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Progress on TOSSM Dataset Generation 
 
Karen K. Martien, Southwest Fisheries Science Center, La Jolla, CA, USA 
 
Abstract 

This paper outlines progress made in the generation of simulated datasets for use in the Testing of Spatial Structure 
Methods (TOSSM) project, including changes made to the life history matrices being used in the simulations and changes 
made to Rmetasim (Strand, 2002), the program being used to run the simulations.  During the TOSSM workshop held in La 
Jolla, CA, in January of 2003, a total of 90 different population structure scenarios were chosen for simulation during Phase I 
of the TOSSM project (IWC 2004).  Descriptions of those 90 scenarios are given in Appendix 1.  As of May 5, 2006, 12 
scenarios have been completed, most of which have carrying capacities of K=7,500 individuals.  With current computing 
capabilities, completion of all scenarios listed in Appendix 1 is expected to take an additional 6 months.  I provide suggestions 
for changes in some parameter values and a more focused approach to sensitivity tests in order to speed the completion of the 
simulations. 
 
Updated Life History Matrices 

Martien et al. (SC/56/SD5) presented two life history matrices for use in the TOSSM model.  These matrices describe 
vital rates when the population is near zero population density (ZPD) and near carrying capacity (K).  These matrices were 
based on a post-birth pulse model, in which the population is censused immediately after new individuals are born.  Subsequent 
to the development of these matrices, a new version of Rmetasim was released in which reproduction occurs before growth and 
survival in each year of the simulation.  Thus, Rmetasim now represents a pre-birth pulse model, such that at the end of each 
simulation year, the youngest animals in the population are one year old.  This changed required re-calculation of the life 
history matrices in order to produce the expected growth rates (λ = 1.072 at ZPD, λ = 1 at K).   

The new matrices were re-calculated using the same fixed-stage-duration model (Table 1) as described in Martien et 
al. (SC/56/SD5).  The duration of the first juvenile stage was reduced by one year and the fertility rates were multiplied by the 
juvenile survival rate to account for the fact that new individuals must be born and survive for one year before being counted.   

 
Table 1.  Estimates of survival rate (σi) and duration (Ti) for each stage and the resulting parameter estimates for the fixed stage duration 
model.  Pi is the probability of an individual surviving and remaining in stage i, while Gi is the probability of an individual surviving and 
moving into the next stage.  Fi is the fertility rate for stage i.  Because the probability that a lactating female gave birth is 1.0, Fi is simply 
equal to the juvenile survival rate.  
Stage σi Ti Pi Gi Fi 

Near zero population density:     
Juvenile1 0.94 3 0.73 0.210 0 
Juvenile2 0.94 1 0 0.94 0 
Fertile female 0.946 1 0 0.946 0 
Lactating female 0.946 1 0 0.946 0.94 
Adult male 0.954 - 0.954 - 0 

At carrying capacity:     
Juvenile1 0.925 5 0.768 0.157 0 
Juvenile2 0.925 4 0.720 0.205 0 
Fertile female 0.946 3 0.648 0.300 0 
Lactating female 0.946 1 0 0.946 0.925 
Adult male 0.954 - 0.954 - 0 

 
The juvenile survival rate in the carrying capacity matrix was also increased slightly, from 0.92 to 0.925.  This 

parameter was not based on empirical estimates, but rather was calculated to produce the desired value of λ.  The value 
calculated for juvenile survival rate by Martien et al. (SC/56/SD5) resulted in a λ of 0.998.  The new value of 0.925 results in a 
λ of 1.0003, closer to the desired value of 1.0.  The updated matrices are given in Table 2. 
 
Table. 2.  Updated stage-based matrices for use at a) zero population density and b) carrying capacity.  Stage class abbreviations are juve1 = 
juvenile1, juve2 = juvenile2, fert = fertile female, lact = lactating female, and male = adult male. 

a) juve1 juve2 fert lact male     b) juve1 juve2 fert lact male 
juve1 0.730 0 0 1.0 0    juve1 0.768 0 0 1.0 0 
juve2 0.210 0 0 0 0    juve2 0.157 0.720 0 0 0 
fert 0 0.47 0 0.946 0    fert 0 0.102 0.648 0.946 0 
lact 0 0 0.946 0 0    lact 0 0 0.300 0 0 
male 0 0.47 0 0 0.954    male 0 0.102 0 0 0.954 

 



SC/58/SD2 

2 

Updates to Rmetasim 
In the last few months, three changes have been made to Rmetasim (Strand 2002) that have expanded its functionality 

and utility for the TOSSM project.  They are the incorporation of density dependent growth, the tracking of individual identity 
and parentage, and the ability to initialize simulations from a coalescent model.   

Density Dependence – I modified the source code of Rmetasim 1.0.2 to allow the incorporation of density dependent 
growth.  I sent my modifications to the developer of Rmetasim (Allan Strand), who has incorporated them into the latest 
release of Rmetasim, version 1.0.8.  This version includes a new ‘switch parameter’ named ‘dd’ which, when set to 1, creates a 
landscape with density dependent growth.  The user must then enter two sets of local demography matrices, one representing 
the vital rates near zero population density (ZPD), the second representing vital rates at carrying capacity (K).  The model then 
interpolates between those matrices as a linear function of population size in order to determine the vital rates at any given 
point in the simulation.  This allows the user complete control over the life history stage at which density dependence occurs.  
For instance, in the life history matrices being used for TOSSM and described in both the previous section and in Martien et al. 
(SC/56/SD5), the ZPD and K matrices differ in terms of juvenile survival rate, age at first reproduction, and inter-birth interval. 

The ZPD and K life history matrices are both entered using the Rmetasim command ‘new.local.demo()’.  That 
command now accepts a new optional argument called ‘k’.  If ‘k = 0’ (default), the life history matrix being enter is assumed to 
represent vital rates at ZPD.  If ‘k = 1’, the matrix represents vital rates at K.  If multiple local demographies are entered, the K 
matrices must be entered in the same order as their corresponding ZPD matrices.  Furthermore, all ZPD matrices must be 
entered before the K matrices are entered. 

To test the density dependence features of Rmetasim 1.0.8, the expected growth trajectory for a population was 
calculated by projecting the above life history matrices forward through time, at each time step interpolating between the K and 
Z matrices to determine the appropriate projection matrix for the current time step.  The resulting growth trajectory was 
compared to that obtained by running Rmetasim ten times and averaging the abundance at each time step across replicate 
simulations.  The trajectory from Rmetasim closely matched the projected growth curve, suggesting the density dependence is 
behaving as expected (Figure 1).   

When density dependence is turned off, Rmetasim employs a ‘hard ceiling’ at carrying capacity, meaning that if the 
abundance of a population exceeds carrying capacity at the end of a simulation year, individuals are killed at random until the 
abundance is reduced to carrying capacity.  However, when the density dependent option is turned on, a ‘hard ceiling’ at 
carrying capacity would result in an average abundance slightly below carrying capacity because it would be possible for 
abundance to drift below carrying capacity but not above it.  To avoid this artifact, the ‘hard ceiling’ is set at 110% of carrying 
capacity when density dependence is employed.  Even with density dependence, a ‘hard ceiling’ is still necessary to prevent 
small populations from growing beyond their carrying capacity if they are receiving large numbers of dispersers from a large 
neighboring population.  
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Figure 1.  Average abundance at each simulation year for ten replicate simulations of population growth using Rmetasim 1.0.8.  
Populations were initialized with an abundance of 50 and had carrying capacities of 1000.  The solid line shows the expected 
growth trajectory based on matrix projection of the life history matrices described in the previous section. 
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Individual identification and paternity/maternity – In response to input received at the TOSSM workshop in Potsdam, 

Germany, this spring, Allan Strand modified Rmetasim so that it outputs the information necessary to track individuals through 
time.  Each individual is assigned a unique identifier which makes it possible to determine whether or not a given individual 
appears in samples drawn at different time points in the model.  This feature is required if the datasets generated by Rmetasim 
are to be used to test analytical methods that are based on genetic mark-recapture data.  Furthermore, the unique identifiers of 
each individuals’ parents are also recorded, which will be useful for testing methods that involve the estimation of relatedness 
or paternity.   

To implement these changes, Strand inserted into the ‘individuals’ matrix in each landscape three new columns, which 
contain the individual’s unique identifier, its mother’s unique identifier, and its father’s unique identifier.  Note that this change 
to the individuals matrix means that landscapes generated by older versions of Rmetasim are not compatible with Rmetasim 
1.0.8, and vice versa. 

 
Initializing Rmetasim – At the first TOSSM workshop in 2003, it was agreed that we would initialize Rmetasim using 

the output from a coalescent model (IWC 2004).  The workshop participants agreed that the coalescent was not sufficiently 
flexible to allow incorporation of all of the complexity that we ultimately hope to encompass in TOSSM.  However, initializing 
with a coalescent substantially decreases the time necessary for Rmetasim simulations to achieve mutation-drift-dispersal 
equilibrium as compared to initializing with either random allele frequencies or with only a single allele at each locus. 

During the Second TOSSM workshop held in Potsdam, Germany, in March of this year, Allan Strand, with the help of 
other workshop participants, wrote a script to process the output files generated by the coalescent program SimCoal 2.1.2 
(Laval and Excoffier 2004) and use them to initialize an Rmetasim landscape.  This script will be incorporated into a future 
release of Rmetasim as a built-in method.  In the meantime, I have modified it to work with the latest release of Rmetasim and 
have used it to initialize all TOSSM simulations.   

 
Generating Datasets 

Because of the need to initialize Rmetasim with genetic data generated by a coalescent model, simulating a given 
TOSSM scenario requires several steps, as outlined below.  All scripts and input files used to simulate Archetype 2, scenario 
17, are given in Appendix 2 as an example.  Scripts and input files used for all other scenarios are available upon request. 

Step 1: Estimate Ne.  The carrying capacity specified for each TOSSM scenario and used to parameterize the 
Rmetasim simulations constrains the census population size, not effective popualtion size, Ne.  The abundance estimate 
required to parameterize the coalescent models, however, is Ne.  It is therefore necessary to estimate Ne for each scenario by 
running a simulation that contains a single microsatellite locus and a 500 bp mitochondrial DNA sequence, each with no 
mutation and initialized with 1000 alleles.  The simulation is run for 2000 years (100 generations).  By calculating 
heterozygosity at the beginning and end of the simulation, Ne can be estimated using the equation 
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where Ht is heterozygosity at time t and Ho is heterozygosity at time zero.  I replicate the simulation 10 times and average 
across replicates to obtain a mean Ne for both nuclear and mitochondrial markers.  It is necessary to estimate Ne separately for 
the two marker types because the haploid and uni-parentally inherited nature of mitochondrial DNA results in a markedly 
smaller effective population size for the mitochondrial genome.   

Step 2: Generate Coalescent Datasets.  The haplotype and allele frequencies used to initialize Rmetasim are 
generated using the coalescent model SimCoal 2.1.2 (Laval and Excoffier 2004).  A 500 bp mtDNA sequence and 18 unlinked 
microsatellite loci are simulated (see ‘Genetic Marker Characteristics’ for a more complete description of the loci).  1,000 
SimCoal datasets are generated for each scenario. 

Step 3: Initialize and Run Rmetasim Simulations.  Each SimCoal dataset is used to initialize one Rmetasim 
landscape using the function ‘coalinput.landscape().’  This function is currently available as an independent script (see 
Initializing Rmetasim above), but will be incorporated into a future release of Rmetasim.  Each landscape is simulated in 
Rmetasim for 1,000 years (50 generations).  The final state of the landscape is saved as an R object (*.rda file).  In addition, the 
microsatellite data are saved to a text file formatted for use with the program Convert (Glaubitz 2004) and the mtDNA data are 
saved in a text file formatted for analysis in the program Arlequin (Excoffier et al. 2005).  These formats were chosen because 
they are used by many different analytical methods and because both Convert and Arlequin include utilities for converting data 
into multiple other formats (in fact, that is the primary function of Convert).   Separate formats are required for mtDNA and 
microsatellite data because Convert does not support mtDNA data, while Arlequin is not able to convert data into as many 
formats as Convert. 
 
Genetic Marker Characteristics 

mtDNA – Mitochondrial DNA haplotypes being simulated in the TOSSM datasets are 500 bp in length and have a 
mutation rate of 5x10-3 per generation for the full sequence.  This mutation rate is based on mutation rate estimates for the 
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mitochondrial control region (Heyer et al. 2001) and produced haplotype distributions consistent with what is seen in many 
large whale species (Figure 2).  For Archetype 1, scenario 1 (one population, N=7,500), the number of haplotypes in the final 
datasets averaged across replicates was 118 (s.d. = 8.62) (Figure 3). 
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Figure 2.  Example haplotype frequency distribution for one replicate of Archetype 1, scenario 1.  Haplotypes are order along the x-
axis from most to least frequent.  The number of individuals with each haplotype (out of 7465) is given on the y-axis.  The 
distribution includes a few very common haploltypes and a long tail of very low frequency haplotypes, as is typically seen in 
empirical datasets.  Note that there were 125 haplotypes in this replicate; haplotypes 92 through 125 were each represented by a 
single individual and are not visible on the graph. 
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Figure 3.  Distribution of number of haplotypes across replicates for Archetype 1, scenario 1. 
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Microsatellites – The TOSSM datasets use 18 microsatellite loci, six each with mutation rates of 1x10-3, 2x10-3 and 

3x10-3.  These mutation rates were based on estimates from the literature (see Brohede 2003 for a review) and resulted in allele 
frequency distributions consistent with those typically seen in datasets used in studies of population structure (Table 3).  The 
number of alleles per locus ranged from 6 to 26 (Figure 4), which is consistent with the number of alleles typically observed in 
empirical datasets.  However, the average number of alleles for replicates of Archetype 1, scenario 1 was nearly the same for 
the three mutation rates (Table 4).  Thus, the mutation rates currently being simulated produce essentially identical allelic 
distributions, precluding the possibility of using the TOSSM datasets to examine the impact of mutation rate on power for 
detecting population structure.  However, because the number of alleles varies between loci and between replicates, it will be 
possible to examine the impact of number of alleles on power. 

 
Table 3.  Example allele frequencies at all 18 loci for one replicate of Archetype 1, scenario 1. 
Allele Loc1 Loc2 Loc3 Loc4 Loc5 Loc6 Loc7 Loc8 Loc9 

1 3276 6349 3798 3920 2813 3873 4237 3785 2487 
2 2723 2618 2649 3672 2773 2808 3355 2894 1742 
3 2513 2132 2341 1989 2472 1558 3229 2803 1671 
4 2008 1881 1982 1919 2397 1344 2144 1680 1584 
5 1624 825 1367 1522 2094 1290 1025 1415 1475 
6 1400 318 1245 1138 833 1267 685 1169 1308 
7 1146 285 725 425 660 1085 244 510 1254 
8 237 166 393 277 567 847 11 435 1129 
9 3 156 313 68 191 280 0 93 748 

10 0 122 106 0 130 259 0 58 714 
11 0 61 11 0 0 165 0 49 452 
12 0 17 0 0 0 114 0 20 330 
13 0 0 0 0 0 40 0 19 28 
14 0 0 0 0 0 0 0 0 8 
15 0 0 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 

 
Allele Loc10 Loc11 Loc12 Loc13 Loc14 Loc15 Loc16 Loc17 Loc18 

1 5151 3376 3105 2842 3161 4461 6205 3368 4394 
2 3715 2652 2961 2096 2054 3503 3048 2468 2749 
3 1984 2594 2871 1701 2038 3399 1799 2392 2527 
4 1466 1561 1534 1650 1578 1461 1438 1848 1599 
5 957 1210 1300 1640 1237 1094 666 1062 1224 
6 726 981 1225 1226 1038 383 580 1044 1088 
7 517 827 1111 1127 887 346 468 770 614 
8 408 469 680 1101 839 268 211 670 579 
9 6 459 131 727 734 15 186 561 112 

10 0 445 12 464 729 0 168 354 44 
11 0 354 0 340 425 0 158 153 0 
12 0 2 0 16 72 0 3 99 0 
13 0 0 0 0 60 0 0 92 0 
14 0 0 0 0 59 0 0 45 0 
15 0 0 0 0 10 0 0 3 0 
16 0 0 0 0 7 0 0 1 0 
17 0 0 0 0 2 0 0 0 0 

 
 
 
 

Table 4.  Average number of alleles per locus for 1000 replicates of Archetype 1, scenario 1. 
Averages are over all six loci of a given mutation rate. 

Mutation Rates # alleles s.d. Range 
1x10-3 12.04 2.77 5-24 
2x10-3 12.65 2.95 6-26 
3x10-3 12.93 2.96 6-26 
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Figure 4.  Distribution of number of alleles per locus.  Data are combined for all 18 microsatellite loci from all 1000 replicates of 
Archetype 1, scenario 1. 

 
Runtime 

As of May 5, 2006, datasets have been generated for 12 of the 90 scenarios outlined at the first TOSSM workshop.  
All simulations run so far have been run on either a 2.00GHz Pentium M laptop with 1 GB of RAM or a Sun workstation 
running Solaris 7.  The workstation has 3 processors, making it possible to run three simulations simultaneously with no loss in 
performance.  Furthermore, the workstation is available 24 hours per day, 7 days per week, whereas the PC is only available 
during non-working hours.   

1000 replicates of a scenario with a carrying capacity of 7,500 can be completed in approximately 17 hours on the PC, 
but take approximately 5 days on the Solaris machine (using only one of three processors).  Scenarios with carrying capacities 
of 15,000 take about twice as long to run – approximately 34 hours on the PC and 10 days on the Solaris machine (again using 
only a single processor).  No scenarios with carrying capacities of 30,000 have been run, but it is expected they will take twice 
again as long as those with K=15,000.  Table 5 shows the number of scenarios remaining to be simulated for each carrying 
capacity and their approximate runtimes on both the PC and Solaris.  Assuming simulations are run 80 hours per week on the 
PC (40 hours on weekends and 13.3 hours per night, 3 nights per week) and around the clock on all three processors of the 
workstation (allowing for 20% downtime due to computer maintenance, delays in starting new a simulation when one finishes, 
etc.), the remaining simulations can be complete in 24 weeks. 

Allan Strand, creator of Rmetasim, has offered the use of 4 linux machines for running TOSSM simulations.  No tests 
have been performed to determine the runtime of simulations on these machines.  Nonetheless, use of Strand’s cluster reduce 
the time to completion by an unknown, but hopefully substantial, amount. 
 
Table 5.  Approximate run time for scenarios of a given carrying capacity and number of scenarios remaining to be simulated for Archetype x 
Carrying Capacity combination. 

 Runtime (days) Scenarios remaining 
K PC Solaris Archetype 1 Archetype 2 Archetype 3 Archetype 5 

7,500 0.695 5 0 10 4 5 
15,000 1.4 10 1 18 4 5 
30,000 2.8 20 1 20 4 5 

 
In light of the amount of time required to complete all simulations specified in Appendix 1, especially those with high 

carrying capacities, the TOSSM steering committee should revisit the question of choosing parameter combinations to 
simulate.  One of the goals of TOSSM is to generate datasets and performance analyses that will be useful to geneticists 
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working on a wide range of species.  To that end, simulating carrying capacities of 2,500 individuals, 7,500 individuals and 
15,000 individuals may be more appropriate.  Though very large populations are common for marine species, terrestrial 
geneticists typically work in systems with much lower abundance and are therefore likely to be interested in simulations of 
only a few thousand individuals.  Furthermore, the impact of increased abundance on the performance of various analytical 
methods is likely to be adequately demonstrated by the simulations with carrying capacities of 15,000.  Substituting scenarios 
in which K=2,500 for all of the K=30,000 scenarios listed in Appendix 1 would reduce the expected time to completion of the 
datasets by nearly 14 weeks.  If there are specific regions of the parameter space in which the steering committee feels more 
could be learned by running simulations with abundances greater than 15,000, additional select simulations could be run in the 
future rather than running all thirty K=30,000 scenarios currently planned (Appendix 1).   

Similarly, given the long runtime of the scenarios with carrying capacities of 15,000, a selective approach to running 
scenarios with this carrying capacity may be more appropriate than a full-cross of this value of K with the other parameter 
values.  For instance, the impact of unequal abundance can likely be investigated using only those scenarios with carrying 
capacities of 7,500 (Archetype 2, scenarios 16-20 and 46-50).  Eliminating scenarios with carrying capacities of 15,000 and 
unequal population sizes would reduce the total remaining computation time by approximately 2.5 weeks. 
 
Simulating Archetypes III – V 

Archetypes III-V have not yet been simulated.  The steps necessary to begin these simulations are as follows: 
Archetype III – Unlike the other four archetypes, Archetype III assumes continuous genetic variation over space.  At 

the 2003 TOSSM workshop in La Jolla, CA, it was agreed that this archetype could be simulated by creating an Rmetasim 
landscape that contained many small populations with relatively high dispersal rates between adjacent populations (IWC 2004).  
Ralph Tiedeman has offered to design the necessary landscape matrices to implement this Archetype. 

Archetype IV – As noted above, Archetype IV can be simulated by assigning overlapping spatial coordinates to 
samples drawn from Archetype II.  Thus, no additional Rmetasim simulations are necessary in order to generate Archetype IV 
datasets. 

Archetype V – Archetype V postulates population structure at mitochondrial loci but panmixia at nuclear loci.  
Rmetasim includes a male reproduction matrix that specifies the probability of a male siring an offspring in each population.  
Thus, simulating Archetype V will simply requiring modifying the scripts used in Archetype II so that each male has an equal 
probability of siring an offspring in each population. 
 
Storage, archiving, and availability of datasets 

The TOSSM datasets are quite large.  For scenarios in which K=7,500, the Rmetasim landscape file is approximately 
1450 KB while the Convert files are 650 KB.  When K=15,000, the landscape and Convert files are 2750 KB and 1400 KB, 
respectively.  Zipping files with WinZip reduces the file size by approximately 80%.  If all replicates of all scenarios listed in 
Appendix 1 are run, the resulting data will occupy approximately 100 GB of computer storage after being zipped. 

The intention is to make the TOSSM datasets available via the web.  However, the large size of the data files presents 
some challenges.  It is unclear whether the expertise necessary to serve such a large quantity of data efficiently are present at 
Southwest Fisheries Science Center.  This matter is currently under investigation. 

 
Summary 

All programming necessary to use the programs SimCoal 2.1.2 (Laval and Excoffier 2004) and Rmetasim 1.0.8 
(Strand 2002) to generate the TOSSM datasets is complete and dataset generation has begun.  Completion of all simulations 
specified in Appendix 1 is expected to take nearly six months.  From the simulations that have been completed, the following 
conclusions can be drawn: 

• The mutation rates being used for the mitochondrial and microsatellite loci are appropriate and result in distributions 
of the number of haplotypes/alleles comparable to what is seen in empirical datasets. 

• The three mutation rates being used for the microsatellite loci are not sufficiently different to allow meaningful 
comparisons between mutation rates.  However, the variation in the number of alleles within and between replicates is 
sufficient to allow stratification on that basis. 

• The runtime of the model is long enough that simulation of all combinations of parameters specified in Appendix 1 is 
not practical.  The steering committee should consider eliminating all scenarios with carrying capacities of 30,000 and 
replacing them with scenarios with carrying capacities of 2,500, thereby shifting the range of abundances to be 
considered.  Simulations with carrying capacities of 15,000 should be run selectively rather than with all possible 
combinations of other parameters.  Simulations with carrying capacities greater than 15,000 can be run on an as-
needed basis if regions of the parameter space have not been adequately explored with the lower abundance scenarios. 

• The quantity of data being generated is large enough that storage and distribution could be problematic.  This issue 
warrants further investigation. 
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Appendix 1 – Review of the TOSSM dataset specifications  
 

The participants at the TOSSM workshop held in La Jolla, CA, in January of 2003 outlined the parameters to be used 
in generating datasets for the TOSSM project (IWC 2004).  The datasets are to represent five population structure archetypes: 

 
Archetype I: a single panmictic population 
Archetype II: a linear stepping-stone, with dispersal occurring only between adjacent populations.  There are four 
variants of this archetype: a) two populations with equal abundance, b) two populations with unequal abundance 
(90:10), c) three populations with equal abundance, and d) three populations with unequal abundance (45:45:10). 
Archetype III: diffusion-like isolation by distance 
Archetype IV: two populations with separate breeding grounds but overlapping feeding ground.  This archetype can 
be simulated by simply drawing samples from Archetype IIa datasets and assigning overlapping spatial coordinates to 
samples from the two populations. 
Archetype V: A single breeding population with separate feeding grounds.  Feeding ground philopatry is learned from 
the mother. 
 

 For each Archetype, three carrying capacities will be simulated – 7,500, 15,000 and 30,000.  These represent total 
abundances summed across all populations in an archetype.  Because all simulations are initialized at carrying capacity and are 
simulated under density dependent population growth, the simulated populations will remain at or very near carrying capacity 
for the entire simulate.  

Annual dispersal rates of 0, 5x10-6, 5x10-5, 5x10-4 and 5x10-3 were chosen to span the range of rates that might be 
of interest conservation biologists.  The lowest of these rates corresponds to approximately one disperser per generation and 
will therefore result in populations that are following independent evolutionary trajectories.  The highest rate will result in 
populations that are demographically independent, but genetically very similar. 

The total number of simulations that need to be run cannot be determined by simply multiplying the number of 
archetypes, dispersal rates and carrying capacities, as some parameters are not relevant to certain archetypes (e.g., there is no 
dispersal for archetype I) and Archetype IV can be simulated by simply sampling from Archetype II.  Table A1 summarizes the 
total number of scenarios that must be simulated.   
 
Table A1.  Number of scenarios that must be simulated for each Archetype 

Archetype Variants Carrying Capacities Dispersal Rates No. of scenarios 
I 1 3 -- 3 
II 4 3 5 60 
III 1 3 4 12 
IV 1 3 5 0* 
V 1 3 5 15 

Total    90 
*Since Archetype IV can be generated by assigning overlapping spatial coordinates to samples drawn from Archetype II datasets, no new 
simulations will be required for it. 
 

Table A2 is a complete list of all scenarios laid out at the TOSSM workshop in La Jolla, CA (IWC 2004).  For each 
scenario, I indicate whether or not it has been completed and, if not, a priority level to indicate the order in which I intend to 
run the remaining simulations. 
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Table A2.  Specifications for scenarios using all possible combinations of parameters specified at the TOSSM workshop (IWC 2004).  
Archetype 4 is not included in the list, as it can be generated by simply sampling from Archetype 2 simulations.  A key to interpreting the last 
column follows the table. 

Scenario name Archetype #populations abundance dispersal Priority/Status* 
Arch1_1 1 1 7500 0 X 
Arch1_2 1 1 15000 0 3 
Arch1_3 1 1 30000 0 e 
Scenario name Archetype #populations abundance dispersal  
Arch2_1 2 2 7500even 0 1 
Arch2_2 2 2 7500even 5x10-6 X 
Arch2_3 2 2 7500even 5x10-5 X 
Arch2_4 2 2 7500even 5x10-4 X 
Arch2_5 2 2 7500even 5x10-3 X 
Arch2_6 2 2 15000even 0 3 
Arch2_7 2 2 15000even 5x10-6 X 
Arch2_8 2 2 15000even 5x10-5 3 
Arch2_9 2 2 15000even 5x10-4 X 
Arch2_10 2 2 15000even 5x10-3 3 
Arch2_11 2 2 30000even 0 e 
Arch2_12 2 2 30000even 5x10-6 e 
Arch2_13 2 2 30000even 5x10-5 e 
Arch2_14 2 2 30000even 5x10-4 e 
Arch2_15 2 2 30000even 5x10-3 e 
Arch2_16 2 2 7500uneven 0 2 
Arch2_17 2 2 7500uneven 5x10-6 X 
Arch2_18 2 2 7500uneven 5x10-5 2 
Arch2_19 2 2 7500uneven 5x10-4 2 
Arch2_20 2 2 7500uneven 5x10-3 2 
Arch2_21 2 2 15000uneven 0 e 
Arch2_22 2 2 15000uneven 5x10-6 e 
Arch2_23 2 2 15000uneven 5x10-5 e 
Arch2_24 2 2 15000uneven 5x10-4 e 
Arch2_25 2 2 15000uneven 5x10-3 e 
Arch2_26 2 2 30000uneven 0 e 
Arch2_27 2 2 30000uneven 5x10-6 e 
Arch2_28 2 2 30000uneven 5x10-5 e 
Arch2_29 2 2 30000uneven 5x10-4 e 
Arch2_30 2 2 30000uneven 5x10-3 e 

* key to ‘Priority/Status’ column: 
   X = complete 
   e = proposed for elimination 
   r = proposed for replacement with an identical scenario except with abundance = 2,500 
   ? = simulating scenario depends on receipt of appropriate dispersal matrices; no priority assigned 
   1-4 = relative priority, 1 being highest and 4 being lowest 
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Table 2A continued. 
Scenario name Archetype #populations abundance dispersal Priority/Status* 
Arch2_31 2 3 7500even 0 1 
Arch2_32 2 3 7500even 5x10-6 X 
Arch2_33 2 3 7500even 5x10-5 X 
Arch2_34 2 3 7500even 5x10-4 X 
Arch2_35 2 3 7500even 5x10-3 X 
Arch2_36 2 3 15000even 0 3 
Arch2_37 2 3 15000even 5x10-6 3 
Arch2_38 2 3 15000even 5x10-5 3 
Arch2_39 2 3 15000even 5x10-4 3 
Arch2_40 2 3 15000even 5x10-3 3 
Arch2_41 2 3 30000even 0 e 
Arch2_42 2 3 30000even 5x10-6 e 
Arch2_43 2 3 30000even 5x10-5 e 
Arch2_44 2 3 30000even 5x10-4 e 
Arch2_45 2 3 30000even 5x10-3 e 
Arch2_46 2 3 7500uneven 0 2 
Arch2_47 2 3 7500uneven 5x10-6 2 
Arch2_48 2 3 7500uneven 5x10-5 2 
Arch2_49 2 3 7500uneven 5x10-4 2 
Arch2_50 2 3 7500uneven 5x10-3 2 
Arch2_51 2 3 15000uneven 0 e 
Arch2_52 2 3 15000uneven 5x10-6 e 
Arch2_53 2 3 15000uneven 5x10-5 e 
Arch2_54 2 3 15000uneven 5x10-4 e 
Arch2_55 2 3 15000uneven 5x10-3 e 
Arch2_56 2 3 30000uneven 0 e 
Arch2_57 2 3 30000uneven 5x10-6 e 
Arch2_58 2 3 30000uneven 5x10-5 e 
Arch2_59 2 3 30000uneven 5x10-4 e 
Arch2_60 2 3 30000uneven 5x10-3 e 
Scenario name Archetype #populations abundance dispersal  
Arch3_1 3 2 7500 5x10-6 ? 
Arch3_2 3 2 7500 5x10-5 ? 
Arch3_3 3 2 7500 5x10-4 ? 
Arch3_4 3 2 7500 5x10-3 ? 
Arch3_5 3 2 15000 5x10-6 ? 
Arch3_6 3 2 15000 5x10-5 ? 
Arch3_7 3 2 15000 5x10-4 ? 
Arch3_8 3 2 15000 5x10-3 ? 
Arch3_9 3 2 30000 5x10-6 e 
Arch3_10 3 2 30000 5x10-5 e 
Arch3_11 3 2 30000 5x10-4 e 
Arch3_12 3 2 30000 5x10-3 e 

* key to ‘Priority/Status’ column: 
   X = complete 
   e = proposed for elimination 
   r = proposed for replacement with an identical scenario except with abundance = 2,500 
   ? = simulating scenario depends on receipt of appropriate dispersal matrices; no priority assigned 
   1-4 = relative priority, 1 being highest and 4 being lowest 
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Table 2A continued. 
Scenario name Archetype #populations abundance dispersal Priority/Status* 
Arch5_1 5 2 7500 0 4 
Arch5_2 5 2 7500 5x10-6 4 
Arch5_3 5 2 7500 5x10-5 4 
Arch5_4 5 2 7500 5x10-4 4 
Arch5_5 5 2 7500 5x10-3 4 
Arch5_6 5 2 15000 0 4 
Arch5_7 5 2 15000 5x10-6 4 
Arch5_8 5 2 15000 5x10-5 4 
Arch5_9 5 2 15000 5x10-4 4 
Arch5_10 5 2 15000 5x10-3 4 
Arch5_11 5 2 30000 0 e 
Arch5_12 5 2 30000 5x10-6 e 
Arch5_13 5 2 30000 5x10-5 e 
Arch5_14 5 2 30000 5x10-4 e 
Arch5_15 5 2 30000 5x10-3 e 

* key to ‘Priority/Status’ column: 
   X = complete 
   e = proposed for elimination 
   r = proposed for replacement with an identical scenario except with abundance = 2,500 
   ? = simulating scenario depends on receipt of appropriate dispersal matrices; no priority assigned 
   1-4 = relative priority, 1 being highest and 4 being lowest 
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Appendix 2 – Scripts and input files for Archetype 2, scenario 17 
 
Step 1: Estimating Ne –  The first script is an R script used for estimating Ne.  It requires that the packages 

Rmetasim 1.0.8 and ape be installed.  
 

# Script for estimating Ne 
 
library(rmetasim) 
library(ape) 
 
scenario <- 'Arch2_sc17' 
carrycap <- 7500 
dispersal.rate <- 0.000005 
 
habitats <- 2 
stages <- 5 
rland <- NULL 
 
rland <- new.landscape.empty() 
rland <- new.intparam.land(rland, h = habitats, s = stages, totgen = 10000) 
rland <- new.switchparam.land(rland, mp = 1, dd = 1) 
rland <- new.floatparam.land(rland) 
 
#life history matrices at zero population density 
SZ <- matrix (c(0.730, 0, 0, 0, 0, 
        0.210, 0, 0, 0, 0, 
        0, 0.470, 0, 0.946, 0,      
        0, 0, 0.946, 0, 0, 
        0, 0.470, 0, 0, 0.954), nrow=5, byrow = T) 
 
RZ <- matrix (c(0, 0, 0, .94, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0), nrow = 5, byrow = T) 
 
M <- matrix (c(0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 1, 
        0, 0, 0, 0, 0), nrow = 5, byrow = T) 
 
rland <- new.local.demo(rland,SZ,RZ,M) 
 
#life history matrices at carrying capacity 
SK <- matrix (c(0.768, 0, 0, 0, 0, 
        0.157, 0.720, 0, 0, 0, 
        0, 0.102, 0.648, 0.946, 0,      
        0, 0, 0.300, 0, 0, 
        0, 0.102, 0, 0, 0.954), nrow=5, byrow = T) 
 
RK <- matrix (c(0, 0, 0, .925, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0), nrow = 5, byrow = T) 
 
rland <- new.local.demo(rland,SK,RK,M,k=1) 
bigS <- bigR <- bigM <- matrix(0,(stages*habitats),(stages*habitats)) 
for (s in 1:stages){ 
 bigS[s,(s+stages)] <- dispersal.rate/(habitats-1) 
 bigS[(s+stages),s] <- bigS[s,(s+stages)] 
} 
rland <- new.epoch(rland,bigS,bigR,bigM,carry = c((carrycap*.9),(carrycap*.1))) 
 
rland <- new.locus(rland, type = 1, ploidy = 2, transmission = 0, numalleles = 1000, mutationrate = 0.00) 
rland <- new.locus(rland, type = 2, ploidy = 1, transmission = 1, numalleles = 1000, allelesize = 500, 
mutationrate = 0.00) 
               
ev <- eigen((RK+diag(dim(RK)[1]))%*%SK)$vectors[,1] 
ev <- ev/sum(ev) 
rland <- new.individuals(rland, c((as.real(round(ev*(carrycap*.9)))),(as.real(round(ev*(carrycap*.1))))))
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numreps <-  10 
numsteps <- 100 
stepsize <- 20 
 
het <- array(dim=c(habitats,2,(numsteps+1),numreps)) 
 
rland.start <- rland 
for (j in 1:numreps) { 
  rland <- rland.start 
  het[,,1,j] <- exp.het.landscape(rland) 
  for (i in 1:numsteps) { 
      rland <- sim.landscape(rland, stepsize) 
      het[,,(i+1),j] <- exp.het.landscape(rland) 
 save (rland,het,file="Ne.test.rda") 
  } 
} 
Ne <- array(-99, dim=c(habitats,numreps,2)) 
aveNe <- matrix(-99,habitats,2) 
for (i in 1:habitats){ 
 Ne[i,,] <- apply(het[i,,,],1,function(x) 0.5/(1-(x[(numsteps+1),]/x[1,])^(1/numsteps))) 
 aveNe[i,] <- colMeans(Ne[i,,]) 
} 
 
 Step 2: Generate Coalescent Datasets – The following are input files to the program SimCoal 2.1.2 (Laval and 
Excoffier 2004), which is used to generate coalescent datasets with which to initialize Rmetasim.  The first generates the 
mitochondrial sequence data: 
 
//Parameters for the mtDNA for Archetype 2, scenario 17 
2 samples to simulate 
//Population effective sizes (number of genes) 
927 
124 
//Samples sizes 
50 
10 
//Growth rates 
0 
0 
//Number of migration matrices : 0 implies no migration among demes 
1 
//Migration rates matrix  0 
0 0.000005 
0.000005 0 
//historical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix number 
0 historical events 
//Number of independent loci [chromosome] (Number of sequences of 300 bp per gamete) 
1 0 
// Chromosome structure 1 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
DNA    500        0.000      0.005  0.66 
 
The next file is for using SimCoal to generate microsatellite data: 
 
//Parameters for the microsatellite data for Archtype 2, scenario 17 
2 samples to simulate 
//Population effective sizes (number of genes) 
3953 
463 
//Samples sizes 
400 
40 
//Growth rates 
0 
0 
//Number of migration matrices : 0 implies no migration among demes 
1 
//Migration rates matrix  0 
0 0.000005 
0.000005 0 
//historical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix number 
0 historical events 
//Number of independent loci [chromosome] (Number of sequences of 300 bp per gamete) 
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18 1 
// Chromosome structure 1 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.001 
// Chromosome structure 2 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.001 
// Chromosome structure 3 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.001 
// Chromosome structure 4 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.001 
// Chromosome structure 5 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.001 
// Chromosome structure 6 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.001 
// Chromosome structure 7 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.002 
// Chromosome structure 8 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.002 
// Chromosome structure 9 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.002 
// Chromosome structure 10 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.002 
// Chromosome structure 11 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.002 
// Chromosome structure 12 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.002 
// Chromosome structure 13 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.003 
// Chromosome structure 14 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.003 
// Chromosome structure 15 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.003 
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// Chromosome structure 16 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.003 
// Chromosome structure 17 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.003 
// Chromosome structure 18 begins with number of linkage blocks 
1 
//per block: data type, number of loci, per generation recombination and mutation rates and optional 
parameters 
Microsatellite    1        0.000      0.003 
 
 Step 3: Initialize and Run Rmetasim Simulations – The final script is an R script used to generate 1000 replicate 
datasets for Archetype 2, scenario 17, each initialized with a different SimCoal dataset.  This script requires the R packages 
Rmetasim 1.0.8 and ape.  It also requires other R scripts, which are available from the author upon request. 
 
# Archetype 2, scenario 17 script.  Landscapes are initialized from SimCoal data. 
 
library(rmetasim) 
library(ape) 
source("coal2rmet.1.0.7.R") 
source("new_locus.R") 
source("rland2convert.R") 
 
scenario <- 'Arch2_sc17' 
carrycap <- 7500 
dispersal.rate <- 0.000005 
numreps <-  1000 
stepsize <- 1000 
 
habitats <- 2 
stages <- 5 
rland <- NULL 
 
rland <- new.landscape.empty() 
rland <- new.intparam.land(rland, h = habitats, s = stages, totgen = stepsize) 
rland <- new.switchparam.land(rland, mp = 1, dd = 1) 
rland <- new.floatparam.land(rland) 
 
#life history matrices at zero population density 
SZ <- matrix (c(0.730, 0, 0, 0, 0, 
        0.210, 0, 0, 0, 0, 
        0, 0.470, 0, 0.946, 0,      
        0, 0, 0.946, 0, 0, 
        0, 0.470, 0, 0, 0.954), nrow=5, byrow = T) 
 
RZ <- matrix (c(0, 0, 0, .94, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0), nrow = 5, byrow = T) 
 
M <- matrix (c(0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 1, 
        0, 0, 0, 0, 0), nrow = 5, byrow = T) 
 
rland <- new.local.demo(rland,SZ,RZ,M) 
 
#life history matrices at carrying capacity 
SK <- matrix (c(0.768, 0, 0, 0, 0, 
        0.157, 0.720, 0, 0, 0, 
        0, 0.102, 0.648, 0.946, 0,      
        0, 0, 0.300, 0, 0, 
        0, 0.102, 0, 0, 0.954), nrow=5, byrow = T) 
 
RK <- matrix (c(0, 0, 0, .925, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
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        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0), nrow = 5, byrow = T) 
 
rland <- new.local.demo(rland,SK,RK,M,k=1) 
bigS <- bigR <- bigM <- matrix(0,(stages*habitats),(stages*habitats)) 
for (s in 1:stages){ 
 bigS[s,(s+stages)] <- dispersal.rate/(habitats-1) 
 bigS[(s+stages),s] <- bigS[s,(s+stages)] 
} 
rland <- new.epoch(rland,bigS,bigR,bigM,carry = c((carrycap*.9),(carrycap*.1))) 
 
rland.start <- rland 
mt.data <- paste(scenario,"_mt/",scenario,"_mt_",sep="") 
nuc.data <- paste(scenario,"_nuc/",scenario,"_nuc_",sep="") 
mut.rates <- c(5e-3,rep(1e-3,6),rep(2e-3,6),rep(3e-3,6)) 
 
for (i in 1:numreps){ 
 
  rland.init <- rland.start 
  rland.init <- coalinput.landscape(rland.init,npp=c((carrycap*.9),(carrycap*.1)), 
 arlseq=paste(mt.data,(i-1),'.arp',sep=""),  
 arlms=paste(nuc.data,(i-1),'.arp',sep=""),mut.rates) 
  rland.end <- sim.landscape(rland.init, stepsize) 
  save(rland.end, file=paste('Landscapes/',scenario,"_",i,".rda",sep="")) 
  rland2convert(rland.end,title=paste(scenario,"_",i," final landscape",sep=""), 
 filename=paste("Landscapes/",scenario,"_",i,".txt",sep="")) 
} 
 
 


