
Comparing Dynamic Versions of the Schaefer and Fox Production 
Models and Their Application to Lobster Fisheries 

Stacey S. Yoshimoto and Raymond P. Clarke' 
Honolulu Laboratorv, Southwest Fisheries Science Center. hational Marine fisheries Service 

Honolulu, HI 96822-2396, USA 
NOAA. 2570 Dole Street, 

Yoshimoto, S. S., and R. P. Clarke. 1993. Comparing dynamic versions of the Schaefer and Fox production 

Dynamic approaches (integrated and finite difference) to the Schaefer and Fox production models are applied to 
four commercial lobster fisheries. The integrated versions provided beaer predictions than their finite difference 
counterparts. Only the integrated verston of the  Fox model provides realistic (positive) biological parameter 
estimates for all four fisheries, and bootstrapping reveals those estimates to be generally stable. Addttionallv, this 
model periorms well when applied todata where certain assumptions oi surplus production modeling are fulfilled. 
The results suggest turther investigation 01 the integration procedure. 
Des methodes dynamiques (methode integrk et methode des differences iiniesl sonf appl iquh  dux  modeles de 
production de Schaeter et de Fox dans le cas de quatre peches commerciales au homard. Les versions utilisant 
la methode inteEr& permettent d'obtentr de meilleures previsions par rapport aux versions fondks sur la methode 
des diiferences iinies. Seule la version integre du modele de Fox fournit des estimations realistes ivalables) des 
parametres biologtques pour les quatre peches. et I'application de la technique du bootstrapping demontre que 
ces estimations sont generalement stables. En outre, on obtient de bons resultats lorsque I'on applique ce modele 
aux donn&s qui coniirment cenaines hypotheses relativement aux modeles de production excedentaue. Ces 
resultats tncitent donc 6 pousser les recherche5 du cote de la methode integree. 

models and their application to lobster fisheries. Can. J. Fish. Aquat. Sct. 50: 181-189. 

Received November 26. I990 
Accepfed / u / y  29. 1992 
(JA822) 

ne of the 
applying 0 of catch 

simplest approaches to modeling a fishery is 
a surplus production model to a time series 
and effort data. Schaefer (1957) and Fox 

( 1970) helped pioneer this approach and used the concept of 
equilibnum to model a fishery over the long run. They tirst 
applied a dynamic model to estimate various biological param- 
eters of a fishery. The parameters were then used in an equi- 
librium model to estimate fishery management parameters ce.g. 
maximum sustainable yield). The dynamic models therefore 
had a dual purpose: to account for the nonequilibrium portions 
of a fishery and to accurately estimate the biological parameters 
so the resultins management parameters could be trusted. Many 
authors (Walter 1973: Schnute 1977: Uhler 1980: Lleonan and 
Salat 1989) have since developed their own dynamic versions 
of the Schaefer ( 1957) and Fox ( 1970) models to better assess 
unstabilized fisheries. The two dynamic approaches examined 
in this paper are the orisinal (finite difference) versions and the 
integrated versions (Schnute 1977: Clarke et al. 1992). 

The Schaefer ( 1957) and Fox ( 1970) models have the con- 
tinuous forms 

- 

( I )  

and 

(2) 

respectively. where X represents the population. dX/d r  the 
growth rate of the population. C the catch rate. r the intrinsic 
growth rate. and K the maximum stock level or virgin biomass. 

dXldr = rX - rX'IK - C 

dXldr = rX In(K/X) - C. 
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Equation ( I )  assumes that the growth rate to biomass relation- 
ship is logistic (parabolic). while Equation (2) assumes a 
Gompenz distribution (Richards 1959). 

Fishing effort is taken into consideration by substituting C = 
4EX. with q defined as the catchability coefficient and E as the 
rate of fishing effort (e.:. the effort expended in I yr). Equa- 
tions ( l )  and (2)  are then convened to 

( 3 )  (1IU)dUldr = r - r/(qK)U - 4€ 

and 

(4)  ( l /U)dUldr  = r In(qK) - r M U ) -  Y E .  

respectively. where U = CIE is the instantaneous catch per 
unit effort (CPUE). Schaefer ( 1957) and Fox ( 1970) estimated 
parameters r. q. and K by convening Equations (3)and (4) into 
their finite difference forms: 

Schaefer: 

(5) 

Fox: 

(6)  
where U n  is the average CPUE and E, is the total effort 
expended for year n and AUn = (U"+i  - U,,-iY2. Both 
Equations (5) and (6)  are considered dynamic given that U , ,  I 

can be expressed in terms of past variables U,, E,, and U ,  - I .  

Originally. Equations (5) and ( 6 )  were used only to estimate 
parameters r. q. and K .  However, we test the applicability of 
the dynamic models for predictions and parameter estimation 
in nonequilibrium conditions. Hereafter. Equations (5) and (6)  

A U q / U n  = r - r/(qK)U, - qE, 

A U n / U n  = r In(9K) - r M U n )  - 4E, 
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will  be called the FD (finite difference) - Schaefer and FD-Fox 
models. respectively. 

Upon scrutiny, the FD-Schaefer and FD-Fox models possess 
some questionable properties. One problem is the approxima- 
tion dCl/dt = SU,, which assumes that CPUE is linearly dis- 
tributed over the course of 2 yr. Another problem is that the 
CPUE of year n + I .  Un+ I. can be predicted without the 
anticipated effort being specified for that year. Such a condition 
is questionable. given the definition of CPUE: U = C/E. 

Rather than using a finite difference approximation. Schnute 
( 1977) integrated Equation ( 3 )  and approximated the average 
annual CPUE as the geometric mean of. the instantaneous 
CPUEs at the beginning and end of the year. Schnute's dynamic 
version of the Schaefer model. henceforth referred to as the 
Schnute model. is 

(7) In f U n - , : U n )  = r - ( r / ( y K ) )  (U, + U , + , ) / 2  

- q ( E ,  + E n + l ) / 2 .  
A s  noted by Uhler ( 1980). the Schnute model. unlike the FD- 
Schaeter and FD-Fox models. has the desirable property that 
L',, - ,  icnds to zero as E, r ,  becomes large. Another advantage 
ot this model is that the predicted CPUE. Un, . l ,  can be 
c.\timated tor a range 01 anticipated effort. E, I. to allow fish- 
cry managers to approximate the effort level needed for a tar- 
geted yield. In  Uhler ( 1980). the Schnute model was shown to 
have less bias than an FD-Schaefer model (with a I-yr time lag) 
when applied to a computer-simulated fishery 

A n  integrated version of the Fox model has been applied IO 
the lobster fishery in the Northwestern Hawaiian Islands 
(NWHI) (Clarke et al. 1992). This model uses the same 
assumptions a:, the Schnute model and incorporates a Taylor 
wries approximation 1 Appendix A ): 

( 8 )  l n ~ U , , ~ , )  = [ 2 r  In(yK) + ( 2  - r )  InIU,) 

- (/(E,, - E n + , ) ] / ( ?  - r ) .  

Unlike the other models presented. this model is a simple. 
lasged loganthmic equation of CPUE. This gives the model an 
.iuvantage over thc Schnute and finite difference models when 
iqrcssion analy\i\ $5 pcrtormed. This model has been applicd 
lo a limitcd time >cries 01 catch and ctfon data (8 yr ot the 
SWHI lobster tihhery: Clarke et al. 1992). but its applicability 
lo Iishenes with longer time senes is unknown. Hereafter. this 
model uill be called the I (integrated) - Fox model. 

Our paper examines the assumption that the integrated 
models will yield better predictions and biological parameter 
cstimates than the finite difference models. The models are 
applied to four commercial lobster fisheries with substantial 
time senes of catch and effort data. and each model's ability 
to predict annual CPUE is investigated. Biological parameter 
ebtimates for each fishery also are presented. However. since 
little I \  known or these parameters. only general conclusions 
arc made about them. Each model's abilitv tor parameter esti- 
ination i s  tested wing data sets in which the biological param- 
cter 4 is known. 

Methods 

.A frequently used approach to estimate a model's predictive 
power ot catch is applying an ordinary least squares (01.5) 
regression on all years of data for a fishery. The points on the 
rcsulting reyession curve are then interpreted as catch (or  
CPUE) predictions iorthe onginal data. Wittink ( 1988) pointed 
out that this approach depends heavily on the R-squared ( R ' )  

I S 2  

value and does not test for predictive power. since the regres- 
sion curve is created using the original data (i.e. the curve has 
prior knowledge of what it is supposed to predict). 

The approach used in this paper is to make annual predictions 
only using data prior to that year. Mathematically, OLS is per- 
formed on the first m - I years of data. and a prediction IS 
made for year rn using the results of that regression. A regres- 
sion is then performed on the first rn years for the prediction of 
year m + 1. and this procedure is continued until a prediction 
is made for the last year of available data. The predicted and 
actual values are then compared to determine predictive power. 
This approach better approximates what fishery managers 
actually face because having data for future years is unrealistic. 

Each model's estimates of the biological parameters r .  q .  and 
K ,  using all years of data for a fishery, are also examined. From 
definitions presented in Schnute ( 1977). each biological 
parameter should be positive. The parameter estimates pre- 
sented in our paper are unconstrained estimates. Other papers 
(e .g  Schaefer 1957) take absolute values to ensure the analyses 
have realistic (positive) results. We use the unconstrained 
approach to look at the mathematical relations of the models 
rather than to thoroughly analyze a specific fishery. 

The four dynamic models are applied to catch and effort data 
from four lobster fishenes: Western Australian rock lobster. 
Panulirus Cygnus (years 1944-64 from table I in Morgan 
1979a: years 1965-78 from tables 6 and 8 in Morgan et ai. 
1982): American lobster. Homarus arnericunus (years 1950- 
79 from table I in Townsend 1986); Tasmanian rock lobster. 
lusus novaeholfandiue (years 1947-84 from table 1 in Camp- 
bell and Hall 1988): and New Zealand lobster. Jams edwardsii 
(years 1945-90 from the totals in table I in Breen 1991). The 
Western Australian data take into account seasonal vanability 
and area distribution (Morgan 1979b). The New England data 
are only inshore data. and a modified Schaefer model was 
applied to them in Townsend (1986). An FD-Fox model and 
an FD-Schaefer model with I-yr time lass have been applied 
to the Tasmanian data (Campbell and Hall 1988). Finally. the 
New Zealand data are composed of the total of commercial and 
estimated unreponed. amateur. and illegal catch data. To our 
knowiedge. each data set has not been proven to satisty all 
assumptions ot  surplus production modeling. However. the 
applicability ok these models to commercial data can be gauged 
by each model's ability to forecast catch (or CPUE). 

A prediction for the CPUE of year m + I is made in the 
following manner. An OLS regression is applied IO the models 
by using catch and efforr data for the first rn years of a fishery. 
The resulting regression on data for years n = 1 to n = rn 
estimates the parameters r .  4. and K :  

FD-Schaefer: 

(9) 

with r = c l .  4 = -c3. and K = -r/(qc2): 

FD- Fo x : 

( I O )  

with r = -c2. y = -c3. and K = e' i'rlq; 

Schnute: 

( 1 1 )  In(UniU,-,)= el  + C ~ ( U " - ~  + Un)/2 

AUn-ltUn-l = c l  + cZUn-, + c3E,-, 

AU ,,-, ,U , l - l  = rl + c21n(Um-,) + c3€,_ ,  

+ c3(E,-, + E,)/? 
with r = c l .  4 = -c3, and K = - r / (qc2):  and 

Cun. J. Fish. Aquar. S n . .  Vu1 SO. l Y Y 3  



[-FOX: 

(12) In(Un) = cl + c21n(Un-,) + c3(E,-, + E,) 

with r = 2(1 - c2)/(I + c2). q = -c3(2 + r ) .  and K = 
e'"2"u'a'/q. The FD-Schaefer and FD-Fox models predict the 
following year's CPUE with 

FD-Schaefer: 

and 

FD-FOX: 

(14) U,,, = Urn- ,  + 2U,[r MqK) - r In(U,) - qE,I. 

For the I-Fox model. after the anticipated effOR E , + ,  is 
specified. the predicted CPUE is 

iZr lnlqK~+ I ?  - riln1U.I - * E -  + E..,II 
I2 * I ,  (15) U,,, = e 

For the Schnute model. U,,, was estimated from Equation 
(31)  in Schnute (1977). Confidence intervals for the Schnute 
model's prediction are in Schnute ( 1977); those for the I-Fox 
are in Appendix B. 

The predictive ability of the models is tested by using Theil's 
U-statistic (Wittink 1988): 

(16) UT = Jp 
(U, - U,-,)' 

n = k  

where Up," is the predicted CPUE for year n. and k and N are 
equal to the first and last year. respectively. that a CPUE pre- 
diction was made. The numerator of UT is the sum ofthe squared 
differences of the actual and predicted CPUEs. and the 
denominator is the sum of the squared differences between the 
actual CPUEs of adjacent yean. Thus. this statistic adjusts a 
model's predictive error by considering the year-to-year vari- 
ation of the actual CPUE. If UT > I ,  the model is not consid- 
ered useful for forecasting purposes. 

For the overall estimation of biological parameters ( r ,  q, and 
K ) .  the following procedure is used. First. regressions of the 
four models are performed on all years of data. The presence 
of autocorrelation is then investigated. Since the I-Fox model 
has a lagged dependent variable. the Durbin-Watson statistic 
is inappropriate to detect autocorrelation. and the test statistic 
used is the Durbin h-statistic (Pindyck and Rubinfeld 1981). 
When the Durbin h-statistic is undefined. the Durbin r-statistic 
test is applied (King 1987). If the FD-Schaefer. FD-Fox. or 
Schnute model passes either the Durbin h-test or the regular 
Durbin-Watson test, then the results of that model's regression 
are used. When evidence of autocorrelation is detected. the 
Cochrane-Orcutt procedure for autocorrelation correction 
(Wittink 1988) is applied until the model's test statistic is not 
significant in showing autocorrelation. The model loses a 
degree of freedom for each Cochrane-Orcutt iteration 
performed. 
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TABU I .  Average percent prediction errors from the I-Fox. Schnute. 
FD-Fox. and FD-Schaefer models for four lobster fisheries. 

Location I-Fox Schnute FD-Fox FD-Schaefer 
New England 11.58 10.35 18.56 18.56 
New Zealand 18.86 16.58 20.92 20.62 

12.20 12.26 21.54 21.01 T as m a n I a 
Western Australia 12.49 12.75 25.69 24.26 

TABLE 2. Theil's U-statistic test applied to the I-Fox. Schnute. FD- 
Fox. and FD-Schaefer models for four lobster fisheries. 

Location I-Fox Schnute FD-Fox FD-Schaefer 
New England 0.780' 0.750" 1.44 1.43 
New Zealand 1.86 3.20 2.46 2.43 
Tasmania 0.827' 0.910' 1.60 1.55 
Westem Australia 1.01 1.21 2.70 2.45 

'Model is considered an adequate predictor. 

Results and Discussion 

The lack of degrees of freedom for regression analysis with 
the FD-Fox and FD-Schaefer models. which have a 2-yr time 
lag, prevented predictions from being made for the first 6 yr of 
each fishery. Therefore. CPUE predictions for years 1956-79. 
1951-90. 1953-84, and 1950-78 were obtained for the New 
England. New Zealand. Tasmanian, and Western Australian 
lobster fisheries, respectively. A model's CPUE prediction for 
the seventh year used the regression results from the first 6 yr 
of data. the prediction for the eighth year used those from the 
first 7 yr of data. and so on. 

(17) 100 b'" - U,,kUn 

was calculated for each model's prediction of CPUE. with Up.,, 
being the predicted CPUE for yearn. The means of the percent 
prediction errors from each model (Table I )  show that the I- 
Fox model is the most accurate predictor for two of the four 
fisheries. and the Schnute model is the more accurate predictor 
for the other two. In all four fisheees. the I-Fox and Schnute 
models have lower average percent prediction errors than the 
finite difference models. According to Theil's U-statistic test 
(Table 2). the I-Fox and Schnute models are adequate predic- 
tors for the Tasmanian and New England fisheries. while the 
FD-Fox and FD-Schaefer models failed the test for all four 
fishenes. 

From the regressions on all data of a fishery, only the I-Fox 
model provides positive biological parameters for all four fish- 
eries (Tables 3-6). The I-Fox model also had high R Z  values 
(>0.8), but this goodness of fit was expected. The low R' 
values from the other three models reveal problems in explain- 
ing the variation in their more complex dependent variables 
(AUJU,, for the FD-Fox and FD-Schaefer models and 
In( U, + , iU,) for the Schnute model) over substantially long time 
series. This was probably a major reason for their unrealistic 
(negative) estimates of the biological parameters. Another pos- 
sible explanation is that the data sets examined do not satisfy 
the assumptions of surplus production modeling. The higher 
R' values of the I-Fox model compared with those of the 
Schnute model reveal that a better regression fit does not nec- 
essarily imply better predictive power (Ferber 1956). 

Bootstrapping (Efron and Tibshirani 1986) was applied to 
the I-Fox model to test the stability of the biological parameters. 
Sampling with replacement was applied to the residuals of each 

The percent prediction error 
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TABLE 3. Final regression coefficients and parameter estimates for the New England inshore lobster 
fisherv (NA = not aoolicable). *P < 0.05. 

I-FOX Schnute FD-Fox' FD-Schaefef 

cl - 1.62 -0.444 0.399 -0.308 
r-ratio for cl - 2.57* - 1.40 0.742 -1 .11  
c2 0.416 7.94 0.176 4.68 
r-ratio I .79 I .28 0.91 1 0.830 
c3 -2.41 X IO-' 1.61 x IO-' 1.75 X IO-* 1.15 X IO-' 
r-ratio for c3 - 2.42* 1.26 I .07 1.04 
df 
R' 
R' adj 
Durbin h 
Durbin r 
Durbin-Watson 
r (yr - ' )  
4 (lo00 traps- ' )  
K (millions of wunds) 

26 
0.0606 

-0.0117 

26 
0.943 
0.939 

Undefined Undefined 
1.32' NA 
1.19 I .95* 
0.826 -0.444 
6.80 X IO-' -1.61 X IO-' 

92.6 - 347 

24 24 
0.0493 0.0439 

-0,0299 -0.0358 
Undefined Undefined 
NA NA 

I .69* 1.70* 
-0.176 -0.308 
-1.75 x IO-' -1.15 X IO-' 
- 591 -571 

'One iteration of the Cochrane-Orcutt procedure was applied. 

TABLE 4. Final regression coefficients and parameter estimates for the New Zealand inshore lobster 
fishery ( N A  = not applicable). *P < 0.05. 

I-FOX' Schnuteb FD-Fox FD-Schaefer 

C l  0.369 -0.0773 -0.0446 - 0.0523 
r-ratio for cl 2.18' -0.539 -0.366 -0.464 
c2 0.718 0.0158 0.0165 0.00875 
r-ratio for c2 6.06* 0.391 0.192 0.281 
c3 -4.24 X IO-' 2.01 X IO-' -1.30 X IO-" -1.58 X 

r-ratio for c3 -2.41* 0.0902 -0.0502 -0,0870 
df 40 41 41 41 

R' adj 0.930 - 0.0374 -0.0386 - 0.0375 
Durbin h - I .05* -0.163' 1.31* 1.09' 
Durbin-Watson NA 2.05* 1.68' I .68* 
r (yr- ' )  0.329 -0.0773 -0.0165 -0.0523 
9 (Io00 pot-lifts-') 9.88 x IO-' -2.01 X IO-' 1.30 X 1.58 X IO-' 
K (tomes) 37 469 - 2  440 845 I I 537 340 3 188 069 

R' 0.934 0.0108 0.00974 0.0108 

7 w o  iterations of the Cochrane-Orcutt procedure were applied. 
"One iteration of the Cochrane-Orcutt procedure was applied. 

TABLE 5 .  Final regression coetficients and parameter estimates ior the Tasmanian lobster fisher). (NA 
= not applicable). *P < 0.05. 

FD-Fox FD-Schaefer I-Fox Schnute 
cl 6.40 0.494 I .34 0.272 
r-ratio for cl 5-41' 1.36 0.978 I .03 
c2 0.256 -1.14 X I O - '  -0.162 -6.64 x los5 
r-ratio for c2 1.89 - 1.66 - 1.02 - 1.29 
c3 -0.416 -0.3 I 1  -0.135 -0.174 
[-ratio for c3 -4.30' - 1 . 1 1  -0.660 -0.889 
df 34 34 33 33 
R' 0.833 0.0953 0.0152 0.0624 
R' adj 0.823 0.0421 - 0.0 I 26 0.00556 
Durbin h 0.976* - I .35* 5.46 I .52* 
Durbin-Watson NA 2.44 1.44 1.49 
r (yr- ' )  1.19 0.494 0.162 0.272 
4 (million pot-days-') 1.33 0.311 0.135 0.174 
K ttonnes, 4079 13 997 29 056 23 467 

of the four I-Fox data sets (a  Cochrane-Orcutt-transformed data 
set was used for the New Zealand fishery). and a regression 
was performed on each new data set. This procedure was rep- 
licated IO00 times with each regression yielding new estimates 
of r .  9,  and K .  The mean. standard deviation. and coefficient 
of vanation of the r. 9, and K bootstrap estimates for each 

fishery are shown in Table 7. The coefficients of variation sug- 
%est that the parameters derived from the I-Fox model are rel- 
atively stable for all parameters except K (high variability was 
shown in the New England and New Zealand lobster fisheries). 

The integrated models predict CPUE reasonably (<20% 
error) for all four lobster fisheries but fail to pass Theil's U- 
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TABLE b. Final regression coefficients and parameter estimates for the Westem Australian lobster fish- 
ery (NA = not applicable). *P < 0.05. 

FD-Schaefef I-FOX Schnute FD-Fox' 
< , I  0.617 0.106 -0.284 -0.411 
r-ratio for c 1 3.73* 0.304 - I .42 - 1.58 
c2 0.429 -0,0369 0.209 0.127 
I-ratio ior c2 2.88* -0.297 1.22 1.41 
L.3 -0.0354 -0.0113 0.032 0.0332 
r-ratio for c3 - 3.67: -0.410 1.33 1.51 
df 31 31 29 29 
R' 0.882 0.00725 0.0572 0.0735 
R' ad! 0.875 -0.0568 - 0.0078 I 0.00955 
Durbin h I .58* 0.144' 2.58 0.608" 
Durbin-Watson N A  I .97* I .78* 1.81* 
r c y r - ' )  0.799 0.106 -0.209 -0.411 
y cmiilion pot-lifts 7 0.0991 0.01 13 - 0.03 17 -0.0332 
K (millions ot kilograms) 29.7 253 - 123.4 -98.0 

'One iteration 01 the Cochrane-Orcutt procedure was applied. 

T.ABLE 7.  Bootstrap estimates of the means. standard deviations ISD). 
and coefficients ot variation tCV) ot parameter r .  4. and K when 
applying the I-Fox model to four lobster fisheries. 
Parameter \lean >V cv 

Y e w  En rlund 

r 0.912 0.509 0.56 
4 0.000755 0.000130 0.57 
K 120.2 399.8 3 33 

.Yew Zeulond 

r 0.340 0.170 0.50 
4 0.000102 O.ooOo513 0.50 
K 44 061 96 4x2 2.19 

Tustnutiru 

r I 23 
Y I 38 
ii 4355 

r I 23 
Y I 38 
ii 4355 

0 368 (1.30 
0.46') 0.34 
l5 i .7 0.36 

IVesrem .?.irsrruliu 

r 0.838 0.316 0.38 
4 0. IO3 0.0400 0.39 
K 33.7 18.6 0.55 

statistic for the New Zealand and Western Australian fishenes. 
Also. despite providing positive. unconstrained estimates of the 
biological parameters. instability with the I-Fox model is shown 
in parameter K .  These findings could indicate a theoretical 
problem with all of the models investigated: the assumption that 
C = q E X .  Since the estimates of biomass are not known. 
verification of this assumption is difficult. However. data sets 
designed to fit this assumption exist. The applicability ofthe I- 
Fox model toward these data sets is explored. 

Application to the Silliman and Gutsell (1958) Data Sets 

Guppy populations lLebisres rericufnrus) were introduced 
into four similarly designed tanks. and two (called populations 
A and B) were "fished" with a certain percent removal during 
each 3-wk interval (Silliman and Gutsell 1958). Fishing effon 
data were computed so that U = qX with q = 0. I .  Since two 
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tanks were unfished. the maximum stock level each tank 
achieved could be thought of as estimates of the virgin biomass 
K .  The maximum weight attained in tanks C and D equaled 
37. I and 36.0 g. respectively. This suggests that reasonable 
estimates o f K  for populations A and B are probably in the range 
of 30-40 g. Pella and Tomlinson ( 1969) estimated q = 0.071 
and K = 49.3 for population A and q = 0.078 and K = 39.5 
for population B. 

Tables 8 and 9 present the catch and effon data along with 
estimates of q. K .  and predicted CPUE U p  from the I-Fox model 
for each 3-wk interval. The catch data are from Silliman and 
Gutsell 1958) whereas the effort data are adjusted by scaling 
the percent weight removals as suggested in Pella and 
Tomlinson ( 1969). Each estimate of q. K .  and U,  is obtained 
from the I-Fox regression on all data prior to that 3-wk interval. 
Because of a lack of degrees of freedom. the I-Fox regression 
estimates could not be obtained for the first four observations 
of each table. 

The tables present some revealing points of the I-Fox model. 
For example. the initial estimates ot y and K are unrealistic 
(negative ) .  This could be due either to the lack of data or to the 
effoort levels for the first 13 observations being in a narrow 
range. Also. despite obtaining negative values of q and K.  the 
I-Fox model still predicted CPUE accurately. This implies that 
a model that estimates biological parameters poorly could still 
prove useful when predicting future catch (e.g. the Schnute 
model applied to the New England lobster fishery). Finally. the 
I-Fox model's estimates become unrealistic for the last obser- 
vations. suggesting that the model encounters problems when 
applied to fisheries nearing extinction. 

The main point of the tables is that the I-Fox model accu- 
rately assesses "fisheries" A and B for a large portion of their 
life spans. In both populations. estimates of q and K become 
fairly stable by week 100. with the estimates of population B 
hovering around the "true" values of q (0. I )  and K (between 
30 and 40). Considering the I-Fox model is an adequate pre- 
dictor of CPUE (Theil's U-statistic was 0.751 for population 
A and 0.781 for population B), the model seems to be a val- 
uable management tool for fisheries that satisfy the assumption 

The ability of the other three models to estimate parameter 
q has also been analyzed. As was done in Tables 8 and 9 with 
the I-Fox model. values of 4 were obtained from each model 
(Fig. I ) .  The deviation of each q estimate from 0.100. 
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TABLE 8. F’redictcd CPUE Urn, prediction error. and parameters K and 4 from the [-Fox model for each 
3-wk interval in the population-A data set of SillirnG and Gurseil (1958). 

Week Catch Effort CPUE UD %error K 4 
40 
43 
46 
49 
52 
55 
58 
61 
64 
67 
70 
73 
76 
79 
82 
85 
88 
91 
94 
97 

100 
I03 
106 
109 
I12 
I I5 
I18 
I21 
I24 
I27 
I30 
I33 
I36 
139 
I42 
I45 
I48 
I51 
I54 
157 
160 
I63 
166 
I69 
I72 

6.0 
4.9 
3.7 
4.4 
4.1 
3.5 
3.5 
3.8 
3.3 
3.3 
2.8 
3.0 
3.9 
1.4 
2.1 
I .9 
2.0 
1.7 
1.5 
I .9 
I .7 
I .2 
2.0 
2.0 
2.6 
2.9 
3.0 

11.2 
7 .O 
5.2 
5.7 
5.6 
3.2 
4.3 
3.5 
3.9 
3.5 
3.4 
2.1 
2 .1  
I .2 
1 -2 
0.9 
I .o 
0.2 

2.58 
2.49 
2.06 
2.50 
2.43 
2.15 
2.32 
2.59 
2.36 
2.23 
1.90 
2.00 
2.62 
I .05 
I .4l 
I .23 
I .33 
1.06 
0.90 
1.06 
0.97 
0.62 
0.94 
0.87 
1.12 
I .23 
1.31 
4.77 
4.58 
4.37 
5.09 
5.05 
4.38 
4.78 
4.32 
5.42 
5.00 
6.54 
7.00 
7.27 
6.32 
6.67 
6.92 
7. I4 
3.33 

2.33 
1.97 
1.80 
I .76 
1.69 
1.63 
1.51 
I .47 
1.40 
1.48 
1.47 
I S O  
I .49 
1.33 
1.49 
I .54 
I s o  
I .60 
1.67 
1.79 
I .75 
I .94 
2. I3 
2.30 
2.32 
2.36 
2.29 
2.35 
I .53 
1.19 
1.12 
1 .11  
0.96 
0.90 
0.81 
0.72 
0.70 
0.52 
0.30 
0.33 
0. I9 
0.18 
0. I3 
0.14 
0.06 

1.82 
1.68 
1.63 
1.51 
1.45 
I .40 
I .52 
1 S O  
I .49 
I .52 
I .29 
1.53 
1.58 
1.53 
I .64 
1.69 
1.81 
I .79 
I .96 
2.14 
2.31 
2.29 
2.32 
1.95 
1.91 
1.21 
0.95 
0.93 
I .OO 
0.89 
0.85 
0.76 
0.67 
0.63 
0.44 
0.21 
0.30 
0.17 
0.16 
0.11 

7.69 -2.9 
3 .Ol 30.1 
7.95 35.6 
2.72 -98.5 
3.57 41 .O 
5.41 31.5 
3.40 26.5 
0.00 31.0 
0.00 31.5 

14.29 31.5 
13.42 - 15.5 
0.65 39.4 
5.33 37.7 
4.38 51.1 
1.80 40.0 
5.59 37.6 
3.43 34.2 
7.73 35.0 
7.98 33.2 
6.96 35.5 
0.43 42.3 
2.97 43.2 
1.31 47.0 

17.02 45.3 
24.84 88.7 

1.68 51.6 
15.18 52.8 
16.22 40.3 
4. I7 36.7 
1.11 37.2 
4.94 37.0 
5.56 38.2 
4.29 39.7 

21.15 38.3 
16.67 42.8 
27.27 71.3 
57.89 39.3 
5.56 71.8 

23.08 60.5 
2 I .43 91.9 

-0.326 
0.072 
0.058 

-0.014 
0.049 
0.099 
0.131 
0.079 
0.077 
0.076 

-0.064 
0.050 
0.054 
0.035 
0.049 
0.054 
0.067 
0.062 
0.075 
0.084 
0.089 
0.089 
0.089 
0.089 
0.063 
0.097 
0.098 
0.088 
0.079 
0.080 
0.080 
0.080 
0.080 
0.080 
0.082 
0.084 
0.092 
0.083 
0.087 
0.080 

0.15 150.00 59.7 0.088 

19 - 0. I ) ,  was then computed for each 3-wk interval after week 
82 (the last week that the models estimated a negative value of 
q).  The average deviations for each model reveal that the inte- 
grated models are superior IO the finite difference models in 
estimating 9. For population A. the average deviations for the 
I-Fox and Schnute models are 0.024 and 0.029. respectively. 
The FD-Fox and FD-Schaefer models estimate 9 more poorly: 
the average deviation is 0.043 for each model. For population 
6 ,  the I-Fox and Schnute models estimate q more accurately. 
with average deviations of 0.012 and 0.013. respectively. 
Although the FD-Schaefer and FD-Fox models are also more 
accurate in population B than in population A (0.030 and 0.033 
average deviations. respectively), their 9 estimates are still not 
as accurate as the integrated models. 

I86 

Conclusion 

Ideally. fishery managers require a model that accurately 
predicts catch (or CPUE) while also estimating reasonable bio- 
logical parameters. None of the models performed exception- 
ally well when applied to the four commercial lobster data sets. 
although a case could be made for the applicability of the I-Fox 
model to the Tasmanian lobster fishery. The model passed 
Theil‘s U-statistic when predicting CPUE and had positive (and 
stable) biological parameters. Yet specific instances of inac- 
curate CPUE predictions by the I-Fox model were still found. 
This suppons the consensus that surplus production models are 
too simple to accurately reflect fish and fishery interactions. 
Temperature. spawning stock information, and operational 
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TABU 9. Redicted CPUE Up, prediction error. and parameters K and q from the I-Fox model for each 
3-wk interval in the population B data set of Sillirnan and Gutsell (1958). 

Week Catch Effort CPUE u 70 error K a 

40 
43 
46 
49 
52 
55 
58 
61 
64 
67 
70 
73 
76 
79 
82 
85 
88 
91 
94 
97 

100 
103 
106 
I09 
112 
I I5 
118 
I21 
I24 
I27 
I30 
133 
I36 
139 
142 
145 
148 
151 
I54 
I57 
160 
163 
I66 
169 

8.0 
5.0 
5.6 
5.6 
4.5 
4.0 
3.1 
3.5 
3.5 
3.7 
3.6 
3.4 
3.8 
I .5 
1.9 
I .9 
2.1 
2.3 
2.2 
1.9 
2.3 
2.4 
2.8 
2.7 
3.3 
I .9 
2.2 

10.2 
7.0 
6.8 
5.3 
4.3 
4.8 
4.2 
3.5 
2.6 
2.8 
3.7 
2.9 
I .2 
1.7 
1.1 
0.3 
0.2 

2.60 
2.13 
2.55 
2.86 
2.57 
2.50 
2.18 
2.57 
2.63 
2.50 
2.45 
2.30 
2.70 
1.13 
I .22 
1.17 
1.30 
I .42 
1.26 
1.02 
1.10 
I .09 
I .24 
1.14 
1.39 
0.89 
1.02 
4.66 
4.70 
5.62 
5.64 
4.67 
4.80 
4.94 
5.07 
4.81 
4.52 
6.98 
6.44 
6.00 
7.73 
8.46 
6.00 

10.00 

3.08 
2.35 
2.20 
1.96 
I .75 
1.60 
1.42 
1.36 
1.33 
1.48 
1.47 
I .48 
1.41 
1.33 
I .56 
I .62 
1.62 
I .62 
I .75 
1.86 
2.09 
2.20 
2.26 
2.37 
2.37 
2.13 
2. I6 
2. I9 
1.49 
1.21 
0.94 
0.92 
I .OO 
0.85 
0.69 
0.54 
0.62 
0.53 
0.45 
0.20 
0.22 
0.13 
0.05 
0.02 

1.89 
1.84 
1.61 
1.35 
I .32 
I .30 
I .44 
1.43 
I .46 
1.36 
I .22 
I .65 
1.68 
I .64 
I .64 
1.77 
I .89 
2.09 
2.18 
2.23 
2.32 
2.36 
2.19 
1 .85 
1.67 
1.13 
0.95 
0.81 
0.86 
0.93 
0.81 
0.68 
0.54 
0.57 
0.46 
0.42 
0.17 
0.18 
0.12 
0.03 

8.00 
15.00 
13.38 
0.74 
0.75 

12.16 
2.04 
3.38 
3.55 
2.26 

21.79 
1.85 
3.70 
I .23 
6.29 
4.84 
9.57 
5 .OO 
3.54 
5.91 
2.11 

10.80 
I .39 

15.53 
12.08 
6.61 
I .06 

1 I .96 
14.00 
9.41 

17.39 
25.93 
12.90 
7.55 
2.22 

110.00 
22.73 
38.46 

140.00 
50.0 

12.0 
14.4 
24.8 

- 12.0 
- 15.7 
- 14.4 
-9.6 
- 10.7 
- 18.6 
- 18.5 
-8.7 
30.4 
31.2 
33.3 
34.0 
31.8 
30.7 
30.3 
31.1 
31.9 
33.7 
34.5 
31.9 
31.8 
38.2 
33.8 
34.1 
34. I 
32.1 
30.5 
30.9 
32.5 
38.0 
33.7 
34.6 
34.8 
64.6 
42.7 
54.9 

4.6 x IO" 

0.417 
0.453 
0.142 

-0.053 
-0.046 
-0.049 
-0.078 
-0.074 
-0.052 
-0.051 
-0.084 

0.083 
0.078 
0.067 
0.064 
0.074 
0.083 
0.098 
0.104 
0.107 
0.111 
0. I12 
0.107 
0.106 
0.086 
0.105 
0.097 
0.098 
0.094 
0.092 
0.094 
0.095 
0.092 
0.096 
0.097 
0.097 
0.092 
0.101 
0.101 
0.071 

changes should be incorporated to better approximate the 
dynamics of a fishery. Both integrated models. however. show 
adequate predictive power for the four lobster fisheries and esti- 
mate q accurately for the Silliman and Gutsell (1958) data sets. 
We believe that as mentioned in Silliman (1971). surplus 
production models can be valuable as first approximations and 
should be considered in time- or data-limitins conditions. 

More sophisticated nonlinear approaches to the FD-Schaefer. 
FD-Fox, and Schnute models are found in Pella and Tomlinson 
(1969). Fox (1975). and Schnute (1977), respectively. These 
observation error fitting procedures (Hilborn and Walten 1992) 
use an iterative procedure with a least squares criterion to obtain 
estimates of r. 9 ,  and K which minimize predictive error. The 
parameters obtained from the linear models examined here are 
first approximations to that criterion. Using simulated popu- 
lations, Hilborn (1979) showed that the nonlinear FD-Schaefer 
and Schnute models produced positive parameters. while their 
linear counterparts gave negative results: however. the 
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nonlinear methods were not shown to assess those fisheries any 
better than the linear methods. A nonlinear approach applied 
to the I-Fox model could possibly produce better results. but 
this is beyond the scope of the current study. A more complete 
discussion on the inclusion of a model's observed error struc- 
ture is found in Schnute (1989). 

The present paper has compared two linear dynamic 
approaches with the Schaefer and Fox production models. The 
results suggest that the integration approach of Schnute (1977) 
should be explored more extensively. For example, the 
integration procedure could incorporate a longer time lag 
(Walter 1973) to account for the recruitment patterns of lobster. 
A 4-yr period was shown to work for the Western Australian 
lobster fishery in Phillips (1986). Additionally, the integration 
approach could be applied ro a more general class of curves, 
such as the Bernoulli curves used in Pella and Tomlinson 
(1969). with the chosen curve satisfying some statistical cri- 
renon. Research in these areas could lead to a better under- 
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FIG. I. Estimates of q obtained from the I-Fox. Schnute. FD-Fox. and 
FD-Schaefer models for the population (A and B) data sets of Silliman 
and Gutsell (1958) 

s t and ing  of t h e  relat ive usefulness of surplus p roduc t ion  mod- 
e l i n g  in  specific fishery appl icat ions.  
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Appendix A. Derivation of the I-Fox Model 

lntegratinp Equation (4)  from = year I I  to f = year 
II + I yields 

(AI)  In(U<n+ I>/U<ri>) 
n - 1  

= r In(qK) - r 1, M U )  dr-qE,  

where U<n> is the instantaneous CPUE at the start of year n 
and E, is the total effort for year n. 

The first-degree Taylor polynomial for M U )  centered at Urn, 
the average CPUE for year n,  is 

3" 

I n ( 0  i= M U n )  + ( l /Un)  (U - U,) 

= In(U,) - 1 + (UW,,) 

This approximation assumes that U will not fluctuate far from 
Un over the course of yearn. Thus. high variability of instan- 
taneous CPUE due to seasonal effects may render this assump- 
tion (and the I-Fox model) invalid for a specific fishery. 

lntegraticn of the Taylor approximation yields 

(A2) j:+' In(U)dr = In(U,) - I + ( I / L T n )  j;+l Udt.  

By definition. Li, = 1. Udt, so Equation (A2) becomes 

j:*I In(U)dr = MU,,) - I + I = ln(Un). 

"*I 

Putting this result into Equation (AI )  gives 

In(U < n + 1 >/U < n 1) = r In(qK) 

- r In(U,) - YE.. 
Adding this equation to its corresponding (n + I)th equation 
gives 

(A3) In((U < n + 2 >  U <n+ I > ) / ( L T  < n +  I >  LT <n>) )  

= 2 r I n ( q K )  - r(ln(Un+l) + In(U,)) - q(E,+E,+,).  

Schnute's (1977) assumption is used to estimate instanta- 
neous CPUE: 

that is. the CPUE of a given year is the geometric mean of the 
CPUEs at the beginning and ending of that year. Using this 
CPUE estimate in Equation (A3) and solving algebraically for 
M U m +  I) gives 

M U n , , )  = (2r / (2  + r ) )  In(&) -f ( ( 2  - r ) / (2  + r ) )  

h(U,,) - (942 + r ) )  ( E ,  + En+ 

Appendix B. Confidence Intervals for the I-Fox 
Model's Prediction of Catch per Unit Effort 

The standard error of forecast S, for the I-Fox model's pre- 
diction of CPUE for year m + 1 IS found by applying the pro- 
cedure in Ezekiel and Fox ( 1959): 

where X, = In(U,,). Y,, = E,,  E,,, , ,  Z,, = MU,,- I ) .  M y  
= SX,,i(rn - ~ ) . h f ,  = BY,,/On - I).S, = B(X, - My)'. 
s, = 3 Y , ,  - My)?.  s,, = 3X,, - M , ) ( Y , ,  - My). C y y  = 
S,/(S, s, - s,yy3. c x y  = -s,,;(s,s, - s.Yy3. c y ,  = s, 
/(S, s, - s,yy7.  s; = Z(2, - cl - C X ,  - C3Y")2! 
(rn - 4). and m is the number of years of data used. All sums 
(8)aref romn = I t o n = m -  I .andcl .c2.andc3arethe 
regression coefficients of the I-Fox regression. Also. the num- 
ber of degrees of freedom is rn - 4 because of the I-yr time 
lag. 

Using the formula for S,, a confidence interval for In(U,, ,) 
can be calculated: 

Lower limit: 1 = MU,,,+ - S, t,,,z 

snd 

Upper limit: u = MU,"- , )  + S, r , , :  

where r p  is the cntical value of the Student's r-distnbution 
statistic of p / 2  probability. 

Since the natural log function M U )  is an increasing function 
and is well defined for U > 0. confidence limits for the pre- 
diction U,,, , can be estimated by taking the inverse (exponent) 
of the confidence limits for In(Um+ , I :  

Lower limit: e' 

and 

Upper limit: e". 
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