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ABSTRACT

In this paper we develop a model of the long-term
prospects for the Pacific sardine (Sardinops sagax) in which
the surplus growth of the stock is influenced by random
fluctuations. This can have an enduring eftect partly
through a serial correlation in the environmental dis-
turbances, but also, and more importantly, because the
effect of these random disturbances is related to the size
of the stock itself. We use the model to generate fluc-
tuations in the sardine stock to compare alternative fish-
ing strategies: (i) constant escapement; (il) constant
exploitation rate; and (iii) a hybrid of the two. We find
that strategy (i) results in greater catches per year and
greater variability than (ii). The hybrid, (iii), results in
greater catches and greater variability than (1). We con-
clude that the model supports the existing management
of the U. S. Pacific sardine fishery.

INTRODUCTION

In the 1930s and 1940s the Pacific sardine (Sardinops
sagax) supported one of the largest fisheries not just in
the United States but the whole world (fig. 1). In the
1940s and 1950s the landings declined steeply despite
a short recovery around 1950, and in the early 1960s
the fishery stopped. Parallel to the decline in landings
the stock also declined, which initially was blamed on
overfishing. Later research has, however, indicated that in
the past, and long before any fishing began, the sardine
stock has been subject to similar crashes (Baumgartner
et al. 1992). Overfishing thus may not have been the sole
cause of the decline of the sardine stock in the 1930s
and 1940s, and it might have declined in any case due
to natural reasons.

This suggests that a model of the long-term prospects
of the Pacific sardine must be capable of generating a
collapse of the sardine stock in the absence of any fish-
ing. Such a model must rely on either explicit environ-
mental variables that can generate such fluctuations or
other mechanisms, possibly related to the sardine stock
itself. This paper examines a model of this kind in which
the surplus growth of the stock is influenced by a ran-
dom variable that generates fluctuations in stock size.
These fluctuations can have an enduring effect partly
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through a serial correlation in the environmental dis-
turbances but also, and more importantly, because the
effect of these fluctuations is related to the size of the
stock itself. The random disturbances will be calibrated
based on the history of the stock.

The main purpose of the model is to generate fluc-
tuations that resemble those that may be expected to
occur in reality, in order to compare the effect of alter-
native fishing strategies. The model does not attempt to
explain the fluctuations in the sardine stock, as it does
not incorporate any physical processes that would gen-
erate such fluctuations. From the history of the sardine
fishery and the sardine stock it is clear that fluctuations
in the environment strongly influence stock develop-
ment whatever the underlying physical factor is. To the
extent the model generates realistic fluctuations in the
stock, it suggests that just a few unlucky draws of nature
are all that’s needed to produce long periods of low stock
abundance, such as have occurred in the past. It takes a
long time for the stock to recover from such declines,
simply because a small stock generates little growth.
Hence, long waves of climate fluctuations, referred to as
regime shifts, may not be necessary to produce prolonged
periods of low stock abundance. As an illustration, sup-
pose the stock has been knocked down to 5,000 met-
ric tons (mt), which is believed to be its low point during
the 1960s and 1970s. With a growth rate of 40% per
year it would take the stock 16 years to recover above 1
million mt. In its heyday in the 1930s and 1940s it was
well above that level. Such a high growth rate was ob-
served in the 1980s and 1990s, a period of favorable en-
vironmental conditions (PFMC 1998, Appendix B).

How, then, should a stock subject to such dramatic
random fluctuations be managed? We shall compare two
alternative fishing strategies, one that attempts to always
leave behind a certain minimum stock for growth and
reproduction (target escapement), and one that catches
a certain share of the stock available each year (constant
fishing mortality). In addition we will look at a hybrid
of these, one in which a certain share of the stock be-
yond a certain minimum is caught each year. This is to
approximate the strategy currently employed in the man-
agement of the Pacific sardine under the U. S. Pacific
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Figure 1:  Spawning stock biomass (SSB) and landings (in California) of Pacific sardines (Sardinops sagax).

Fishery Management Council’s (PFMC) Coastal Pelagic
Species Fishery Management Plan (PFMC 1998,
Appendix B), where the share of the stock that the in-
dustry is allowed to catch every year depends on envi-
ronmental conditions, measured as the average sea surface
temperature for the three most recent years. To mimic
that strategy, we let the share being taken depend on the
realized random environmental variable for the two most
recent years.

The alternative strategies will be compared based on
the average fish catches they would generate over a long
time period and on the variability in the catches, mea-
sured as standard deviation and maximum and minimum
annual catches. The variability of catches is also reflected
in the number of years without fishing, either because
there is virtually no fish to be caught or because the
stock is below the escapement target.

Using stochastic models to analyze alternative fishing
strategies for the sardine stock is not novel. In the man-
agement plan for sardine (PFMC 1998, Appendix B), a
stochastic model, different from the one used here, was
employed to simulate the development of the stock under
different exploitation rates: target escapement and max-
imum catches. Since there is considerable uncertainty
about what kind of model would be most appropriate
for the sardine stock, it is of interest whether both mod-
els produce similar results with respect to the relevant
management criteria.

The present model is a simple one, being a surplus
growth model without any age structure. Nevertheless,
such models can be useful to study the implications of

alternative management strategies and related issues. An
approach similar to the one taken here could be useful
not only for other pelagic stocks that are highly vari-
able; for example, it has been applied to study the im-
plications of overfishing of the northeast Arctic cod
(Hannesson 2007).

THE MODEL

Data on catches and the (spawning) stock of the Pacific
sardine go back to 1932!. From these it is possible to
calculate the surplus growth in year f as the difference
in stock size between year f +1 and ¢ plus the catches of
fish in year f. According to Jacobson et al. (2005) only
83% of landings in any year represent surplus growth
(some fish that were caught would have died for natural
reasons). We shall follow that procedure here.

Figure 2 shows the surplus growth and the spawning
stock of the Pacific sardine 1932-2004. Clearly the sur-
plus growth is largely independent of the stock size, but
it also appears that the variability in surplus growth in-
creases with the stock, up to a point. A logistic surplus
growth function was estimated by minimizing the sum
of squared differences between the curve and the cal-

1California sardine landings for the period 1932-80 are from the PFMC’s
Coastal Pelagic Species Fishery Management Plan (PFMC 1998, Appendix A);
sardine landings for 1981-2005 are from the PacFIN management database.
Pacific sardine spawning stock biomass estimates for the period 1932-2000 are
from Amendment 10 to the PFMC’s Coastal Pelagic Species Fishery
Management Plan (PFMC 2002, Appendix C); sardine biomass estimates for
2001-05 are from the PFMC’s annual stock assessment and fishery evaluation
document for coastal pelagic species (PFMC 2007).
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Figure 2: Surplus growth and spawning stock of Pacific sardine (Sardinops sagax) 1932-2004, and the estimated surplus

growth curve.

culated surplus growth. This curve is also shown in Figure
2 and has the parameters r = 0.2337 and K = 3121.2

The next step is to define fluctuations in surplus
growth as deviations (D) from the surplus growth curve,
giving:

D,= G,—rS,(1-S/K), (1)

where G is the calculated surplus growth, shown by the
points in Figure 2, and S is the stock. Behind this devi-
ation is the realization of a random environmental vari-
able. However, the environmental variable is not what
we observe but how it translates into surplus growth.
Figure 2 suggests, as the curve indicates, that good or
bad environmental conditions have a larger impact on
surplus growth as the stock increases up to a certain
point, but a diminishing impact after that. To elicit the
environmental variable, we estimate the absolute value
of D as, respectively, a quadratic versus a logarithmic
function of S:

|D| = aS—bS? (2)
In|D| = o+ BinS. (3)

Table 1 shows the results of estimating these parame-
ters by ordinary least squares. All parameters except o
are highly significant, indicating that the deviations in
surplus growth increase with the stock but either de-
cline beyond a certain stock level (Equation 2) or in-

2A linear regression of surplus growth on the spawning stock and spawning
stock squared gives virtually identical results, and both parameters (r and r/K)
are statistically significant.
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TABLE 1
Estimated parameters of how variations in
surplus growth depend on stock size.

Parameter Estimate t-value
a 0.295 7.3
b 5.6733E-05 3.8
¢4 0.1633 0.2
B 0.6914 5.5

crease with the stock at a diminishing rate (Equation 3).
In the following we will use both equations and refer to
them as the quadratic (Equation 2) versus logarithmic
(Equation 3) model.

By dividing D by the right-hand side of Equation 2
versus Equation 3, we can calculate the environmental
disturbance (U) which caused the deviation in the sur-
plus growth:

D
u=_ 2 @
aS, — bS?
D
U= _ D 6
SPex

The pattern in the data indicates that the disturbances
are serially correlated. Regression analysis supports this
for both models, although for the quadratic model, the
support is weak (critical p-value 0.054). Using the esti-
mates in Table 2, we can calculate the pure random dis-
turbance each year (I)):

V=U~-k-mU_,, ©6)
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Figure 3: Histogram of InV transformed and a normally distributed variable with the same mean and variance.

TABLE 2
Estimates of serial correlation in environmental
disturbances (U, = k + mU_,), p-values in parentheses.

Model k m

Quadratic (Eq. 2) 0.1709 (0.507) 0.2677 (0.054)
Logarithmic (Eq. 3) 0.0658 (0.791) 0.3334 (0.019)

with U, being determined from Equation 4 or Equation
5, depending on whether we are using the quadratic or
the logarithmic model (Equation 1 or 2). After a suit-
able linear transformation, the logarithms of the I’s are
close to normally distributed, as shown in Figure 3.
Using normally distributed random numbers to gen-
erate [nl” and the serial correlation to generate U, we
are able to generate quite varied development patterns
for the sardine stock in the absence of fishing®. Three
different runs for each of the above models are shown
in Figures 4 and 5. What is worthy of note is the possi-
bility of generating crashes of the stock, after which it
persists at a very low level until recovery slowly succeeds.
Such patterns seem to have occurred in the past (Smith
1978; Baumgartner et al. 1992) and certainly describe
the development of the stock after the moratorium in
the 1960s and until recovery set in around 1990. Some
runs produce cycles, and in some the stock varies around
a level close to the average carrying capacity (K = 3121)
without much of a trend. If anything, the quadratic model
seems better able to produce crashes that persist for
decades, like the one from the 1960s to about 1990%.
One difterence between the two models is that the stock

No trend

1,000 mt
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Figure 4: Alternative patterns for the stock produced by three runs of the
quadratic model without fishing over a 50 year period.
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Figure 5: Alternative patterns for the stock produced by three runs of the
logarithmic model without fishing over a 50 year period.

can become considerably greater in the logarithmic model
than in the quadratic model. The reason is that a ran-
dom draw of an advantageous environmental variable
always increases surplus growth in the logarithmic model,
but less and less the larger the stock is. In the quadratic

3There is in principle no upper or lower bound to the normally distributed ran-
dom variable. We have precluded extinction of the stock due to an extremely
unfavorable environment by imposing the restriction that the stock can never
fall below 5,000 mt, the assumed minimum in the 1960s and 70s. Extremely
favorable environmental conditions can occur, but with a low probability.

*A referee pointed out that the occasionally very high stock levels produced by
the logarithmic model agree with the evidence from scale sediments that the
sardine stock has in earlier times reached higher peaks than in the 1930s (Smith
1978; Baumgartner et al. 1992), and that the occasional peaks of the Japanese
and the Humboldt sardine stocks lend credence to the logarithmic model.
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model, a large stock is directly counterproductive, lead-
ing to a smaller surplus growth for any draw of the en-
vironmental variable.

TARGET ESCAPEMENT VERSUS CONSTANT
FISHING MORTALITY

What are the implications of the above model for the
management of the stock? We shall look at this in two
simplified settings. In one, a constant escapement strat-
egy is followed. This aims at always leaving behind some
target level of the stock after fishing every year. In years
when the stock is below the target level there is no fish-
ing. Formally, the target escapement rule is:

Q = max(0,S - §), 7)

where Q is the permitted catch (total catch quota) and
S is the target escapement. Under this rule, the catches
of fish will vary because the stock varies and all the stock
beyond the target level will be taken. The catch per year
in a long-term perspective depends on the target level
set, and so do the variations in the catch. There might
be some trade-off, however, between the catch per year
and the variability, measured as standard deviation, max-
imum versus minimum catch, or the number of years in
some given time period without any fishing at all. The
high variability of catches under the target escapement
strategy is likely to be undesirable, because of the large,
but only occasionally utilized, fishing and processing
capacity necessary to cope with the occasional peaks
in catches.

In the other case, a certain share of the stock is fished
every year (constant fishing mortality), except that when
the stock is below a critically low level it is left unfished.
This critical level is set at 5,000 mt, the level the stock
is believed to have been close to during the catch mora-
torium 1968-86. In this case:

Q = max(0,sS if S > 5000) (8)

where s is the rate of exploitation. Under this strategy
the catches will vary proportionately with the stock, but
they will presumably be less variable than under the tar-
get escapement strategy. On the other hand, catching a
given proportion of the stock will not spare the stock
when it happens to be at a low level (except if it is below
the critical level), which might impede a recovery of the
stock when it has fallen to a low level. This could lead
to a lower average catch than the target escapement strat-
egy and possibly even to a greater variability by imped-
ing stock recovery at low stock levels.

The two strategies are investigated by simulating the
stock over a 100-year period, making 100 simulations
for each target stock level or fixed exploitation rate. The
simulations start with a plentiful stock of 4.0 million mt,
close to the level in the early 1930s. Then a value of the
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random environmental variable is drawn for each year
with a random number generator and the stock is up-
dated according to the catch strategy followed. Both the
quadratic and the logarithmic model discussed above
are examined.

Target Escapement

Under this strategy, the initial stock level is reduced
during the first year to the target escapement level, which
in most cases produces an unrealistically large initial catch.
This initial catch is ignored in calculating the average,
maximum, and standard deviation of catches. The catch
is set equal to the beginning stock level each year plus
the surplus growth less the target stock, or zero other-
wise, so ignoring that some fish that are caught would
have died within the year for natural reasons.

The results are summarized in Figures 6 and 7. The
former shows the average catch per year, the standard
deviation of the catch over the 100-year period aver-
aged over the 100 simulations, and the maximum and
minimum catch per year obtained in any simulation.
Both models produce similar results. The catch per year
rises as the escapement level increases up to a level of
1.4 (logarithmic model) or 1.6 (quadratic model) mil-
lion mt and then the catch stays relatively constant at
about 160,000 (logarithmic model) or 200,000 (qua-
dratic model) mt per year. Thereafter it falls oft as the
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Figure 6: Average, maximum, and minimum catch per year, and standard
deviation (SD) of catches as functions of target escapement.
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fishing as functions of target escapement.

escapement level exceeds 3.0 (quadratic model) or 3.4
(logarithmic model) million mt per year. At an escape-
ment level of 5.0 million mt there is virtually no catch
in the quadratic model, but still some in the logarithmic
model because of its ability to sustain a large stock with
a positive surplus growth where the quadratic model
would produce a negative growth. Note that some catches
are possible even if the target escapement is set well above
the average carrying capacity parameter (K = 3.1 mil-
lion mt) because of the variability of surplus growth.
The catches are highly variable. The standard devia-
tion, averaged over the 100 simulations, is about as large
as the maximum annual catch, especially in the quadratic
model. The maximum catch is greater and more vari-
able in the quadratic model, but both models produce a
minimum catch quite close to zero for all target es-
capement levels. This variability is reflected in the num-
ber of years without any fishing. The average number
of years without any fishing in a 100-year period is fairly
constant in the quadratic model, slightly above 60, up to
a target escapement level of about 3.0 million mt. After
that, it rises gradually until there is hardly ever any fish-
ing as the target escapement level exceeds 5.0 million

mt. The minimum number of years without fishing in
any 100-year period hovers around 40 years with an es-
capement level up to 3.4 million mt.

In the logarithmic model, the average number of years
without fishing is slightly more variable. Initially it falls
as the target escapement level rises and dips below 60
years, and then rises gradually as the target escapement
exceeds 2.0 million mt. It takes a higher escapement level
than in the quadratic model to reduce the years with
fishing to zero. The minimum number of years without
fishing in any 100-year period is lower than in the qua-
dratic model, staying between 25 and 30 years until the
target escapement exceeds 2.0 million mt. The maxi-
mum number of years without fishing in any 100-year
period is similar to the quadratic model but somewhat
more variable; it can be close to 100 even with target es-
capement as low as a few hundred thousand metric tons.

There is not really much of a trade-oft between catch
per year and the variability of catches. In the quadratic
model, the catch per year is fairly constant over a range
of escapement levels from 1.6 to 3.0 million mt. Both
the standard deviation of catches and the average num-
ber of years without fishing are also fairly constant over
that range. In the logarithmic model, both the standard
deviation of catches and the average number of years
without fishing continue increasing after the average
catch has flattened out. On the basis of this model there
would be no point in raising the escapement level be-
yond 1.4 million mt, when the average catch begins to
flatten out.

Constant Exploitation Rate

Let us then turn to the case where a constant share
of the stock is caught every year. Figure 8 shows how
the average catch per year, the maximum and minimum
catch per year, and the standard deviation of catch per
year vary with the share of the stock being fished. The
average catch peaks for quite a low exploitation rate, ap-
proximately 10%, both in the quadratic and the loga-
rithmic model. There is not much difference between
the peaks produced by the two models; the quadratic
model produces a slightly higher peak, 140,000 mt, while
the logarithmic model gives about 130,000 mt. For higher
exploitation rates, the average catch per year tapers off
rather quickly. It is noteworthy that the maximum catch
per year in any simulation peaks at a higher exploitation
rate than the average catch per year; it increases steeply
to 350,000—400,000 mt for an exploitation rate of 0.15
and then falls quickly®. The standard deviation of catches
increases with the exploitation rate until the latter reaches
20% and then stays high, tapering oft as the exploitation
rate exceeds 50%.

°In the simulations reported, the exploitation rate was varied in intervals of 0.05.
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In the quadratic model, the fishery is hardly ever shut
down (recall that this was assumed to happen if the stock
fell below 5,000 mt, which is an almost trivially low
level). In the logarithmic model, this occurs more fre-
quently (fig. 9). For an exploitation rate of 10%, which
produces the maximum average catch per year, this hardly
ever happens on the average, or in less than one year out
of 100, but the maximum number of years that the fish-
ery could be shut down because of this is 10. The num-
ber of shut-down years increases quickly with the
exploitation rate, but even with an exploitation rate of
80% the fishery would only be shut down about 17 years
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on average, while the maximum number of years of shut-
down could be around 30.

Comparing the Strategies

The target escapement strategy results in a greater
catch per year. This is especially so in the quadratic model,
where it produces about 200,000 mt per year on the
average, while the constant exploitation rate produces
140,000 mt. In the logarithmic model, target escapement
produces 160,000 mt per year on the average, while a
constant exploitation rate produces 130,000 mt. But the
variability of catches is much greater with the target
escapement strategy. The maximum standard deviation
is more than twice what it is under the constant ex-
ploitation rate: 420,000 mt versus 160,000 mt in the
quadratic model, and 310,000 mt versus 140,000 mt in
the logarithmic model. The much higher variability of
catches under the target escapement strategy is also re-
flected in more frequent shut-downs; on average the fish-
ery would be closed more than half the time (50-60
years out of 100) under a target escapement strategy that
aimed at maximizing the average catch, while this would
seldom happen with a constant exploitation rate. Higher
yields on average would thus be attained at the expense
of more frequent closures.

So, even if the target escapement strategy would yield
higher catches per year it is not obviously better than
the constant exploitation rate, as it produces a much
greater variability in catches and much more frequent
fishery closures. It is noteworthy that the exploitation
rate that maximizes the average catch is quite low, only
10%, and the target escapement level that maximizes the
average annual catch is rather high, 1.4 and 1.6 million
mt, depending on which model we use.

These results are rather similar to those reported in
the fishery management plan for the coastal pelagic
species (PEMC 1998, Appendix B). There it was found
that with a constant fishing mortality, the maximum aver-
age catch per year would be obtained when F = 0.12,
resulting in an average annual catch of about 180,000
mt, a standard deviation of 180,000 mt, and no year with-
out any catch. The instantaneous natural mortality of
sardines has been estimated at 0.4, so F = 0.12 corre-
sponds to an exploitation rate of 9% per year. With our
model, we find that an exploitation rate of 10% per year
would give a maximum annual catch of 130,000 mt or
140,000 mt, a standard deviation of a little over 100,000
mt, and very few or no years without any fishing at all.
In the management plan it was found that a pulse fish-
ery with a target escapement of 1.0 million mt would
maximize the average annual catch, providing an aver-
age of about 200,000 mt, and result in no fishing about
half the time and a standard deviation of catches of about
300,000 mt. In our model, we find that a target escape-
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Figure 10:  Average, maximum, and minimum catch per year and standard
deviation (SD) of catches as functions of the stock share in excess of
150,000 mt caught.

ment of 1.4 or 1.6 million mt would maximize the aver-
age annual catch at 160,000 mt or 200,000 mt, but prob-
ably result in a closure of the fishery more than half the
time and a standard deviation of catches of 230,000 mt
or 390,000 mt. Thus, there is clearly a tradeoff between
average annual catch and the variability of catches; greater
stability and fewer closures of the fishery must be bought
for lower catches on the average.

A HYBRID STRATEGY

The current PEMC management strategy employed
for the Pacific sardine is a hybrid of the two considered
above (PFMC 1998). The total catch quota is set equal
to a certain fraction of the stock beyond a target escape-
ment of 150,000 mt, the fraction depending on envi-
ronmental conditions measured by the average sea surface
temperature at the Scripps pier over the last three years.
Under the current strategy, the total catch quota is also
subject to a maximum allowable catch constraint.

Here we initially consider the hybrid strategy with a
constant exploitation rate and then allow the share of
the stock beyond 150,000 mt to vary according to the
random environmental variable. For comparison with
the earlier strategies we do not impose the maximum
allowable catch constraint. The catch quota (Q) is:

Q=max[0,5(S—S)], 9)
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Figure 11: Average, maximum, and minimum number of years (T) without
fishing as functions of the share of the stock beyond 150,000 mt caught.

where s is the exploitation rate and S the target escape-
ment (150,000 mt).

The results (figs. 10 and 11) are not very different
from those obtained for the constant exploitation rate
above (figs. 8 and 9). The average annual catch is still
maximized with an exploitation rate of 10%, although
a rate of 15% gives virtually the same average annual
catch in the quadratic model. For the quadratic model,
the average annual catch is a bit higher in the hybrid
strategy, about 160,000 mt compared with just over
140,000 mt in the simple constant exploitation rate strat-
egy. For the logarithmic model, the average annual catch
in the hybrid strategy is 137,000 mt, versus 132,000 mt
in the simple constant exploitation rate strategy. But the
variability is considerably greater. This is reflected pri-
marily through longer period the fishery is shut down
and less so through a higher standard deviation of catches.
In the quadratic model, the standard deviation of the an-
nual catch is virtually the same in the hybrid strategy as
it is for the simple constant exploitation rate strategy at
the 10% rate of exploitation, while in the logarithmic
model it is slightly higher (107,000 mt versus 100,000
mt). But while in the quadratic model the fishery was
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TABLE 3

Results from adjusting the exploitation rate according to environmental conditions.
Catches in thousands of metric tons, shut-down time (T) in years out of 100.

Hybrid, adjustable exploitation rate strategy

Constant exploitation
rate strategy

Average catch  Average T

k Average catch  Average T Average s Maximum s Minimum s with s = 0.1  with s = 0.1
Quadratic 0.06 185.1 16.8 0.759 0 143.7 0
Logarithmic 0.04 162.6 9.9 0.405 0 131.9 2.3

almost never shut down under the simple constant ex-
ploitation rate strategy, it is shut down for about 11 years
on the average under the hybrid strategy, with the max-
imum and minimum number of shut-down years being
62 and 0, respectively. In the logarithmic model, the aver-
age number of shut-down years is 9.05 for the hybrid
strategy compared with 2.29 in the simple constant ex-
ploitation rate strategy. The hybrid strategy, thus, is not
unambiguously better than the constant exploitation rate
strategy; it buys a higher average catch for greater vari-
ability in catches and more frequent shut-downs.

As already mentioned, the management strategy cur-
rently employed for the sardine stock lets the exploita-
tion rate vary according to environmental conditions.
Here we shall mimic this by letting the rate of exploita-
tion deviate from the optimal constant one (s°) accord-
ing to the realized value of the environmental variable
(U) in two adjacent periods. The catch quota (Q) in
Equation 9 above is modified to:

Uz71 + Ut
2

so+k

Q =max [O, )(St - fg)] , ©)
where s° = 0.1, k is an adjustment factor to be deter-
mined so as to maximize the average catch per year, and
U is determined by Equation 6 and the random draw
of V. The resulting exploitation rate, s°+ k, is bound be-
tween O and 1.

The results are shown in Table 3. The adjustment fac-
tor k is sufficiently high for both models to produce
quite high maximum exploitation rates (0.759 and 0.405,
higher for the quadratic model) and minimum ex-
ploitation rates of 0. This is not entirely surprising; the
target escapement strategy is the one that maximizes the
average annual catch, which implies a quite variable ex-
ploitation rate. The average annual catch is raised by
20%—-30%, but this comes at the cost of greater variability
and having to shut down the fishery 10%-20% of the
time on the average. Whereas, with a constant exploita-
tion rate of 0.1, the fishery is hardly ever shut down. So,
by adjusting the exploitation according to environmen-
tal conditions it would be possible to increase the aver-
age annual catch, but at the expense of more variable
catches and having to shut down the fishery more often.

230

CONCLUSION

In this paper, we have used a surplus growth model
to analyze the California Pacific sardine fishery. The
model is capable of producing crashes in the stock even
in the absence of fishing, which has apparently occurred
several times in the past. All it takes to produce such
crashes is a few unfortunate draws of a random variable
reflecting unfavorable conditions in the environment.
Once the stock has been knocked down to a very low
level it will take a long time to recover because small
stocks produce little surplus growth despite favorable
environmental conditions. Long recovery periods after
crashes could thus be due to this small-stock-little-
growth effect rather than prolonged unfavorable envi-
ronmental regimes.

Maximizing the average annual yield from the stock
would entail a fishing strategy which aims at leaving be-
hind a certain target stock (escapement). That this kind
of strategy maximizes the returns from a fishery, given a
constant price of fish, is long since well established (Reed
1979). But for fluctuating stocks this comes at the cost
of highly variable catches; in the sardine case the fishery
would be shut down more than half of the time if the
policy aims to maximize the average annual catch. This
is indeed likely to cause inconvenience for the industry.

Alternatively, one could use a constant rate of ex-
ploitation. This would mean less variability of catches,
but they would still vary as long as the stock varies. The
exploitation rate that would maximize the average an-
nual catch is in fact quite low, only about 10%. The re-
sults from our model are in broad agreement with
simulations undertaken to determine the optimal har-
vest policy for sardine in the Pacific Fishery Management
Council’s Fishery Management Plan for Coastal Pelagic
Species (PFMC 1998), which were conducted using a
different model; there it was found that the optimal fish-
ing mortality was 0.12, implying an exploitation rate of
about 9%. Our model produces an average annual catch
that is somewhat lower, 130,000-140,000 mt compared
to 180,000 mt. The simulations in the fishery manage-
ment plan also found that a target escapement policy
would maximize the average annual catch, but would
shut down the fishery almost half the time. In our model,
the fishery is shut down even more frequently, and the
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TABLE 4

Comparison of results for four exploitation strategies.
Catches in thousands of metric tons, shut-down time in years out of 100.

Average catch

Shut-down years

Strategy Q-model Log-model Q-model Log-model
Target escapement 210 170 67 61
Constant exploitation rate 144 132 0 2
Hybrid, constant exploitation rate 158 137 11 9
Hybrid, adjustable exploitation rate 185 163 17 10

target escapement that maximizes the average catch per
year 1s greater.

The currently employed harvest control strategy in
the sardine fishery is a hybrid strategy, with a low (150,000
mt) target escapement, an exploitation rate that adjusts
according to the ocean temperature at the Scripps pier
for the last three years, and a maximum allowable catch
constraint. Our model shows that such a hybrid strategy
can indeed increase the average annual catch (without
exceeding the current maximum allowable catch: 200,000
mt), but at the cost of greater variability, again manifested
in more frequent shut-downs. Varying the exploitation
rate according to environmental conditions increases the
average annual yield still further, but also increases the
variability in catches and results in more frequent fish-
ery closures. Table 4 compares the results of the four
strategies considered.

The target escapement harvesting strategy, the con-
stant exploitation rate strategy, and the hybrid strategy
could all be implemented through individual fishing quo-
tas, which could be transferable or not. Whichever of
these strategies is applied, the total catch quota would
be set on the basis of stock assessment. With the target
escapement strategy the total allowable catch would be
set as the difference between the assessed stock level and
the escapement level, while with the constant exploita-
tion rate strategy it would be set as a prescribed share of
the assessed stock. Since stock assessment is often inac-
curate and can be improved as more is learned about the
stock during the fishing season, it could be advisable to
allow for revisions of the total allowable catch as the fish-
ing season progresses. In some other fisheries the man-
agement authorities have been compelled to revise their
quota prescriptions during the fishing period, usually
downwards.

Individual quotas could be determined as fixed shares
of the total allowable catch. Under this arrangement,
which is the one usually applied in countries where fish-
eries are regulated with individual transterable quotas,

the industry bears all the risk associated with the vari-
ability of the fish stock. As the variability in the total
allowable catch, as well as the frequency of fishery clo-
sures, depends critically on the choice of harvest policy
(exemplified here by the target escapement, constant ex-
ploitation rate, and the hybrid harvesting strategies), it
is only reasonable that the industry has a say, perhaps a
decisive say, in what rule is applied. That said, there are
clearly aspects of the management of the sardine stock
that lie beyond the purview of the industry, especially
such as have to do with the importance of the sardine
as a source of food for other species.
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