 

0.51 
AGE OF FIRST REPRODUCTION 

0.459 

0.4 
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0. 

RHO-VALUE 
35 

Figure 2. Single parameter changes (Table 1) resulting in a decrease in growth rate 
from X = A,, to X = 1.0. Values shown are for the odontocete model. Values for the 
pinniped model differed by less than 1%. 

follow known empirical evidence (i.e., density dependent changes are not knife- 
edge in form: 0.5 5 p 5 0.95). Minimum and maximum values are given in 
Table 2 .  

RESULTS 

Single parameter changes-Figure 2 shows MNPL for different p-values for 
changes in single parameters as shown in Table 3. Results are shown for the 
odontocete model as values from the pinniped model never differed by greater 
than 1%. There are several items to note from this figure. First, as shown by 
Goodman (19801, not all linear density dependent changes (z  = 1) produce a 
MNPL/K at K/2 (MNPL/K = 0.5). In particular, juvenile survival and birth 
rate produce a MNPL/K of 0.35. These rwo rates are the same because the 

Table 3. Demographic parameter values required to achieve specified X by changing 
a single parameter from the default values in Table 1, for use in Equation 3. 

Model x Tn AFR Pi Pa 

Pinniped (XN-K) 1 .oo 0.232 10.5 10 0.245 0.914 
Pinniped (XN-~)  1.10 0.643 1.840 0.680 1.000 
Odontocete (XN-K) 1 .OO 0.072 22.681 0.355 0.961 
Odontocete (XN-0) 1.04 0.189 2.875 0.935 0.999 
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Figure 3 .  Multiple parameter changes resulting in a reduction in growth rate from 
X = X,, to X = 1.0. Figures a, b, and c correspond to AFR p-values of 0.50, 0.75, and 
0.95 respectively. Pinnipeds (solid lines) and odonrocetes (dashed lines) are shown for 
birth p-values of 0.50, 0.75, and 0.95. Lines between symbols are given for visual clarity. 
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Figure 4. Bias in esumates of MNPL/K from assuming that 0 = z-value for juvenile 
survival. To obtain the actual MNPL/K value, the bias must be added to the value 
estimated from the z-value. The case shown is for odontocetes where juvenile survival is 
the only regulating mechanism and for three cases where AFR changes linearly ( z  = 1) 
and birth p-values are 0.50, 0.75, and 0.95. 

elasticities are the same for these parameters. Recall that elasticity is the response 
in X to a proportional change in the parameter. With only one year of juvenile 
survival, a reduction in juvenile survival or a reduction in birth rate cause the 
same reduction in the number of individuals recruited into the population. The 
small range of MNPL/K values for a given p-value irrespective of which pa- 
rameter is being altered is not surprising. Even though X is more sensitive to 
pa, Table 3 reveals that much smaller proportional changes in pa are required 
to produce the growth rate change. It may be surprising to note that even strong 
non-linearities ( p  = 0.95) do not produce MNPL/K >0.85. Higher p-values 
will, of course, yield MNPL/K values >0.85, but such highly concave functions 
imply no density dependent response until the population is very dose to K .  
There are no empirical data to support such a knife-edge density dependent 
response. The final item to note is that the change required for a single parameter 
to accomplish all the density dependent change is often biologically unreason- 
able and sometimes (in the case of birth rate and AFR) biologically impossible. 
For example, in the pinniped model, AFR ranges from a minimum age (1.84) 
which is physically impossible to a maximum age (10.5 1) which is unlikely and 
was not observed when fur seals were thought to be near Kin the 1950s (Scheffer 
1955). Because marine mammals produce a single offspring and have a sex 
ratio of 0.5, values for birth rates cannot exceed 0.5. The maximum value in 
Table 3 for pinnipeds (m = 0.643) is therefore impossible. Similar arguments 
can be made for the same parameters in the odontocete model. 

Changes in mzltiple parameters--All combinations of AFR, juvenile survival 
and birth rates for p = 0.50-0.95 were investigated. Results are shown in 
Figure 3. Note that changes in more than one parameter yield MNPL/K values 
which are less than those for equal p-values for changes in only a single parameter 
(also found in Fowler e t  ai. 1980). The combination of three linear changes for 
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the pinniped model ( p  = 0.5 ( z  = 1) for AFR, juvenile survival, and birth rate) 
actually yields an MNPL/K that is less than 0.5. Comparison of the pinniped 
model to the odontocete model shows that MNPL/K of the former to be more 
sensitive to changes in juvenile survival rate p-values and the latter to birth rate 
p-values. This is due to the differing magnitude of allowed change in these 
parameters (Table 2): b i h  rates vary more for odontocetes and juvenile survival 
rates vary more for pinnipeds. Thus, the models are sensitive to the minimum 
and maximum values. Changes in AFR p-values affect both models similarly 
when other p-values are low but have almost no effect on either when other 
p-values are high. 

Consider the scenario where only data concerning juvenile survival were 
available. If we were to use the z-value from a fit of juvenile survival as the 0 
in Equation 1 how would our estimated MNPL/K compare to the actual 
MNPL/K when all birth and death functions are known? Figure 4 gives one 
example of bias for odontocetes. It can be seen that for a given p-value, even 
the sign of the bias cannot be inferred. The magnitude of the bias depends on 
the p-values of both the juvenile survival and birth rates. Therefore, it is not 
valid to infer MNPL/K from the functional form of a single demographic 
parameter. MNPL/K can be estimated either from population site estimates or 
from complete demographic models. 

DISCUSSION 

Although it is likely that MNPL is found at values greater than K/2, the 
argument that MNPL should be very dose to K (MNPL/K > 0.8) is unsup- 
ported. The only parameter for which empirical evidence lends credence to strong 
non-linearities is for juvenile survival in fur seals (Ragen 1990). Even here, 
many deterministic models have been used to fit the data with values for 
MNPL/K ranging from 0.43 to 0.93 (Ragen 1990). It is dear that when data 
are available for marine mammals, one of the primary density dependent reg- 
ulating mechanisms is age of first reproduction (Fowler 1984). There is no 
evidence for non-linear change for this parameter (Fowler 1984, Lett e t  al. 
198l) ,  though power is undoubtedly low. As shown in Table 3, biological 
constraints make the likelihood of this parameter being the sole regulatory 
mechanism unlikely. It is therefore likely that population growth is regulated 
by several mechanisms, only some of which may be non-linear (Smith and 
Polacheck 1981). When several parameters change in a density dependent 
fashon, the result is that MNPL/K is less than that achieved by only a single 
non-linear growth rate regulating mechanism. If z-values for all parameters are 
high, MNPL/K values differ very little from values estimated for MNPL/K 
assuming 0 = z. On the other hand, disparities can be large if some parameter 
changes are linear. 

The generalized pinniped and odontocete models were chosen to bracket the 
range of population growth rates observed in marine mammals. It may be 
argued, however, that these choices do not bracket the range of possible MNPL/K 
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values. Fowler (1988) argues that MNPL/K is related to rate of increase per 
generation. The generalized models have similar rates of increase per generation. 
To investigate the influence of rate of increase per generation on the conclusions 
of this paper, we chose the most extreme outlier in Fowler’s work: Stenella. 
This genus has a similar rate of increase to the odontocete model but a shorter 
generation time. Choice of parameter ranges were from Chvers (1992). Results 
were very close to the odontocete model and &d not compromise the conclusions 
from the generalized models. 

Non-linearities in population regulation mechanisms whch lead to linear 
decreases in per capita growth rates (MNPL/K = 0.5) have been noted in 
several laboratory systems (Barlow 1992, Kerfoot et al. 1985). Further, Barlow’s 
experiment with guppies (Poecilza reticdata) (1992) showed highest sensitivity 
to density dependent somatic growth. Although mammals express determinate 
growth, AFR seems to be an important regulatory mechanism which may link 
body growth rate to population growth (Lett et al. 1981). 

Unfortunately, we are only a little closer to defining likely ranges of MNPL/ 
K.  It seems likely that 0.5 < MNPL/K < 0.85. For a given species, the range 
may be able to be reduced. For example, if we know that for fur seals z-values 
were z = 1, 1 5 z 5 3, and 3 5 z 5 9 for AFR, birth and juvenile survival 
rates respectively, then 0.58 < MNPL/K < 0.73. A much more realistic fur 
seal model (Ragen 1990) calculated a distribution of MNPL/K from simulations 
using permutations of possible ranges of demographic values and z-values. 
MNPL/K occurred at highest frequency between 0.60 and 0.65 (corrected 
values; Ragen, personal communication). Unfortunately, there are few species 
for which we have the quantity of data available as for the fur seal. 

Eberhardt (1977) proposed a general model for self-regulation in long-lived 
species which gave an order for age-specific density dependent responses. Such 
rigidity in growth regulation was questioned by a comparison of population 
dynamics of three species of htarct ic  seals (Siniff 1984). These species, living 
in proximity to one another, showed varied responses which were attributed to 
different reactions to environmental variance. Thus, even within the Antarctic 
ecosystem and among closely related species, marked differences in density 
dependent age-specific birth and death rate responses exist. The deterministic 
equations discussed in this paper assume no environmental variance. Clearly, 
populations must evolve to respond to the stress caused by environmental 
changes. Marine environments change markedly over short time periods (El Niiio 
events, fluctuations in prey availability in cold water regimes, etc.). Some marine 
mammal species are relatively fixed in space due to breeding or feeding require- 
ments while others may be free to move over large distances to locate resources. 
It seems an act of faith to believe that all the likely different density dependent 
age-specific regulatory mechanisms would result in a narrow range of MNPL/K 
values. The exercise in this paper has demonstrated that even if dynamics were 
deterministic, without knowledge about all the density dependent age-specific 
birth and death rates, a single value of MNPL/K cannot be inferred. Distri- 
butions of MNPL/K for each species given a range of parameter estimates may 
be more appropriate considering the current amount and qualiry of data. 



370 MARINE MAMMAL SCIENCE, VOL. 9, NO. 4, 1993 

ACKNOWLEDGMENTS 

B. Taylor was funded by a National Research Council Associateship, the National 
Marine Fisheries Service (NMFS) and the Office of Protected Resources of NMFS. The 
manuscript was improved by comments from Steve Reilly and Paul Wade and the two 
reviewers, Chuck Fowler and an anonymous reviewer. We thank Jay Barlow for suggesting 
a less verbose title. 

LITERATURE CITED 

ALLEN, K. R. 1976. A more flexible model for baleen whale populations. Report of 
the International Whaling Commission 26:247-263. " 

BARLOW, J. 1992. Nonlinear and logistic growth in experimental populations of guppies. 
Ec010gv 73:941-950. 

BRAULT, S . ~ A N D  H. CASWUL. 1993. Pod-specific demography in killer whales (Orrinus 

CASWELL, H. 1989. Matrix population models. Sinauer Associates, Inc., Sunderland, 
MA. 

CHIVERS, S. J. 1992. Life history parameters as indicators of density dependence for 
populations of Delphinids. Ph.D. thesis, University of California, Los Angeles. 
187 pp. 

DE LA MARE, W. K. 1992. Some analyses of the dynamics of reduced mammal pop- 
ulations. Paper SC/44/030. Presented to the Scientific Committee of the Interna- 
tional Whaling Commission, June 1992. 

1992. Some implications of biogeographical 
factors for the management of whale stocks. Paper SC/F92/Mg13. Presented to 
the Scientific Committee of the International Whaling Commission, February 1992. 

1989. The comprehensive assessment of whale stocks: the early 
years. International Whaling Commission, The Red House, Station Road, Histon, 
Cambridge CB4 4NP, United Kingdom. 

EBERHARDT, L. L. 1977. Optimal policies for conservation of large mammals, with 
special reference to marine ecosystems. Environmental Conservation 4:20 5-2 12. 

FOWLER, C. W. 1984. Density dependence in cetacean populations. Reports of the 
International Whaling Commission (Special Issue 6):40 1-44 1. 

FOWLER, C. W. 1987. A review of density dependence in populations of large mammals. 
Pages 401-441 in H. H. Genoways, ed. Current mammalogy, Volume 1. Plenum 
Publishing Corporation, New York. 

FOWLER, C. W. 1988. Population dynamics as related to rate of increase per generation. 
Evolutionary Ecology 2: 197-204. 

FOWLER, C. W., W.  T. BUNDERSON, M. B. CHERRY, R. J. RYEL AND B. B. STEELE. 1980. 
Comparative population dynamics of large mammals; a search for management 
criteria. Report Number MMC-77-20 to the United States Marine Mammal Com- 
mission, National Technical Information Service NTIS PB80-178627. 

GEHRINGER, J. 1976. Part 216: Regulations governing the taking and importing of 
marine mammals. Federal Register 41:55536. 

GERRODE~TE, T., AND D. P. DEMASTER. 1990. Quantitative determination of optimum 
sustainable population level. Marine Mammal Science 6: 1-16. 

GILPIN, M. E., T. J. CASE . ~ N D  F. J. AYALA. 1976. 0-selection. Mathematical Biosciences 

GOODMAN, D. 1980. The maximum yield problem: distortion in the yield curve due 
to age structure. Theoretical Population Biology 18: 160- 174. 

GOODMAN, D. 1981. Life history analysis of large mammals. Pages 415-436 in C. 
W. Fowler and T. G. Smith, eds. Dynamics of large mammal populations. John 
Wiley & Sons, New York. 

OWCZ). Ecology 74:1444-1454. 

DE LA MARE, W. K., AND J. G. COOKE. 

DONOVAN, G. P., ED. 

32: 13 1-139. 



TAYLOR AND DEMASTER. NON-LINEAR DENSITY DEPENDENCE 37 1 

KERFOOT, W .  C., W .  R. DEMOTT AND C. LEVITAN. 1985. Non-lineariries in competitive 
interactions: component variables or system response. Ecology 66959-965. 

LETI, P. F., R. K. MOHN AXD D. F. GARY. 1981. Density-dependent processes and 
management strategy for the Northwest Atlantic harp seal populations. Pages 13 5- 
158 in C. W .  Fowler and T. G. Smith, eds. Dynamics of large mammal populations. 
John Wiiey & Sons, New York. 

PELLA, J. J., AND P. K. TOMLINSON. A generalized stock production model. 
Bulletin of the Inter-American Tropical Tuna Commission 13 :420-496. 

RAGES, T. J. 1990. The estimation of theoretical population levels for natural popu- 
lations. Ph.D. thesis, University of California, San Diego. 176 pp. 

SCHEFFER, V. B. Body size with relation to population density in mammals. 
Journal of Mammalogy 36:493-5 15. 

SCOTT, M. D., A. B. IRVINE AND R. S. WELU. 1990. A long-term study of bottlenose 
dolphins on the west coast of Florida. Pages 235-244 in S. Leatherwood and R. 
R. Reeves, eds. The bottlenose dolphin. Academic Press, San Diego, CA. 

Comparative population dynamics of three species of Antarctic 
seals. Acta Zoologica Fennica 172:121-123. 

1981. Reexamination of the life cables for Northern fur 
seals with impiications about population regulatory mechanisms. Pages 99- 120 in 
C. W .  Fowler and T. G. Smith, eds. Dynamics of large mammal populations. John 
Wiley & Sons, New York. 

1990. Estimating bottlenose dolphin population 
parameters from individual identification and capture-release techniques. Repom of 
the InternarionaI Whaling Commission (Special Issue 12):407-4 15. 

Received: September 23, 1992 
Accepted: March 28, 1993 

1969. 

1955. 

SISIFF, D. B. 

SMITH, T., AND T. POLACHECK. 

1984. 

WELLS, R. S., AND M. D.  SCOTT. 




