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ABSTRACT 
Proper management of wildlife species relies on an accurate understanding of population structure.  While 

many methods exist for identifying population structure, most of them have not tested in the range of parameters that 
are typically of interest to wildlife managers.  We used simulated datasets to test the performance of STRUCTURE, a 
Bayesian clustering method designed to assign individual samples to groups based on their genetic similarity and infer 
the number of populations represented in a sample.  We used STRUCTURE to analyze datasets consisting of one or two 
populations.  We found that in the two-population datasets, the individual assignments produced by STRUCTURE were 
no better than random.  STRUCTURE also performed poorly at inferring the number of populations.  We examined two 
different population ancestry and allele frequency models, and found that, while neither model resulted in acceptable 
performance, results produced by the default model recommended by STRUCTURE’s authors better reflected the actual 
level of uncertainty in individual assignment.  Our results suggest that STRUCTURE is unlikely to be a useful tool in 
defining management units for large whales. 

INTRODUCTION 
Managing human-caused mortality in wild populations to achieve acceptable population levels is aided by 

adequately defining population structure.  Two common standards of acceptable levels are: 1) to maintain populations 
and connectivity to retain evolutionary potential (often called Evolutionary Significant Units (ESUs)) and 2) to maintain 
sustainable local populations that are called Demographically Independent Populations (DIPs) (for a review see Taylor 
2004).  Genetic data are often used to discover and delineate such units and many analytical methods have been created 
to interpret genetic data with respect to population structure.  Most methods were created to address evolutionary 
questions and hence aim to identify ESUs.  However, all methods are also commonly used to identify DIPs.  A large 
performance testing exercise was formulated to evaluate the performance of a range of methods across a range of 
different types of population structure and levels of connectivity relevant to management of wild populations.  The 
exercise is called Testing of Spatial Structure Methods (TOSSM; IWC 2004) and is detailed further below.  Here, we 
test the performance of a commonly used method, called STRUCTURE (Pritchard et al. 2000; Falush et al. 2003), for 
inferring the number of populations and assigning individuals to populations.  We tested the performance of 
STRUCTURE in both a single population scenario as well as scenarios with two populations that should be recognized 
as different DIPs.  Although even these few results suggest limitations for using STRUCTURE to identify DIPs, general 
conclusions should be reserved until a wider range of testing is complete. 

The program STRUCTURE v 2.2 (Pritchard et al. 2000; Falush et al. 2003) uses a Bayesian algorithm to 
cluster individuals into groups based on genetic similarity.  The algorithm attempts to define groups that are in Hardy 
Weinberg and linkage equilibrium.  The user must specify the number of groups, K, to be defined but does not need to 
stratify data prior to analysis.  The method is ideal when such a priori stratification is difficult, as would be the case for 
potentially mixed stocks of whales sampled on migration.  By running the analysis for different values of K and 
comparing the log-likelihood of the resulting models, it is possible to use STRUCTURE to infer the number of 
genetically distinct groups represented in a sample. 

STRUCTURE has proven to be a very valuable tool, and is being widely applied in studies of population 
structure.  However, interpretation of STRUCTURE results is often challenging, particularly in a management context.  
For example, STRUCTURE has played a pivotal role in this year’s Implementation Review of the Bering-Chukchi-
Beaufort (BCB) Seas stock of bowhead whales (Archer et al. 2007; Givens et al. 2007; Jorde and Schweder 2007; 
Kitakado et al. 2007; Martien et al. 2007).  Yet there remains a lack of consensus among researchers regarding how 
STRUCTURE is best applied to the bowhead whale data and what conclusions should be drawn from the results. 

Interpretation of STRUCTURE results is hampered by the fact that the method has not been subjected to 
simulation-based performance testing over the range of population structure scenarios that are typically of interest in 
applied studies.  Most tests of performance that have been conducted have either been based on analyses of empirical 
datasets (Pritchard et al. 2000; Rosenburg et al. 2001; Manel et al. 2002; Turakulov and Easteal 2003) or have used 
simulated datasets in which populations are more strongly differentiated than in many cases of management concern 
(Pritchard et al. 2000; Manel et al. 2002; Falush et al. 2003; Evanno et al. 2005, Waples and Gaggiotti 2006).  
Furthermore, all previous simulation-based assessments of performance have used simulated datasets that conformed to 
the assumption of genetic and demographic equilibrium, an assumption that is usually violated by real populations. 
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We used simulation-based performance testing to assess the ability of STRUCTURE to correctly infer 
population structure under a variety of circumstances.  We used two sets of simulated data, those generated for use in 
the TOSSM project, and those generated for the bowhead Implementation Review.  The TOSSM datasets were used to 
assess the ability of STRUCTURE to correctly infer the number of populations represented in a sample and to 
determine the accuracy of individual assignments produced by the method.  The bowhead datasets were used to 
examine the behavior of STRUCTURE when it is used to divide a single population that is out of genetic equilibrium 
into two groups.  The bowhead datasets have also been used by Martien et al. (2007) to assess STRUCTURE’s ability to 
infer the number of populations.   

METHODS 

TOSSM datasets 
We used STRUCTURE to infer population structure in datasets generated for the Testing of Spatial Structure 

Methods (TOSSM) project.  TOSSM is a large-scale modeling effort aimed at conducting comparative performance 
testing of genetic analytical methods (IWC 2004).  The TOSSM project has two goals.  The first is to assess the 
performance of methods relative to the types of analyses for which they were originally intended.  STRUCTURE was 
intended primarily as a method for assigning individuals to populations and secondarily as a means for inferring the 
number of populations represented in a sample.  In this paper, we use the TOSSM datasets to assess STRUCTURE’s 
performance for both of these tasks. 

The second goal of TOSSM is to adapt methods so that they can be used to define management units and then 
test their performance in that context.  Such management-based performance tests can be conducted using the TOSSM 
package (described in Gregovich et al. 2007).  The package is a collection of functions, written in the language R (R 
Development Core Team 2006) that allow the user to simulate the management of a population under the Revised 
Management Procedure used by the IWC.  We have begun to test the performance of STRUCTURE using the TOSSM 
package.  We present a description of and preliminary results from these analyses (Appendix) for the purposes of 
refining the TOSSM exercise.  Results are preliminary and should not be used to judge the performance of 
STRUCTURE as a management tool, but are given to focus discussion on developing performance testing plans for the 
upcoming year. 

The model used to generate the TOSSM datasets is described in Tallmon et al. (2004) and Martien (2006).  
Simulations were performed using the R package Rmetasim (Strand 2002), which is a collection of functions for 
conducting individual-based population genetic simulations in the statistical language R (R Development Core Team 
2006).  Demographic parameters used in the model were based on estimates of vital rates for eastern gray whales 
(Martien et al. 2004, Martien 2006).  Each individual within the model was assigned a 500 bp mitochondrial sequence 
haplotype and a genotype for 18 microsatellite markers.  The parameter controlling the rate of mutation within the 
model was tuned to produce haplotype and allele frequency distributions comparable to those observed in empirical 
gray whale datasets (µ = 5x10-3 for the full mitochondrial sequence; µ = 2x10-3 for the microsatellite loci). 

We examined datasets representing three different population structure scenarios.  The first scenario consisted 
of a single panmictic population with a carrying capacity of 7,500 (this scenario is referred to as Arch1_1 in Martien 
2006).  The second scenario consisted of two populations, each with carrying capacities of 3,750, and exchanging 
dispersers at a rate of 5x10-4 per year (Arch2_4 in Martien 2006).  The third scenario was identical to the second, except 
that dispersal was increased by an order of magnitude to 5x10-3 (Arch2_5 in Martien 2006).  Mean differentiation 
resulting from these dispersal rates is given in Table 1.  For each scenario, between 64 and 100 replicate datasets were 
analyzed.  We drew 300 samples from each dataset for analysis.  In datasets containing two populations, samples were 
evenly divided between the two populations.  This sample size was chosen to maximize the utility of our analyses for 
interpreting results of the STRUCTURE analyses of the BCB bowhead dataset, which contained 282 samples (33-locus 
reference dataset defined at the second Intersessional Workshop; IWC 2007). 
 
Table 1.  Dispersal rates and mean differentiation (FST) between populations for the two-population scenarios.  The 
number of dispersers per year and per generation are absolute number moving, not effective number. 
Scenario Abundance (per 

population) 
Annual dispersal 
rate 

Number of dispersers 
per year 

Number of dispersers 
per generation 

Mean FST 

2 3,750 5x10-4 1.875 37.5 0.0053 
3 3,750 5x10-3 18.75 375 0.00048 

 
When running STRUCTURE, the user must make several decisions regarding model choice.  First, an ancestry 

model must be chosen.  The ancestry model specifies the degree of genetic isolation that is expected between 
populations.  In the no-admixture model, populations are assumed to be experiencing such little gene flow that 
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individuals can be treated as having descended entirely from one population or another.  In contrast, the admixture 
model allows for the possibility that individuals may have recent ancestors in more than one population, and is therefore 
appropriate for populations that exchange dispersers at non-trivial rates. 

The user must also specify an allele frequency model.  The independent model assumes that allele frequencies 
are completely independent between populations, implying a level of genetic differentiation between populations 
consistent with that between sub-species.  The correlated model assumes that all populations represented in a sample 
descended from a single ancestral population at some point in the past (Falush et al. 2003).  The degree of divergence in 
their allele frequencies is a function of the rate at which they have experienced genetic drift since divergence, and is an 
estimable parameter. 

We used both the no-admixture/independent model and the admixture/correlated model to analyze the TOSSM 
datasets.  The latter is the program default, and is most appropriate for applied studies, which typically involved 
populations between which gene flow is non-zero (Falush et al. 2003). 

Finally, the user must specify the number of groups (K) STRUCTURE is to define.  For each dataset we 
analyzed, we examined values of K ranging from 1 to 4.  Pritchard et al. (2000) described an ad hoc procedure by which 
the log-likelihoods associated with different values of K can be compared in order to infer the number of genetically 
distinct groups represented in a sample.  We used this approach to infer the number of populations in each of the 
TOSSM datasets.  The alternative method of inferring K described by Evanno et al. (2005) was not applied to the 
TOSSM datasets. 

We used two different measures to judge the performance of STRUCTURE.  First, we kept track of the 
frequency with which the correct number of populations was inferred.  Second, for those scenarios that consisted of two 
populations, we examined the probability with which an individual was assigned to the correct population when 
STRUCTURE was used to define two groups.  We calculated three measures of probability of correct assignment.  For 
the first measure, we assigned every individual to the population for which it had the highest assignment probability.  
Thus, an individual that assignment probabilities of 0.51 and 0.49 for populations one and two, respectively, was 
assigned to population one.  For the latter two measures, we only assigned individuals to populations for which their 
assignment probability was at least 0.8 or 0.9, respectively. 

Bowhead datasets 
Archer et al. (2007) used Rmetasim (Strand 2002) to conduct individual-based simulations of the population 

dynamics and genetics of bowhead whales from the Bering-Chukchi-Beaufort (BCB) Seas region.  Their model was 
structurally very similar to the model used to generate the TOSSM datasets.  Both models used the same initialization 
and burn-in mechanism, though the life history and genetic parameters differed between the two; the bowhead model 
was tuned to the life history and genetic data currently available for BCB bowhead whales, while the TOSSM datasets 
were parameterized using data from eastern Pacific gray whales (see Martien et al. 2004 and Martien 2006). 

The major innovation of the Archer et al. (2007) model is that it included a harvesting routine that closely 
mimics the historic harvest of BCB whales.  The number of animals killed in each year of the simulation was equal to 
the number actually taken by whalers.  Where such data were available, the age and sex of animals killed in the model 
was matched to the empirical data.  Similarly, the demographic characteristics of simulated animals from which genetic 
samples were taken were matched as closely as possible to the empirical bowhead genetic dataset.   

Archer et al. (2007) used their model to determine whether the genetic heterogeneity that has been observed in 
BCB bowheads (Givens et al. 2004, Givens et al. 2007, Jorde et al. 2006, Jorde et al. 2007, LeDuc et al. 2007) is 
consistent with a single population that is out of genetic and demographic equilibrium due to the effects of commercial 
whaling.  They analyzed the simulated datasets using a variety of methods, including STRUCTURE.  They used 
STRUCTURE to cluster the simulated samples into two groups, and compared the patterns of assignment in the 
simulated datasets to those of the empirical dataset.   

We expanded upon Archer et al.’s analysis by testing to see whether the two groups defined by STRUCTURE 
were in Hardy Weinberg equilibrium (HWE).  Recall that STRUCTURE interprets lack of HWE as a signal of 
population structure and attempts to define groups that are each in HWE.  However, in a dataset where departure from 
HWE is due to something other than population structure, as is the case in the bowhead datasets, it may not be possible 
to divide the samples into groups that are in HWE.  We wished to determine whether the two groups defined by 
STRUCTURE would exhibit comparable levels of departure from HWE, or if STRUCTURE tends to define one group 
that conforms to HWE and another that does not.  We first tested the groups defined by STRUCTURE to determine how 
many loci showed significant differentiation from HWE in each group.  We refer to the difference between the two 
groups in this quantity as the observed ‘imbalance.’  We conducted a single random permutation of individuals between 
groups and repeated the calculations to generate an expected imbalance for groups that are defined without regard to 
HWE.  We repeated the entire process for each of 100 replicate datasets, resulting in 100 pairs of observed and expected 
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imbalance.  We used a one-tailed paired t-test to determine whether the imbalance in the number of loci out of HWE 
between the two groups defined by STRUCTURE was larger than expected if the groups were defined randomly. 

We used Genepop v3.3 (Raymond and Rousset 1995) for all of the tests for HWE.  We ran the test for 
heterozygote deficiency for each locus using an MCMC burn-in of 30,000 iterations and a final chain length of 2,000 
iterations in 100 batches.  For the groups defined by STRUCTURE, we calculated Hardy-Weinberg disequilibrium 
across all loci for a given replicate using Fisher’s method (Ryman and Jorde 2001). 

RESULTS 

TOSSM datasets 
The number of genetically distinct groups inferred by STRUCTURE was strongly dependent on the ancestry 

and allele frequency model used (Table 2).  With the admixed ancestry/correlated allele frequencies model (admix/corr), 
STRUCTURE usually indicated the presence of a single population, regardless of how many populations were actually 
present in the dataset.  In contrast, the no-admixture/independent allele frequencies model (noadmix/indep) favored 
values of K larger than one for scenarios 1 and 2, but favored K = 1 for scenario 3. 
 
Table 2.  Results of using STRUCTURE to infer the number of populations (K) in the TOSSM datasets.  The correct 
value of K is given for each scenario (Correct K), followed by the frequency with which different values of K were 
chosen using the method described in Pritchard et al. (2000).  ‘Admix/corr’ refers to a model with admixed ancestry 
and correlated gene frequencies, while ‘Noadmix/indep’ refers to a model with no admixture and independent allele 
frequencies.  ‘# of replicates’ indicates the number of simulated datasets that were analyzed for a given scenario and 
model.  The annual dispersal rate between populations was 0.0005 in scenario 2 and 0.005 in scenario 3. 

# of Chosen K Scenario Model 
replicates 

Correct K 
1 2 3 4 

1 Admix/corr 71 1 1.00 0 0 0 
 Noadmix/indep 97 

 
1 0.09 0.52 .25 0.14 

 
2 Admix/corr 99 2 0.68 0.32 0 0 
 Noadmix/indep 100 

 
2 0.07 0.62 0.17 0.14 

 
3 Admix/corr 64 2 0.98 0.02 0 0 
 Noadmix/indep 100 2 0.77 0.13 0.04 0.06 
 

Errors in assigning individuals to their correct population were large for the scenarios that contained two 
populations (Table 3).  When individuals were assigned to the population for which they had the highest probability, the 
assignment success was no better than expected by chance, regardless of which STRUCTURE model was used.  
Restricting assignments to only those individuals that had assignment probabilities greater than 0.8 or 0.9 did not 
improve assignment success.  For scenario 3 with the admix/corr model, using the stricter assignment criteria did appear 
to affect assignment success.  However, this variability simply reflects the fact that in these cases very few individuals 
(less than 2 individuals per replicate, on average) were assigned to populations under the strict assignment criteria.   
 
Table 3.  Probability of assigning individuals to the correct population when STRUCTURE is used to define two groups.  ‘Highest 
probability’ means that all individuals were assigned to the population for which their assignment probability was highest.  ‘≥80% 
probability’ and ‘≥90% probability’ mean that an individual was only assigned to a population if its assignment probability was at 
least 0.8 or 0.9, respectively.  The numbers in parentheses indicate the average proportion of individuals that were assigned to a 
population under the restricted assignment criteria. 

Correct assignment  
Scenario 

 
Model Highest 

probability 
≥80% 

probability 
≥90% 

probability 
2 Admix/corr 0.518 0.540 (0.43) 0.534 (0.22) 
 Noadmix/indep 0.524 0.530 (0.81) 0.530 (0.69) 

 
3 Admix/corr 0.500 0.708 (<0.01) 0.236 (<0.01) 
 Noadmix/indep 0.523 0.524 (0.97) 0.525 (0.94) 
 

Figure 1 shows the assignment probability of individuals for the two 2-population scenarios and the two 
STRUCTURE models.  The admix/corr model and noadmix/indep models differed with respect to the confidence with 
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which STRUCTURE assigned individuals to populations.  When the noadmix/indep model was used, most individuals 
assigned strongly to one group or the other.  For scenario 2, which had a lower dispersal rate, individuals were assigned 
to the two groups in nearly equal proportions.  For scenario 3, however, most individuals assigned strongly to the same 
group, which is consistent with the fact that STRUCTURE usually favored the definition of a single population for this 
scenario (Table 2).  Note, however, that though individuals assigned strongly to groups under the no-
admixture/independent model, they were not assigned correctly; individuals that had assignment probabilities greater 
than 0.8 were still only assigned to the correct group about half of the time. 

Under the admixture/correlated model, assignment probabilities were much closer to 0.5 (Figure 1).  There was 
again a tendency for individuals from scenario 2 to assign more strongly to a group than individuals from scenario 1. 
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Figure 1.  Frequency distribution of assignment probability to group 1.  The no-admixture/independent model is shown 
in the top row, the admixture/correlated model is in the bottom row.  Scenario 2 (d = 0.0005) is on the left and scenario 
1 (d = 0.005) is on the right.  Results shown are from the first replicate dataset for each scenario. 

Bowhead datasets 
The number of loci that were out of HWE in each group defined by STRUCTURE for the bowhead datasets 

ranged from 0 to 6, with a median of 1.  The difference in the degree of genetic disequilibrium between the two groups 
defined by STRUCTURE was not significantly greater than would be expected for randomly defined groups (t-test p-
value = 0.097).  

Fourteen replicates exhibited a significant departure from HWE when p-values were summarized across loci 
using Fisher’s method (Ryman and Jorde 2001).  In each of these cases, only one of the two groups defined by 
STRUCTURE was out of HWE. 

Scenario 2 Scenario 3
No-admixture/independent model 

Admixture/correlated model
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DISCUSSION 
We examined three aspects of the performance of STRUCTURE: 1) the accuracy of individual assignments, 2) 

its ability to infer the number of populations, and 3) its ability to define groups that conform to HWE.  We examined 
two dispersal rates that would both be sufficiently low to warrant separate management of DIPs: d = 0.0005 and 0.005.  
For both rates, the assignment success of STRUCTURE was no better than expected by random chance.  Previous 
studies have found greater assignment accuracy (Manel et al. 2002; Falush et al. 2003).  However, these studies focused 
on populations that were much more strongly differentiated than any considered in our study.  Waples and Gaggiotti 
(2006) conducted one test of STRUCTURE in which populations exchanged dispersers at a rate comparable that in our 
scenario 2 and also found that assignment success was no better than random.  Populations of large whales typically 
number in the thousands, meaning that even demographically trivial levels of dispersal are sufficient to prevent them 
from becoming strongly differentiated.  Thus, the magnitude of differentiation for most populations of large whales is 
likely to be more similar to that in the TOSSM datasets than in those used by Manel et al. (2002) and Falush et al. 
(2003). 

We compared the performance of STRUCTURE under two different ancestry/allele frequency models (no-
admixture/independent and admixture/correlated).  Though assignment success for the two models was the same, the 
no-admixture/independent model was much more misleading, in that it often resulted in very high, though incorrect, 
assignment probabilities for scenario 2 (Figure 1).  The admixture/correlated model, on the other hand, tended to result 
in assignment probabilities closer to 0.5, better reflecting the uncertainty in the assignments.   

STRUCTURE performed slightly better with respect to inferring the correct number of populations.  The 
admixture/correlated model performed perfectly when inferring the presence of a single population in the scenario 1 
datasets (Table 2).  However, it tended to underestimate the number of populations in the two-population scenarios.  
This bias toward finding too few populations contradicts the warning given by Falush et al. (2003) that this model is 
‘more permissive of additional populations being fitted to the data set’ and therefore may tend to overestimate the 
number of populations.   

The only case in which Falush et al. found the admixture/correlated model to overestimated K in their 
performance tests was when there was a single population with a 50% selfing rate, resulting in very strong departure 
from Hardy-Weinberg and linkage equilibrium.  The bowhead datasets (Archer et al. 2007) also represent a single 
population that does not conform to HWE, though the degree of disequilibrium in the bowhead datasets is likely much 
less than that in Falush et al.’s simulated selfing populations.  Nonetheless, Martien et al. (2007) found that 
STRUCTURE accurately inferred the presence of a single population in these datasets 98.7% of the time when the 
admixture/correlated model was used, suggesting that departures from equilibrium of the magnitude likely to be seen in 
most large whale populations are unlikely to lead to the overestimation of K using this model. 

Evanno et al. (2005) also evaluated the probability of correctly inferring K using the admixture/correlated 
model.  They found that the method of inferring K described in Pritchard et al. (2000) (the same one we applied to our 
simulated datasets) frequently resulted in an overestimate of K.  The difference between their results and ours is likely 
due to the fact that their simulations all involved populations that were very strongly differentiated (FST > 0.15).  
Consequently, the likelihood of underestimating the number of populations in their simulations was very low.  Waples 
and Gaggiotti (2006) compared the performance of the Evanno et al. method to that described in Pritchard et al. (2000) 
using simulated datasets in which differentiation was intermediate between those examined by Evanno et al. and those 
presented in this paper.  Waples and Gaggio (2006) found little difference in performance between the two methods of 
inferring K. 

The no-admixture/independent model did a much poorer job of inferring the number of populations.  It 
overestimated the number of populations represented by the scenario 1 datasets more than 90% of the time.  For 
scenario 2, the correct value of K was chosen for most replicates, though K was overestimated 31% of the time.  Martien 
et al. (2007) found a similar bias toward overestimation for this model when they used STRUCTURE to infer the 
number of populations in the bowhead datasets.  These overestimation errors may have been avoided if K were inferred 
using the method proposed by Evanno et al. (2005).   

The no-admixture/independent model displayed the opposite bias for the scenario 3 datasets, for which it 
underestimated K in 77% of the replicates.  Because the dispersal rate is an order of magnitude higher in scenario 3 than 
in scenario 2, it is not surprising that STRUCTURE tended to define fewer populations in scenario 3.  However, it is 
unclear why STRUCTURE is more likely to favor K=1 for scenario 3, which contained 2 populations, than it is for 
scenario 1, which only contained a single population. 

Finally, our HWE analyses did not support the hypothesis that, when used to analyze data that depart from 
HWE for reasons other than undetected population structure, STRUCTURE will tend to define groups that differ with 
respect to HWE.  In our simulations, the groups defined by STRUCTURE tended to show a greater ‘imbalance’ in the 
number of loci out of HWE than would be expected for randomly defined groups.  However, this tendency fell short of 
statistical significance.   
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Appendix: Testing STRUCTURE in the TOSSM context 

INTRODUCTION 
The TOSSM package (described in Gregovich et al. 2007) is a collection of functions written in the language R 

(R Development Core Team 2006).  These functions allow the user to simulate the management of a population under 
the Revised Management Procedure (RMP) used by the IWC.  The package accepts as input one of the TOSSM 
datasets.  The simulated populations in the dataset are then subjected to a period of un-managed historic harvest (the 
pre-RMP phase) followed by a period of harvest under the RMP (the RMP phase).  An optional recovery phase, during 
which no harvest occurs, can be included at the end of the simulation.  Each year, the simulated populations are 
projected forward one year using Rmetasim (Strand 2002). 

The TOSSM package allows for management units to be defined by a user-provided Boundary Setting 
Algorithm (BSA).  We wrote a BSA in which genetic data sampled from the simulated populations are analyzed by 
STRUCTURE, and the results of the STRUCTURE analyses are used to define management units.  We tested the BSA 
by using it and the TOSSM package to analyze datasets from two of the scenarios described above (scenarios 1 and 3).  
While the limited number of analyses we have conducted thus far with the STRUCTURE BSA are insufficient to draw 
conclusions regarding the performance of STRUCTURE in a management context, they do demonstrate the feasibility 
of the STRUCTURE BSA and provide some insight into some of the issues that will have to be addressed when using 
the TOSSM package to conduct performance testing. 

METHODS 

STRUCTURE BSA 
The STRUCTURE BSA uses genetic data passed to it by the TOSSM package to define management units.  

The user can specify the ancestry and allele frequency models to be used by STRUCTURE, the values of K to be 
evaluated, the length of the burn-in, and the chain length to be used in the analysis.  The number of management units 
defined by the BSA is determined by comparing the posterior probability of the data for different values of K and 
choosing the value of K for which this probability is maximized (Pritchard et al. 2000).  Each Fully-Integrated Mixed 
Area (FIMA; see below) is assigned to the management unit for which the average assignment probabilities of all 
samples from that FIMA is highest.  Note that this will not necessarily result in the definition of contiguous 
management units. 

Testing the BSA 
To test the STRUCTURE BSA, we used it in conjunction with the TOSSM package to analyze TOSSM 

datasets for scenarios 1 and 3 described above.  We analyzed 50 replicate datasets for each scenario.  Scenario 1 
consisted of a single population with a carrying capacity of 7,500, while scenario 3 contained two populations, each 
with carrying capacities of 3,750, that exchange dispersers at an annual rate of 0.005.  In the TOSSM package, all 
harvest and genetic sampling occurs in FIMAs.  FIMAs are the smallest spatial unit at which data can be collected and 
management units can be defined.  From a genetic perspective, they represent sampling sites (see Gregovich et al. 2007 
for a more detailed description of FIMAs).  We defined four FIMAs in our analyses.  In the simulations using scenario 3 
datasets, FIMAs 1 and 2 consisted entirely of individuals from population 1, while FIMAs 3 and 4 consisted entirely of 
individuals from population 2. 

We simulated a pre-RMP phase that consisted of a single year during which 3,000 animals were killed.  The 
animals killed were taken equally from FIMAs 1 and 2.  Thus, in scenario 3, all 3,000 animals were taken from 
population 1.  This resulted in population 1 being reduced to approximately 20% (750/3750) of its pristine abundance.  
Since scenario 1 contained only a single simulated population, this population was reduced to approximately 60% 
(4500/7500) of its pristine abundance. 

The pre-RMP phase was followed by 100 years of managed harvest.  In the first year of the RMP phase, 300 
genetic samples were non-destructively sampled from the simulated dataset.  For the scenario with two populations, 
these samples were divided evenly between the two.  The STRUCTURE BSA was then used to analyze the genetic 
samples and define management units.  The same management units were used for the entirety of the 100 year RMP 
phase.  The catch-limit algorithm (CLA) was used to calculate quotas in the first year of the RMP phase and every 5 
years thereafter.  A new abundance estimate was generated each time the CLA was called.  We used the package 
defaults for all other parameters, including the argument mult.CLA=5, which results in the number of animals harvested 
from the simulated populations being increased five-fold over the quota calculated by the CLA. 
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We only examined the admixture/correlated model, as that has proven to perform best in our other tests of 
performance (see above).  Because our simulations consisted of only four FIMAs, and a management unit can never be 
smaller than a FIMA, we evaluated values of K ranging from 1 to 4. 

For each year of the simulation, the TOSSM package outputs the abundance of the simulated populations and 
the number of animals harvested.  It also outputs the number and location of management unit boundaries defined by 
the BSA.  For each scenario we summarized the average number of management units defined, the average number of 
whales killed during the RMP phase of the simulation, and the average final depletion of the simulated populations. 

RESULTS AND DISCUSSION 
The STRUCTURE BSA always resulted in the definition of a single stock, regardless of which scenario was 

analyzed (Table 1).  For scenario  1, average depletion did not change during the RMP phase.  Thus, while the 
population did not recover, it also did not decline.  Recall, however, that these analyses were based on multiplying the 
CLA quota by 5.  If this quota multiplier had not been used, the population almost certainly would have grown over the 
course of the simulation. 

In scenario three, the exploited population (population 1) did decline during the RMP phase (Table 1).  The 
variance in depletion was also much higher at the end of the RMP phase than at the beginning, reflecting the fact that in 
some replicates, the population fared well while in others it was nearly extirpated. 

 
Table 1.  Summary performance statistics for analyses of scenarios 1 and 3 using the TOSSM package with the 
STRUCTURE BSA.  Values given are the mean (± s.d.) across replicates. 

Initial depletion  Final depletion Scenario # MUs 
defined Population 1 Population 2 

Total catch 
Population 1 Population 2 

1 1 (± 0.0) 0.602 (± 0.010) na 18,504 (± 574) 0.603 (± 0.038) na 
3 1 (± 0.0) 0.250 (± 0.015) 1.04 (± 0.013) 10,360 (± 707) 0.185 (± 0.137) 1.01 (± 0.018) 

While the analyses rpresented in this Appendix are insufficient to draw conclusions about the performance of 
STRUCTURE in a management context, this exercise has highlighted some of the issues that must be addressed before 
large scale performance testing of any methods can commence.  First priority should be to develop a standardized set of 
performance trials that should be run for all methods.  The parameters that must be specified include sample size, 
historic catch levels and their allocation to FIMAs, number of FIMAs, the multiplier for the CLA quota (mult.CLA; 
package default is 5), and the length of the simulation phases. 

Because many of the methods to be tested take a long time to run, we must limit the number of performance 
trials.  We will need to be particularly judicious in choosing values for parameters that require additional runs of the 
BSAs.  Since the population projections are relatively fast, parameters that only affect the RMP and post-RMP phases 
of the simulations can be varied more widely. 

The task of defining a standardized set of trials could be made easier if we first determine what sets of 
parameters have the potential to pose a risk to exploited populations.  This could be done by performing a series of 
analyses in which a single management unit is always defined.  This would enable us to determine the parameter 
combinations under which failure to detect population structure will pose a conservation risk. 
 


