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Dynamic approaches {integrated and finite difference) to the Schaefer and Fox production models are applied to
four commercial lobster fisheries. The integrated versions provided better predictions than their finite difference
counterparts. Only the integrated version of the Fox model provides realistic (positive) biological parameter
estimates for all four fisheries, and bootstrapping reveals those estimates to be generally stable. Additionally, this
model periorms well when applied to data where certain assumptions of surplus production modeiing are fulfifled.
The results suggest turther investigation of the integration procedure.

Des méthodes dynamiques (méthode intégrée et méthode des différences finies) sont appliquées aux modeles de
production de Schaefer et de Fox dans le cas de quatre péches commerciales au homard. Les versions utilisant
la méthode intégrée permettent d’obtenir de meilleures prévisions par rapport aux versions fondées sur la méthode
des différences tinies. Seule la version intégrée du modéle de Fox fournit des estimations réalistes (valables) des
parametres biologiques pour les quatre péches, et I’application de la technique du bootstrapping démontre que
ces estimations sont généralement stables. En outre, on obtient de bons résultats lorsque i’on appiique ce modéle
aux données qui confirment certaines hypothéses relativement aux modeles de production excédentaire. Ces

résultats incitent donc a pousser les recherches du coté de la méthode intégrée.
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ne of the simplest approaches to modeling a fishery is

applying a surplus production model to a time senes

of catch and effort data. Schaefer (1957) and Fox
(1970) helped pioneer this approach and used the concept of
equilibrium to model a fisherv over the long run. They first
applied a dynamic model to estimate various biological param-
eters of a fishery. The parameters were then used in an equi-
librium model to estimate fishery management parameters (e.g.
maximum sustainable yield). The dynamic models theretore
had a dual purpose: to account for the nonequilibrium portions
of a fishery and to accurately estimate the biological parameters
so the resulting management parameters could be trusted. Many
authors (Walter 1973: Schnute 1977; Uhler 1980; Lleonart and
Salat 1989) have since developed their own dynamic versions
of the Schaefer (1957) and Fox (1970) models to better assess
unstabilized fisheries. The two dynamic approaches examined
in this paper are the original (finite difference) versions and the
integrated versions (Schnute 1977: Clarke et al. 1992).

The Schaefer (1957) and Fox (1970) models have the con-

tinuous forms

(1) dXidt = rX — rX3%K - C
and
(2) dX/dt = rX In(K/X) — C.

respectively. where X represents the population. dX/dr the
growth rate of the population. C the catch rate. r the intninsic
growth rate, and K the maximum stock level or virgin biomass.
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Equation (1) assumes that the growth rate to biomass relation-
ship 1s logistic (parabolic). while Equation (2) assumes a
Gompertz distribution (Richards 1959).

Fishing effort is taken into consideration by substituting C =
qEX. with q defined as the catchability coefficient and £ as the
rate of fishing effort (e.g. the effort expended in 1 yr). Equa-
tions (1) and (2) are then converted to

3y (Ul = r = ritgKYU — 4E
and
(4 (HUdUIdr = ringK) — rInU) - ¢4E,

respectively, where U = C/E is the instantaneous catch per
unit effort (CPUE). Schaefer (1957) and Fox (1970) estimated
parameters 7. g, and K by converting Equations (3)and (4) into
their finite difference forms:

Schaefer:

(5) AUU, =r - rigK)U, — qE,

Fox:

6) AU U, = rin(gk) — rIn(U,) — ¢E,

where U, is the average CPUE and E, is the total effort
expended for year n and AU, = (U,,, — U,_,)/2. Both
Equations (5) and (6) are considered dynamic given that U,
can be expressed in terms of past variables U,, E,,, and U, _,.
Originaily. Equations (5) and (6) were used only to estimate
parameters r. q, and K. However, we test the applicability of
the dynamic models for predictions and parameter estimation
in nonequilibrium conditions. Hereafter. Equations (5) and (6)
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will be called the FD (finite difference) - Schaefer and FD-Fox
models. respectively.

Upon scrutiny, the FD-Schaefer and FD-Fox models possess
some questionable properties. One problem is the approxima-
tion dU/dt = AU,, which assumes that CPUE is linearly dis-
iributed over the course of 2 yr. Another problem is that the
CPUE of year » + 1. U,,,, can be predicted without the
anticipated effort being specified for that year. Such a condition
1s questionable. given the definition of CPUE: U = C/E.

Rather than using a finite difference approximation. Schnute
(1977) integrated Equation (3) and approximated the average
annual CPUE as the geometric mean of the instantaneous
CPUE:s at the beginning and end of the year. Schnute’s dynamic
version of the Schaeter model. henceforth referred to as the
Schnute model. is

N In(U,_ /Uy =r—(rilgKN WU, + U, )2
- qlE, + E,  ¥2.

As noted by Uhler (1980). the Schnute model. unlike the FD-
Schaeter and FD-Fox models. has the desirable property that
U, ., tends to zero as £, _, becomes large. Another advantage
of this model is that the predicted CPUE. U, ,, can be
estimated for a range of anticipated effort. £, |, to allow tish-
ery managers to approximate the effort level needed for a tar-
zeted yvield. In Uhler (1980). the Schnute model was shown to
have less bias than an FD-Schaefer mode! (with a 1-yr time fag)
when applied to a computer-simulated fishery.

An integrated version of the Fox model has been applied to
the lobster fisherv in the Northwestern Hawaiian Islands
(NWHD (Clarke et al. 1992). This model uses the same
assumptions as the Schnute model and incorporates a Taylor
sertes approximation ( Appendix A):

) In(U, .} = [2ringK) + 2 -~ nintlU)
- glE, = E, 2+ 1.

Unlike the other models presented. this model is a simple.
lagged logarithmic equation of CPUE. This gives the model an
advantage over the Schnute and finite difference models when
regression analvsis is performed. This model has been applied
o a himited time series ot catch and etfort data (8 vr of the
NWHI lobster tishery: Clarke et al. 1992). but its applicability
(o fisheries with longer time series 1s unknown. Hereatter, this
mode! will be called the | tintegrated) - Fox model.

Our paper examines the assumption that the integrated
models wiii vield beuter predictions and biological parameter
estimates than the tinite difference models. The models are
applied to four commercial lobster fisheries with substantial
time senes of catch and effort data. and each model’s abitity
to predict annual CPUE is investigated. Biological parameter
estimates for each fishery also are presented. However. since
little is known of these parameters. only general conclusions
are made about them. Each model’s ability for parameter esti-
mation is tested using data sets in which the biological param-
eter ¢ 1s known.

Methods

A frequently used approach to estimate a model's predictive
power ot catch is applying an ordinary least squares (OLS)
regression on all vears of data for a fisherv. The points on the
resulting regression curve are then interpreted as catch (or
CPUE) predictions for the original data. Wittink (1988) pointed
out that this approach depends heavily on the R-squared (R~}
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value and does not test for predictive power. since the regres-
sion curve is created using the original data (i.e. the curve has
prior knowiedge of what it is supposed to predict).

The approach used in this paper is to make annual predictions
only using data prior to that year. Mathematically, OLS is per-
formed on the first m — | years of data, and a prediction is
made for year m using the results of that regression. A regres-
sion is then performed on the first m years for the prediction of
year m + 1, and this procedure is continued until a prediction
is made for the last year of available data. The predicted and
actual values are then compared to determine predictive power.
This approach better approximates what fishery managers
actuaily face because having data for future years is unrealistic.

Each model’s estimates of the biological parameters r. g, and
K, using all years of data for a fishery, are also examined. From
definitions presented in Schnute (1977), each biological
parameter should be positive. The parameter estimates pre-
sented in our paper are unconstrained estimates. Other papers
(e.g. Schaefer 1957) take absolute values to ensure the analyses
have realistic (positive) results. We use the unconstrained
approach to ook at the mathematical relations of the models
rather than to thoroughly analyze a specific fishery.

The four dynamic models are applied to catch and effort data
from tour lobster tisheries: Western Australian rock lobster.
Panulirus cygnus (years 1944—64 from table | in Morgan
1979a: years 1965-78 from tables 6 and 8 in Morgan et al.
1982): American lobster. Homarus americanus (years 1950~
79 from table I in Townsend 1986). Tasmanian rock lobster.
Jasus novaehollandiae (years 1947-84 from table 1 in Camp-
bell and Hall 1988): and New Zealand lobster. Jasus edwardsii
(years 1945-90 from the totals in table | in Breen 1991). The
Western Australian data take into account seasonal variability
and area distribution (Morgan 1979b). The New England data
are only inshore data. and a modified Schaefer model was
applied to them in Townsend (1986). An FD-Fox model and
an FD-Schaefer model with 1-yr time lags have been applied
to the Tasmanian data (Campbell and Hall 1988). Finally. the
New Zealand data are composed of the total of commercial and
estimated unreported. amateur. and illegal catch data. To our
Knowiedge. each data set has not been proven to satisty all
assumptions of surplus production modeling. However. the
applicability of these models to commercial data can be gauged
by each model’s ability to forecast catch (or CPUE).

A prediction for the CPUE of vear m + [ is made in the
following manner. An OLS regression is applied to the models
by using catch and effort data tor the first m vears of a fishery.
The resulting regression on data for years n = l ton = m
estimates the parameters r, g. and K:

FD-Schaefer:

®  AU,_,iU,_, =cl + 2U,_, + c3E, _,
withr = cl.g = —c3.and K = —ri(gc2).
FD-Fox:

0 AU, U,_, =cl + 2InU,_) + c3E,_,
withr = —c2.¢ = —c3.and K = ¢"/g.
Schnute:

(D WU, )= cl + 2U,_, + U

+ 3(E,_, + E)N2
withr = ¢cl.g = —c3,and K = —r/(qc2); and
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[-Fox:

(12) InU) =cl + 2InU,_,) + ¢3(E,_, + E)

withr = 2(1 — e2¥(1 + ¢2).gq = —c3(2 + rn,and K =
e!2+n12 0 The FD-Schaefer and FD-Fox models predict the
following year’s CPUE with

FD-Schaefer:

3 U,.,=U,_, +2Ulr—rgK)U, — qE,]

and

FD-Fox:

(14) U,,,=U,_, +2U,rgK) - rin(U,) — qE_].

For the I-Fox model. after the anticipated effort £, is
specified. the predicted CPUE is

(ringKr+ (2 = ninly) - g€, + £,

asy U,., =e

m

For the Schnute model. U, ., was estimated from Equation
(31) in Schnute (1977). Confidence intervals for the Schnute
model’s prediction are in Schnute (1977); those for the I-Fox
are in Appendix B.

The predictive ability of the models is tested by using Theil’s
U-statistic (Wittink 1988):

N
2 (U, = U,y
(16) Uy = —g_k(;——u__)
= =1

where U, , is the predicted CPUE for year n. and k and N are
equal to the first and last year. respectively. that a CPUE pre-
diction was made. The numerator of Uy is the sum of the squared
differences of the actuai and predicted CPUEs. and the
denominator is the sum of the squared differences between the
actual CPUEs of adjacent years. Thus. this statistic adjusts a
model’s predictive error by considering the year-to-year vari-
ation of the actual CPUE. If U, > 1. the model is not consid-
ered useful for forecasting purposes.

For the overall estimation of biological parameters (r, g, and
K). the following procedure is used. First. regressions of the
four models are performed on all years of data. The presence
of autocorrelation is then investigated. Since the I-Fox model
has a lagged dependent variable. the Durbin-Watson statistic
is inappropriate to detect autocorrelation. and the test statistic
used is the Durbin A-statistic (Pindyck and Rubinfeld 1981).
When the Durbin A-statistic is undefined. the Durbin r-statistic
test is applied (King 1987). If the FD-Schaefer. FD-Fox. or
Schnute model passes either the Durbin A-test or the regular
Durbin-Watson test, then the results of that model's regression
are used. When evidence of autocorrelation is detected. the
Cochrane—Orcutt procedure for autocorrelation correction
(Wittink 1988) is applied until the model’s test statistic is not
significant in showing autocorrelation. The model loses a
degree of freedom for each Cochrane-Orcutt iteration
performed.
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TABLE 1. Average percent prediction errors from the I-Fox. Schnute.
FD-Fox. and FD-Schaefer modeis for four lobster fisheries.

Location I-Fox Schnute  FD-Fox FD-Schaefer
New Engiand 11.58 10.35 18.56 18.56
New Zealand 18.86 16.58 20.92 20.62
Tasmania 12.20 12.26 21.54 21.01
Western Australia 12.49 12.75 25.69 24.26

TaBLE 2. Theil’s U-statistic test applied to the I-Fox, Schnute, FD-
Fox. and FD-Schaefer models for four lobster fisheries.

Location I-Fox Schnute  FD-Fox FD-Schaefer
New England 0.780* 0.750* 1.44 1.43
New Zealand 1.86 3.20 2.46 2.43
Tasmania 0.827* 0.910* 1.60 1.55
Western Australia 1.01 1.21 2.70 2.45

*Model is considered an adequate predictor.

Results and Discussion

The lack of degrees of freedom for regression analysis with
the FD-Fox and FD-Schaefer models. which have a 2-yr time
lag, prevented predictions from being made for the first 6 yr of
each fishery. Therefore, CPUE predictions for years 1956-79.
1951-90. 1953-84, and 1950-78 were obtained for the New
England. New Zealand. Tasmanian, and Western Australian
lobster fisheries, respectively. A model’s CPUE prediction for
the seventh vear used the regression results from the first 6 yr
of data. the prediction for the eighth year used those from the
first 7 yr of data. and so on.

The percent prediction error

(17 100U, - U,,.,,(/U,l

was calculated for each model’s prediction of CPUE. with U, ,
being the predicted CPUE for year n. The means of the percent
prediction errors from each model (Table I) show that the I-
Fox model is the most accurate predictor for two of the four
fisheries. and the Schnute model is the more accurate predictor
for the other two. In all four fisheries. the [-Fox and Schnute
models have lower average percent prediction errors than the
finite difference models. According to Theil's U-statistic test
(Table 2). the I-Fox and Schnute models are adequate predic-
tors for the Tasmanian and New England fisheries. while the
FD-Fox and FD-Schaefer models failed the test for all four
fisheries.

From the regressions on all data of a fishery, only the I-Fox
model provides positive biological parameters for all four fish-
eries (Tables 3—6). The I-Fox model also had high R* values
(>0.8), but this goodness of fit was expected. The low R?
values from the other three models reveal problems in explain-
ing the variation in their more complex dependent variables
(AU,/U, for the FD-Fox and FD-Schaefer models and
IV, , ,1U,) for the Schnute model) over substantially long time
series. This was probably a major reason for their unrealistic
(negative) estimates of the biological parameters. Another pos-
sible explanation is that the data sets examined do not satisfy
the assumptions of surplus production modeling. The higher
R? values of the I-Fox model compared with those of the
Schnute model reveal that a better regression fit does not nec-
essarily imply better predictive power (Ferber 1956).

Bootstrapping (Efron and Tibshirani 1986) was applied to
the I-Fox model to test the stability of the biological parameters.
Sampling with replacement was applied to the residuals of each
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TasLE 3. Final regression coefficients and parameter estimates for the New England inshore lobster

fishery (NA = not applicable). *P < 0.05.

I-Fox Schnute FD-Fox® FD-Schaefer*
cl -1.62 -0.444 0.399 -0.308
t-ratio for cl —-2.57* —-1.40 0.742 ~1.11
c2 0.416 7.94 0.176 4.68
t-ratio 1.79 .28 0.911 0.830
3 —-2.41 x 10™* 1.61 x 107* 1.75 x 107* 1.15 x 107
t-ratio for ¢3 ~2.42* 1.26 1.07 1.04
af 26 26 24 24
R? 0.943 0.0606 0.0493 0.0439
R? adj 0.939 -0.0117 -0.0299 ~0.0358
Durbin 2 Undefined Undefined Undefined Undefined
Durbin ¢ 1.32* NA NA NA
Durbin-Watson 1.19 1.95*% 1.69* 1.70*
r(yr™") 0.826 —0.444 -0.176 —0.308
q (1000 traps * ') 6.80 x 10°* —-1.61 x 107* -1.75 x 107* ~1.15 x 10™*
K (millions of pounds) 92.6 -347 —591 -571

*One iteration of the Cochrane—Orcutt procedure was applied.

TabLE 4. Final regression coefficients and parameter estimates for the New Zealand inshore lobster
fishery (NA = not applicable). *P < 0.05.

I-Fox* Schnute® FD-Fox FD-Schaefer
cl 0.369 -0.0773 —0.0446 -0.0523
t-ratio for cl 2.18* -0.539 —-0.366 -0.464
c2 0.718 0.0158 0.0165 0.00875
t-ratio for ¢2 6.06* 0.391 0.192 0.281
c3 ~-4.24 x 107 2.01 x 10™° -1.30 x 107° -1.58 x 10°°¢
t-ratio for ¢3 -2.41* 0.0902 —-0.0502 —-0.0870
df 40 41 41 41
R? 0.934 0.0108 0.00974 0.0108
R? adj 0.930 -0.0374 -0.0386 -0.0375
Durbin 2 ~1.05* -0.163* 1.31* 1.09*
Durbin—Watson NA 2.05* 1.68* 1.68*
r(yr™h 0.329 —-0.0773 —-0.0165 -0.0523
q (1000 pot-lifts ™) 9.88 x 107* -2.01 x 10°° 1.30 x 107° 1.58 x 107°
K (tonnes) 37 469 —2 440 845 11 527 340 3 788 069

“Two iterations of the Cochrane—Orcutt procedure were applied.

"One iteration of the Cochrane—Orcutt procedure was applied.

TasLe 5. Final regression coetficients and parameter estimates for the Tasmanian lobster fishery (NA
= not applicable). *P < 0.05.

{-Fox Schnute FD-Fox FD-Schaefer
cl 6.40 0.494 1.34 0.272
r-ratio for cl 5.41* 1.36 0.978 1.03
c2 0.256 -1 X107 -0.162 —6.64 x10°*°
r-ratio for ¢2 1.89 -1.66 -1.02 -1.29
c3 -0.416 -0.311 -0.135 —-0.174
f-ratio for ¢3 -4.30* -1.11 —0.660 -0.889
df 34 34 33 33
R? 0.833 0.0953 0.0452 0.0624
R? adj 0.823 0.0421 -0.0126 0.00556
Durbin 4 0.976* ~1.35* 5.46 1.52%
Durbin-Watson NA 2.44 1.44 1.49
riyr™h 1.19 0.494 0.162 0.272
g (million pot-days ™ ") 1.33 0.311 0.135 0.174
K (tonnes) 4079 13 997 29 056 23 467

of the four {-Fox data sets (a Cochrane—Orcutt-transformed data
set was used for the New Zealand fishery). and a regression
was performed on each new data set. This procedure was rep-
licated 1000 times with each regression yielding new estimates
of r, g, and K. The mean, standard deviation. and coefficient
of variation of the r, g, and K bootstrap estimates for each
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fishery are shown in Table 7. The coefficients of variation sug-
gest that the parameters derived from the I-Fox model are rel-
atively stable for all parameters except K (high vanability was
shown in the New England and New Zealand lobster fisheries).

The integrated models predict CPUE reasonably (<20%
error) for all four lobster fisheries but fail to pass Theil's U-
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TaBLE 6. Final regression coefficients and parameter estimates for the Western Australian lobster fish-

ery (NA = not applicable). *P < 0.05.

I-Fox Schnute FD-Fox* FD-Schaefer*

cl 0.617 0.106 -0.284 -0.411
t-ratio for ¢! 3.73* 0.304 —-1.42 -~ 1.58
2 0.429 -0.0369 0.209 0.127
{-ratio tor ¢2 2.88* -0.297 1.22 1.41
3 -0.0354 -0.0113 0.032 0.0332
1-ratio for ¢3 -3.67* -0.410 1.33 1.51

31 31 29 29
R* 0.882 0.00725 0.0572 0.073s
R* adj 0.875 -0.0568 —-0.00781 0.00955
Durbin 4 1.58* 0. 144~ 2.58 0.608*
Durbin—-Watson NA 1.97* 1.78* 1.81*
riyr'h 0.799 0.106 -0.209 -0.411
¢ tmillion pot-lifts ') 0.0991 0.0113 -0.0317 -0.0332
K (millions of kilograms) 29.7 253 -123.4 —98.0

*One iteration of the Cochrane—Orcutt procedure was applied.

TasLe 7. Bootstrap estimates of the means. standard devianons (Sp).
and coefficients of vartation (CV) of parameter r. ¢. and K when
applying the [-Fox model to four iobster fisheries.

Parameter Mean sD Ccv
New England

r 0.912 0.509 0.56

q 0.000755 0.000430 0.57

K 120.2 399.8 3.33
New Zealand

r 0.340 0.170 0.50

q 0.000102 0.0000513 0.50

K 44 061 96 482 2.19

Tusmania

r 1.23 0.368 0.30

g 1.38 0.469 0.34

K 4355 1373 0.36

Western Australia

r 0.838 0.316 0.38

q 0.103 0.0400 0.39

K 337 18.6 0.55

statistic for the New Zealand and Western Australian fishenies.
Also. despite providing positive. unconstrained estimates of the
biologicai parameters. instability with the I-Fox model is shown
in parameter K. These findings could indicate a theoretical
problem with ail of the models investigated: the assumption that
C = qEX. Since the estimates of biomass are not known,
verification of this assumption is difficult. However. data sets
designed to fit this assumption exist. The applicability of the I-
Fox model toward these data sets is explored.

Application to the Silliman and Gutsell (1958) Data Sets

Guppy populations (Lebistes reticularus) were introduced
into four similarly designed tanks. and two (called populations
A and B) were **fished’’ with a certain percent removal duning
each 3-wk interval (Silliman and Gutseil 1958). Fishing effort
data were computed so that U = ¢X with g = 0.1. Since two
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tanks were unfished. the maximum stock level each tank
achieved could be thought of as estimates of the virgin biomass
K. The maximum weight atiained in tanks C and D equaled
37.1 and 36.0 g. respectively. This suggests that reasonable
estimates of K for populations A and B are probably in the range
of 30-40 g. Pella and Tomlinson (1969) estimated ¢ = 0.071
and K = 49.3 for population A and ¢ = 0.078 and K = 39.5
for population B.

Tables 8 and 9 present the catch and effort data along with
estimates of ¢. K. and predicted CPUE U, from the I-Fox model
for each 3-wk interval. The catch data are from Silliman and
Gutsell 1958) whereas the effort data are adjusted by scaling
the percent weight removals as suggested in Peila and
Tomlinson (1969). Each estimate of ¢. K. and U, is obtained
from the [-Fox regression on ail data prior to that 3-wk interval.
Because of a lack of degrees of freedom. the I-Fox regression
estimates could not be obtained for the first four observations
of each table.

The tables present some revealing points of the [-Fox model.
For example. the initial estimates of ¢ and K are unrealistic
(negative). This couid be due either to the lack of data or 1o the
etfort levels for the first 13 observations being in a narrow
range. Also. despite obtaining negative values of ¢ and K. the
I-Fox model still predicted CPUE accurately. This implies that
a model that estimates biological parameters poorly could stiil
prove useful when predicting future catch (e.g. the Schnute
model appiied to the New England Iobster fishery). Finally. the
[-Fox model’s estimates become unrealistic for the last obser-
vations. suggesting that the model encounters problems when
applied to fisheries nearing extinction.

The main point of the tables is that the I-Fox model accu-
rately assesses "“fisheries”” A and B for a large portion of their
life spans. In both populations. estimates of ¢ and K become
fairly stable by week 100. with the estimates of population B
hovering around the *‘true’” values of ¢ (0.1) and K (between
30 and 40). Considering the I-Fox model is an adequate pre-
dictor of CPUE (Theil's U-statistic was 0.751 for population
A and 0.781 for population B), the model seems t0 be a val-
uable management tool for fisheries that satisfy the assumption
of C = gEX.

The ability of the other three models to estimate parameter
¢ has also been analyzed. As was done in Tables 8 and 9 with
the I-Fox model. values of g were obtained from each model
(Fig. 1). The deviation of each g estimate from 0.100.
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TasLE 8. Predicted CPUE U, prediction error. and parameters K and g from the I-Fox model for each
3-wk interval in the population A data set of Silliman and Gutseli (1958).

Week Catch Effort CPUE U, % error K q
40 6.0 2.58 2.33
43 49 2.49 1.97
46 37 2.06 1.80
49 4.4 2.50 1.76
52 4.1 243 1.69 1.82 7.69 -29 -0.326
55 35 2.15 1.63 1.68 3.07 30.1 0.072
58 3.5 2.32 1.51 1.63 7.95 35.6 0.058
61 3.8 2.59 1.47 1.51 2.712 —-98.5 -0.014
64 33 2.36 1.40 1.45 3.57 41.0 0.049
67 33 2.23 1.48 1.40 5.41 31.5 0.099
70 2.8 1.90 1.47 1.52 3.40 26.5 0.131
73 3.0 2.00 1.50 1.50 0.00 31.0 0.079
76 39 2.62 1.49 1.49 0.00 31.5 0.077
79 1.4 1.05 1.33 1.52 14.29 315 0.076
82 2.1 1.41 1.49 1.29 13.42 -155 -0.064
85 1.9 1.23 1.54 1.53 0.65 39.4 0.050
88 2.0 1.33 1.50 1.58 5.33 37.7 0.054
91 1.7 1.06 1.60 1.53 4.38 51.1 0.035
94 1.5 0.90 1.67 1.64 1.80 40.0 0.049
97 1.9 1.06 1.79 1.69 5.59 37.6 0.054
100 1.7 0.97 1.75 1.81 3.43 342 0.067
103 1.2 0.62 1.94 1.79 7.73 35.0 0.062
106 2.0 0.94 2.13 1.96 7.98 332 0.075
109 2.0 0.87 2.30 2.14 6.96 355 0.084
112 2.6 1.12 2.32 2.31 0.43 423 0.089
115 2.9 1.23 2.36 2.29 2.97 43.2 0.089
118 3.0 1.31 2.29 2.32 1.31 47.0 0.089
121 11.2 4.77 2.35 1.95 17.02 453 0.089
124 7.0 4.58 1.53 1.91 24.84 88.7 0.063
127 5.2 4.37 .19 1.21 1.68 51.6 0.097
130 57 5.09 t.12 0.95 15.18 52.8 0.098
133 5.6 5.05 1.11 0.93 16.22 40.3 0.088
136 4.2 4.38 0.96 1.00 4.17 36.7 0.079
139 43 4.78 0.90 0.89 1.11 37.2 0.080
142 3.5 4.32 0.81 0.85 4.94 37.0 0.080
145 39 5.42 0.72 0.76 5.56 38.2 0.080
148 3.5 5.00 0.70 0.67 4.29 39.7 0.080
151 34 6.54 0.52 0.63 21.15 38.3 0.080
154 2.1 7.00 0.30 0.44 16.67 42.8 0.082
157 24 7.27 0.33 0.24 27.27 713 0.084
160 1.2 6.32 0.19 0.30 57.89 39.3 0.092
163 1.2 6.67 0.18 0.17 5.56 71.8 0.083
166 0.9 6.92 0.13 0.16 23.08 60.5 0.087
169 1.0 7.14 0.14 0.11 21.43 91.9 0.080
172 0.2 3.33 0.06 0.15 150.00 59.7 0.088
lg — 0.1], was then computed for each 3-wk interval after week  Conclusion

82 (the last week that the models estimated a negative value of
q). The average deviations for each model reveal that the inte-
grated models are superior to the finite difference models in
estimating ¢. For population A. the average deviations for the
I-Fox and Schnute models are 0.024 and 0.029. respectively.
The FD-Fox and FD-Schaefer models estimate ¢ more poorly:
the average deviation is 0.043 for each model. For population
B, the [-Fox and Schnute models estimate g more accurately,
with average deviations of 0.012 and 0.013, respectively.
Although the FD-Schaefer and FD-Fox models are also more
accurate in'population B than in popuiation A (0.030 and 0.033
average deviations. respectively), their g estimates are still not
as accurate as the integrated models.
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Ideally. fishery managers require a model that accurately
predicts catch (or CPUE) while also estimating reasonable bio-
logical parameters. None of the models performed exception-
ally well when applied to the four commercial lobster data sets,
although a case could be made for the applicability of the I-Fox
model to the Tasmanian lobster fishery. The model passed
Theil"s U-statistic when predicting CPUE and had positive (and
stable) biological parameters. Yet specific instances of inac-
curate CPUE predictions by the I-Fox model were still found.
This supports the consensus that surplus production models are
oo simple to accurately reflect fish and fishery interactions.
Temperature, spawning stock information, and operational
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TasLE 9. Predicted CPUE U, prediction error, and parameters K and ¢ from the I-Fox model for each
3-wk interval in the population B data set of Silliman and Gutsell (1958).

Week Catch Effort CPUE U, % error K q
40 8.0 2.60 3.08

43 5.0 2.13 2.35

46 5.6 2.55 2.20

49 5.6 2.86 1.96

52 4.5 2.57 1.75 1.89 8.00 12.0 0.417
55 4.0 2.50 1.60 1.84 15.00 14.4 0.453
58 3.1 2.18 1.42 1.61 13.38 24.8 0.142
61 3.5 2.57 1.36 1.35 0.74 -12.0 ~0.053
64 35 2.63 1.33 1.32 0.75 ~15.7 —0.046
67 3.7 2.50 1.48 1.30 12.16 -14.4 -0.049
70 3.6 2.45 1.47 1.44 2.04 -9.6 -0.078
73 34 2.30 1.48 1.43 3.38 -10.7 -0.074
76 3.8 2.70 1.41 1.46 3.55 —18.6 ~0.052
79 1.5 1.13 1.33 1.36 2.26 —18.5 -0.051
82 1.9 1.22 1.56 1.22 21.79 -8.7 ~0.084
85 1.9 1.17 1.62 1.65 1.85 30.4 0.083
88 2.1 1.30 1.62 1.68 3.70 312 0.078
91 2.3 1.42 1.62 1.64 1.23 333 0.067
94 2.2 1.26 1.75 1.64 6.29 34.0 0.064
97 1.9 1.02 1.86 1.77 4.84 31.8 0.074
100 2.3 1.10 2.09 1.89 9.57 30.7 0.083
103 2.4 1.09 2.20 2.09 5.00 30.3 0.098
106 2.8 1.24 2.26 2.18 3.54 31.1 0.104
109 2.7 .14 2.37 2.23 5.91 319 0.107
112 3.3 1.39 2.37 2.32 2.11 33.7 0.111
115 1.9 0.89 2.13 2.36 10.80 34.5 0.112
118 2.2 1.02 2.16 2.19 1.39 31.9 0.107
121 10.2 4.66 2.19 1.85 15.53 31.8 0.106
124 7.0 4.70 1.49 1.67 12.08 38.2 0.086
127 6.8 5.62 1.2t 1.13 6.61 338 0.105
130 5.3 5.64 0.94 0.95 1.06 34.1 0.097
133 4.3 4.67 0.92 0.81 11.96 341 0.098
136 4.8 4.80 1.00 0.86 14.00 32.1 0.094
139 4.2 4.94 0.85 0.93 9.41 30.5 0.092
142 35 5.07 0.69 0.81 17.39 30.9 0.094
145 2.6 4.81 0.54 0.68 25.93 32.5 0.095
148 2.8 4.52 0.62 0.54 12.90 38.0 0.092
151 37 6.98 0.53 0.57 7.55 33.7 0.096
154 2.9 6.44 0.45 0.46 2.2 34.6 0.097
157 1.2 6.00 0.20 0.42 110.00 34.8 0.097
160 1.7 7.73 0.22 0.17 22.73 64.6 0.092
163 1.1 8.46 0.13 0.18 38.46 42.7 0.101
166 0.3 6.00 0.05 0.12 140.00 54.9 0.101
169 0.2 10.00 0.02 0.03 30.0 4.6 x 10™ 0.071

changes should be incorporated to better approximate the
dynamics of a fishery. Both integrated models. however. show
adequate predictive power for the four lobster fisheries and esti-
mate g accurately for the Silliman and Gutsell (1958) data sets.
We believe that as mentioned in Silliman (1971), surplus
production models can be valuable as first approximations and
should be considered in time- or data-limiting conditions.
More sophisticated nonlinear approaches to the FD-Schaefer.
FD-Fox, and Schnute models are found in Pella and Tomlinson
(1969), Fox (1975), and Schnute (1977), respectively. These
observation error fitting procedures (Hilborn and Walters 1992)
use an iterative procedure with a least squares criterion 1o obtain
estimates of 7. ¢, and X which minimize predictive error. The
parameters obtained from the linear models examined here are
first approximations to that criterion. Using simulated popu-
lations, Hilbom (1979) showed that the nonlinear FD-Schaefer
and Schnute models produced positive parameters. while their
linear counterparts gave negative results: however. the
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nonlinear methods were not shown to assess those fisheries any
better than the linear methods. A noniinear approach applied
to the I-Fox model could possibly produce better results, but
this is beyond the scope of the current study. A more complete
discussion on the inclusion of a model’s observed error struc-
ture is found in Schnute (1989).

The present paper has compared two linear dynamic
approaches with the Schaefer and Fox production models. The
results suggest that the integration approach of Schnute (1977)
should be explored more extensively. For example, the
integration procedure could incorporate a longer time lag
(Walter 1973) to account for the recruitment patterns of lobster.
A 4-yr period was shown to work for the Western Australian
lobster fishery in Phillips (1986). Additionally, the integration
approach could be applied to a more general class of curves,
such as the Bemoulli curves used in Pella and Tomlinson
(1969), with the chosen curve satisfying some statistical cri-
terion. Research in these areas could lead to a better under-
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standing of the relative usefulness of surplus production mod-
eling in specific fishery applications.
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Appendix A. Derivation of the I-Fox Model

Integrating Equation (4) from + = year n to t = year
n + 1 vyields

(Al InU<n+1>/U<n>)

n+l

= r In(gK) — rf In(U) dr—qE,

=

where U<n> is the instantaneous CPUE at the start of year n
and E, is the total effort for year n.

The first-degree Taylor polynomial for In(U) centered at U,
the average CPUE for year n, is

() = InU,) + (WU,) (U = U,)
=) ~ 1 + (UIU,).

This approximation assumes that U will not fluctuate far from

U, over the course of year n. Thus. high vanability of instan-

“taneous CPUE due to seasonal effects may render this assump-

tion {and the 1-Fox model) invalid for a specific fishery.
Integraticn of the Taylor approximation yields

e+l n+1
(A2) J In(UYdr = In(U,) — 1 + (l/Un)J. Udr.

n+1

By definition. U, = f Udt, so Equation (A2) becomes

n+l
J In(U)dt = In(U,) = ! + 1 = In(U,).

n

Putting this result into Equation (A1) gives
IU < n + 1>U<n>) = ringk)
- rinU,) — ¢E,.

Adding this equation to its corresponding (n + [)th equation
gives
(A3) In((U <n+2>U <n+ 12U <n+ 1> U <n>))

= 2rin(gK) ~ riin(U,, ) + In(U))) — ¢(E,+E, . }).

Schnute’s (1977) assumption is used to estimate instanta-
neous CPUE:

U,=VU<n+15U<n>,

that is. the CPUE of a given year is the geometric mean of the
CPUEs at the beginning and ending of that year. Using this
CPUE estimate in Equation (A3) and solving algebraically for
In(U,, ) gives

In(U,,,) = Qri(2 + r) In(gK) + (2 ~ (2 + 1)
I(U,)) —- (g2 + M (E, + E, )

Appendix B. Confidence Intervals for the I-Fox
Model’s Prediction of Catch per Unit Effort

The standard error of forecast S, for the I-Fox model’s pre-
diction of CPUE for year m + [ is found by applying the pro-
cedure in Ezekiel and Fox (1959):

N 1 2
Sj—= JST(l + — + Cxx(xm - MX)- + zcxy(xm

where X, = In(U,). Y, = E, + E .. Z,=InU,_ ). M,
=SX/m— DM, =Y m— 1.5, =X, - M.
Sy =2, - M. Sey =X, = MUY, — Moy =
Sy(Sy Sy = SyyhCxy = =SupSx Sy = Syy)Cyy = S;\'
Sx Sy = Syy). 88 = XUZ, — ¢l ~ 22X, = 3Y,)Y
(m — 4), and m is the number of vears of data used. All sums
(yare fromn = 1ton =m — 1. and cl. c2. and ¢3 are the
regression coefficients of the I-Fox regression. Also. the num-
ber of degrees of freedom is m ~ 4 because of the 1-yr time
lag.

Using the formula for 5, a confidence interval for In(U,, . ,)
can be calculated:

Lower limit: / = In(U,,,. ) = §;t,,
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MOy, — M) +c, (Y, — M,)3>

and

Upper timit: u = In(U,,,_,) + S, 1.,

rip2

where 1, is the critical value of the Student’s t-distribution
statistic of p/2 probability.

Since the natural log function In({) is an increasing function
and is well defined for U > 0. confidence limits for the pre-
diction U,, , | can be estimated by taking the inverse (exponent)
of the confidence fimits for In(¥,,,. ,):

Lower limit: '
and

Upper limit: .
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