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ABSTRACT 
 
An accurate understanding of population structure is critical to the success of any management 
effort.  Although there have been a number of genetic methods developed to detect population 
structure, these methods have not been systematically tested to determine which are most effective 
in a management setting. In this study we conducted comparative performance tests of three genetic 
analytical methods – Wombling, the Monmonier algorithm, and the cluster algorithm of Waples and 
Gaggiotti.  Performance of these methods was evaluated with respect to how well they detect 
population genetic structure and use this information to construct appropriate management units for 
use in the International Whaling Commission’s Revised Management Procedure (RMP). Trials of 
each genetic method were performed in a simulated management setting across a range of 
population structure scenarios. The scenarios varied with respect to the number and sizes of 
populations and the annual rate of dispersal among them. The methods generally detected 
populations and managed them appropriately when the annual dipsersal rate was low (5X10-6/year). 
At intermediate dispersal rates (5x10-5 and 5x10-4), there was a large difference in the performance 
of the methods, with the Monmonier algorithm and the Waples and Gaggiotti clustering method 
performing very well and Wombling performing poorly.  None of the methods was able to detect 
population structure when the annual dispersal rate was 5X10-3.  Consequently, populations were 
frequency over-harvested in these trials.  Nonetheless, our results indicate that the Monmonier 
algorithm and the Waples and Gaggiotti clustering algorithm may prove to be useful tools for 
defining management units for use with the RMP.  Further testing to fully characterize the 
performance of these methods is required before final conclusions can be drawn. 

INTRODUCTION 
 

The proper management of species subject to human-caused mortality requires an 
understanding of population structure.  The most commonly used tool in evaluating population 
structure is Genetic data (Palsbøll et al., 2007; Taylor et al., submitted).  New analytical methods 
for inferring population structure from genetic data are published routinely.  Most methods were 
created to address evolutionary questions and are not necessarily well suited applied studies aimed 
at defining management units (MUs).  Though comparative performance testing of analytical 
methods has become increasingly common (Abdo et al., 2004; Chen et al., 2007; Latch and Rhodes, 
2006; Waples and Gaggiotti, 2006), few methods have been tested across the range of dispersal 
rates relevant to managers.  The Testing of Spatial Structure Methods (TOSSM) project was 
designed to fill this gap (IWC, 2004).  The purpose of the TOSSM project is to evaluate the 
performance of a range of methods across a range of different types of population structure and 
levels of connectivity relevant to management of wild populations.   

The Revised Management Procedure (RMP) is the management scheme that the 
International Whaling Commission (IWC) adopted for managing commercial harvest of large 
whales.  The RMP relies on a Catch-Limit Algorithm (CLA) for calculating catch limits (IWC, 
1994).  Martien et al. (2008b) showed that in order for the CLA to prevent over-harvest of 
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undetected populations, it is necessary to separately manage populations exchanging dispersers at 
annual rates as high as 5x10-3.  Detecting this level of population structure is likely to be very 
challenging for most analytical methods (Morin et al., In press; Palsbøll et al., 2007; Taylor et al., 
submitted; Waples and Gaggiotti, 2006).  One of the goals of the TOSSM project is to evaluate 
analytical methods to determine their utility in defining MUs for management under the RMP. 

In this study, we examine the performance of three analytical methods for identifying 
population structure – ‘Wombling’ (Crida and Manel, 2007; Womble, 1951), the Monmonier 
algorithm (Monmonier, 1973), and the clustering method described by Waples and Gaggiotti 
(2006).  Wombling uses the multi-locus genotypes and spatial locations of individual samples to 
identify populations.  It determines both the number of populations present in the study area and the 
locations of the boundaries between them.  The clustering method of Waples and Gaggiotti uses 
allele frequency data from pre-defined sampling sites to determine the number of independent gene 
pools in the study area.  It does not use spatial information, and therefore has the potential to define 
geographically discontiguous populations.  The Monmonier algorithm also uses allele frequency 
data from pre-defined sampling sites to divide the study area into groups.  However, like 
Wombling, it utilizes spatial data.  The Monmonier algorithm does not include a mechanism for 
determining how many groups should be defined.  Rather, the number of groups is an input to the 
algorithm, which then simply determines the boundary location(s). 

Though both the Waples and Gaggiotti algorithm and Monmonier algorithm have been 
subjected to comparative performance testing (Dupanloup et al., 2002; Waples and Gaggiotti, 
2006), none of these methods have been tested at the relatively high dispersal rates relevant to 
management under the CLA, and none have been tested in a management context.  In this paper, we 
present preliminary results of performance tests of these three methods.  Performance tests were 
performed using the TOSSM package (Martien et al., 2008a), which is an R package developed as 
part of the TOSSM project.  The TOSSM package can be used to simulate management of 
populations under the RMP.  Within the package, management units (MUs) are defined by a user-
defined Boundary Setting Algorithm, or BSA.  We developed BSAs based on the three methods 
examined in this paper, and evaluated their ability to define MUs that protected populations from 
over-harvest.  Though preliminary, our results shed light on the utility of these three methods as 
management tools. 

METHODS 
 
We used the TOSSM package to examine the performance of each of these three BSAs. Trials were 
performed across a range of population structure scenarios (Table 1, Figure 1). These scenarios 
involved one, two, or three adjacent populations (Figure 1A-D), with annual dispersal rates among 
populations varying from 5x10-6 to 5x10-3. The carrying capacity (K) of the entire study area 
(summed across populations) was 7500 and the maximum sustainable yield rate (MSYR1+) was 4% 
for all simulations. Either six or twelve contiguous sampling polygons, from which genetic samples 
were collected, covered the entire study area. Twelve sampling polygons were used in the case of 
the Monmonier-BSA (Figure 1F), which will not accept as input sampling sites situated along a 
line.  Trials involving the other two BSAs used six linearly arranged sampling polygons (Figure 
1E). In all other respects— spatial situation of populations, density and distribution of animals, and 
number of samples collected—the simulations were identical for all three BSAs. 
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Table 1. Population structure scenarios used in trial simulations. 
Scenario #populations Population K Dispersal Rates 
Panmixia 1 7500 NA 
‘2-even’ 2 3750/3750 5x10-6, 5x10-5, 5x10-4, 5x10-3 

‘2-uneven’ 2 750/6750 5x10-6, 5x10-5, 5x10-4, 5x10-3 
‘3-even’ 3 2500/2500/2500 5x10-6, 5x10-5, 5x10-4, 5x10-3 
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Figure 1. Depiction of populations (A-D) and sampling polygons (E-F) used in the simulations.  

 
Each simulation consisted of a single year in which historic harvest took place, followed by 100 

modern management years. In the historic harvest year, the initial abundance of the left-most 
population (always referred to as population 1) was reduced to 0.3 of its carrying capacity.  In trials 
involving a single population, the entire population was reduced to 0.3K.  This initial depletion 
mimics the historic depletion that has taken place in many cetacean populations worldwide. Also in 
the first simulation year, a total of 600 genetic samples were collected. These samples were evenly 
distributed across the sampling polygons and formed the basis for genetic analysis and MU 
definition by the BSAs. 

 In the 100-yr modern management period, populations were harvested in each MU defined 
by the BSA according to the catch limits calculated by the IWC’s Catch-Limit Algorithm (CLA; 
IWC, 1994). Abundance was estimated every fifth year of the simulation, and the catch limit re-
calculated accordingly. The parameter controlling the relationship between the abundance estimates 
and their coefficient of variation (CV) was set such that when all populations were at carrying 
capacity, the CV equaled 0.037. This CV level is unrealistically low (Taylor et al., 2007).  It was 
chosen because Martien et al. (2008b) showed that for nearly all population scenarios we examined, 
this CV level results in failure to adequately conserve populations if population structure goes 
undetected.  Thus, this parameter setting ensures the performance of BSAs as reported in our results 
will depend on their ability to accurately define MUs. 

 The conservation performance of the BSAs was assessed relative to one of the performance 
metrics used when developing the CLA, namely, the probability that a population initially depleted 
to 0.3K recovers to greater than 0.54K after 100 years of managed harvest.  Recovery was evaluated 
only for population 1, which was the most vulnerable population in our simulations. Population 1—
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henceforth referred to as P1—was the population subjected to historic harvest in simulations.  P1 
was pressured further by a spatial bias in harvest. In all simulations, the study area was divided into 
ten equally-sized harvest intervals.  Harvest was begun in the left-most harvest interval, and then 
proceeded to the right as each interval was extirpated. In addition to the spatial bias in both historic 
and managed harvest, the carrying capacity, K, of P1 also represented only 1/10 of the total K in the 
‘2-uneven’ trials (Table 1). The combination of these factors leads to a high vulnerability of P1 to 
overharvest, an important situation to simulate from a conservation management perspective.  

 
Hyptest-BSA 

The hyptest-BSA is based upon a method originally proposed by Waples and Gaggiotti (2006) 
as a simple way to test for gene pool independence. It treats sampling sites as putative independent 
populations, performing pairwise tests for genetic differentiation between the each of the sites. 
Sampling sites that are not significantly differentiated are combined into the same ‘network’. Two 
sampling site can share a network vicariously through intermediate sampling sites (ie. if A is 
connected to B, and B is connected to C, then A, B, and C are in the same network). A particular 
sampling site forms its own network if all pairwise G-tests in which the site is included are 
significant. 

Hyptest-BSA defines each network as a separate MU. Within the BSA, genetic differentiation 
between sampling sites was assessed using multi-locus G-tests conducted using the R package 
‘hierfstat’ (Goudet et al., 1996).  The threshold at which tests are considered statistically significant 
can be passed as an argument to the BSA.  For all simulations reported here, we used the default 
value of alpha = 0.05.   

 
Wombsoft-BSA 

 Wombsoft-BSA is based on the work of Womble (1951), who proposed a method for 
identifying spatial regions of maximum change amongst multiple organismal traits, be they 
morphometric or genetic. The ‘wombsoft’ package (Crida and Manel 2007) uses this ‘wombling’ 
method with further refinements (Fan and Gijbels, 1996). The wombsoft package takes as input 
genetic data (either haploid or diploid, with the number of loci chosen by the user), and computes a 
systemic function from the degree of allele frequency change across all loci at each grid cell on a 
map. A binomial test then assesses the significance of potential genetic boundaries.  

 In testing the wombsoft package, multiple iterations were initially run with simulated 
genetic data to tune the input parameters used. Arguments for the various wombsoft functions were 
set at the values that optimized performance. The bandwidth H— the relative size of the entire study 
area used to define the systemic function at each grid cell—was set at 10. A percentile threshold, pB, 
above which the systemic function at a grid cell will be considered as a candidate boundary, was set 
(at the wombsoft authors’ suggestion) to 0.3. The significance level for binomial tests was set at 
0.05. An attempt to reduce border effects from any potential lack of data at the study area periphery 
was made by using wombsoft’s DataMirror function, which duplicates multilocus datapoints in 
an area around the border defined by radius m (set to 10).  Though the current version of Wombsoft-
BSA always uses these parameter values, in future versions of the BSA these parameters will be 
user-specifiable arguments. 

 The information supplied by the BinomialTestCodominant function of wombsoft 
includes a matrix of binomial test results by grid cell across the entire study area. In this matrix, 
patches of the study area isolated by boundaries significant at the 0.05 level were identified, and 
each unique patch was defined as a separate MU. The resulting wombsoft borders are not perfectly 
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linear but polygonal and vary in thickness. Wombsoft-BSA splits these border areas to create MUs 
that cover the study area without overlapping.  

 
Monmonier-BSA 

The Monmonier Algorithm (Dupanloup et al., 2002; Monmonier, 1973) is a method of drawing 
boundaries through geographic space so as to maximize some measure of difference across the 
boundaries.  In genetic applications, the goal is to maximize genetic differentiation across 
boundaries.  The method begins by drawing a Voronoi diagram (Voronoi, 1908), which divides the 
entire study area into multi-sided Voronoi tiles.  Each tile is centered on a sampling site and 
delineates the ‘neighborhood’ of that sampling site, such that every point within the tile is closer to 
that sampling site than it is to any other sampling site.  The edges of the Voronoi tiles separate 
adjacent sampling sites. 

Once the Voronoi diagram has been drawn, the genetic differentiation between all adjacent 
sampling sites (i.e., those separated by an edge) is calculated.  All edges that terminate on the 
boundary of the study area are identified, and the one across which genetic differentiation is highest 
is chosen as the first boundary segment.  The edges that abut the first boundary segment are 
examined, and the one across which differentiation is highest is chosen as the next boundary 
segment.  The boundary propagates across the study area in this way until it meets another boundary 
segment or the study area boundary, at which point the boundary is complete.  Once an edge has 
been chosen to as a boundary segment, the choice is never reconsidered.  Thus, the final boundary 
defined by the algorithm may not maximize genetic differentiation between the groups it defines. 

Monmonier BSA uses Wright’s FST as the measure of genetic differentiation between sampling 
sites.  FST is calculated with the R package ‘eiaGenetics’1.  The Voronoi diagram is calculated with 
the R package ‘deldir’ (Turner, 2008), using the centroid of each sampling polygon as the point 
location of the sampling site.  The BSA does not include any means for determining how many 
boundaries should be drawn.  The current version of the BSA generates a single boundary, which 
defines two MUs.  Consequently, Monmonier BSA was only applied to the 2-population scenarios 
listed in Table 1.  Future versions will allow the user to specify the number of MUs to be defined.   

RESULTS 

The three BSAs we examined varied substantially in their ability to define MUs that adequately 
conserved populations.  Hyptest-BSA performed well at accurately defining the correct number of 
MUs in all trials except for those with the highest annual dispersal rate (Table 2).  In trials with 
annual dispersal rates of 5x10-4 or lower, hyptest-BSA never defined too few MUs, though there 
was a slightly tendency for it to define too many MUS.  This tendency was most pronounced in the 
‘3-even’ trials, for which hyptest-BSA defined too many MUs 15-20% of the time, sometimes 
defining as many as 5 MUs (Table 2).  There was a dramatic dropoff in the performance of the 
hyptest-network BSA when the annual dispersal rate reached 5X10-3.  In these trials, hyptest-BSA 
nearly always defined a single MU.  The ability of hyptest-BSA to adequately protect P1 (the 
population most vulnerable to overharvest) largely mirrored its ability to accurately determine the 
number of MUs that should be defined (Table 3).  This reflects the fact that when hyptest-BSA 
defined the correct number of MUs, the MU boundaries nearly always corresponded perfectly to 
actual population boundaries. 
 
                                                 
1 Written by and available upon request from Eric Archer (Eric.Archer@noaa.gov) 
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Table 2. Performance of hyptest- and wombsoft-BSAs in accurately determining the number of management units based 
on genetic data over 100 trials:  (-) — number of MUs was underdefined, (acc) — number of MUs was accurately 
defined, (+) — number of MUs was overdefined. 

hyptest wombsoft 
Scenario 

Dispersal 
rate - acc + - acc + 

Panmixia NA 0 100 0 0 93 7 
5X10-6 0 95 5 0 99 1 
5X10-5 0 99 1 4 95 1 
5X10-4 0 98 2 92 7 1 

2-even 

5X10-3 98 2 0 91 8 1 
5X10-6 0 100 0 12 44 44 
5X10-5 0 99 1 85 11 4 
5X10-4 0 100 0 93 6 1 

2-uneven 

5X10-3 100 0 0 92 6 2 
5X10-6 0 81 19 0 99 1 
5X10-5 0 86 14 51 48 1 
5X10-4 0 87 13 98 2 0 

3-even 

5X10-3 88 11 1 100 0 0 
 

Table 3. Percentage of trials in which P1 went extinct or was depleted to less than 0.54K. 
  hyptest wombsoft Monmonier 
  extinct <0.54K extinct <0.54K extinct <0.54K 
Panmixia NA 0 0 0 0 -- -- 

5X10-6 0 0 0 0 0 0 
5X10-5 0 0 0 2 0 0 
5X10-4 0 0 0 39 0 0 

2-even 

5X10-3 0 21 0 21 0 24 
5X10-6 2 9 80 96 0 0 
5X10-5 3 9 100 100 0 0 
5X10-4 0 2 75 100 10 10 

2-uneven 

5X10-3 0 100 0 100 0 78 
5X10-6 0 0 0 0 -- -- 
5X10-5 0 0 2 3 -- -- 
5X10-4 0 0 67 92 -- -- 

3-even 

5X10-3 0 48 0 80 -- -- 
 

Wombsoft-BSA did not conserve P1 as well as hyptest-BSAs. While wombsoft-BSA detected 
populations accurately in the ‘2-even’ and ‘3-even’ trials with annual dispersal rates of 5X10-6, 
performance was poor in most other trials, with wombsoft-BSA typically defining only a single MU 
regardless of the number of populations actually present (Table 2). When wombsoft-BSA did 
specify the correct number of MUs, inspection of the MU polygons created showed that the polygon 
boundaries often did not coincide with population boundaries. Instead, MUs were often created in 
areas where no genetic gradient would be expected. These MUs were oftentimes small and near the 
border of the study area.  This poor correspondence between population boundaries and MU 
boundaries resulted in wombsoft-BSA failing to protect P1 in nearly all of the ‘2-uneven’ 
simulations (Table 3), even in instances where it defined the correct number of MUs. 

The sensitivity of the wombsoft-BSA results to errors in boundary placement is illustrated in 
Figure 3, which shows the MUs defined in two replicates of the ‘2-uneven’ trials for which annual 
dispersal rate was 5x10-6.  In the first replicate (Fig. 3A), an MU was placed directly on top of and 
encompassing P1. In the second replicate (Fig. 3B), an MU was placed in roughly the correct 
position, but covering less than half of P1.  A second MU covered the remainder of P1 and the rest 
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of the study area.  The final abundance of P1 in the first replicate was 633 (0.85K).  In the second 
simulation, P1 was extirpated.  In the second replicate, the protection P1 gained by having a small 
MU largely contained within it was not enough to offset the fact that a large portion of P1 was 
managed in an MU along with the much larger second population. 
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Figure 3. Examples of wombsoft-BSA MU placment relative to P1 in ‘2-uneven’—5X10-6 trials. 

 
The Monmonier-BSA performed well at all but the highest dispersal rate (Table 3).  Because 

Monmonier-BSA always defines 2 MUs, its performance was evaluated only with respect to the 
accuracy of boundary placement in the ‘2-even’ and ‘2-uneven’ trials.  P1 was not depleted to 
<0.54K in any of these trials at the two lowest dispersal rates.  When the annual dispersal was 5x10-

4, P1 again recover to greater than 0.54K in all of the ‘2-even’ trials and 90% of the ‘2-uneven’ 
trials.  Like the other two BSAs, monmonier-BSA generally failed to accurately define MUs at the 
highest dispersal rate (5x10-3) (Table 3).  

 
DISCUSSION 

Both hyptest-BSA and monmonier-BSA performed well at defining MUs that prevented the 
over-harvest of P1.  Hyptest-BSA met the performance objective of allowing P1 to recover to 
greater than 0.54K in more than 90% of replicates, except when the annual dispersal rate was 5x10-3 
(Table 3).  In the trials consisting of a single population, hyptest-BSA accurately defined a single 
MU 100% of the time (Table 2).  In the two-population trials (‘2-even’ and ‘2-uneven’), it nearly 
always defined the correct number of MUs when the annual dispersal rate was 5x10-4 or lower.  In 
three-population trials (‘3-even’), it showed a tendency to define more than three MUs.  Though 
such an ‘over-protection’ error does not harm the conservation performance of the BSA, it can place 
an undue burden on whalers by reducing catch limits or increasing the effort required in order to fill 
their quotas.  Though we did not collect catch and effort data in our simulations, these data are 
generated by the TOSSM package and need to be considered in future evaluations of all BSAs.  

The performance of monmonier-BSA was comparable to that of hyptest-BSA in the ‘2-
even’ trials.  However, it performed slightly better in the ‘2-uneven’ trials.  The version of 
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monmonier-BSA used in this study always defines two MUs.  However, since hyptest-BSA defined 
two or more MUs in all of the ‘2-uneven’ trials, the superior performance of monmonier-BSA in 
these trials reflects a lower rate of boundary placement errors rather than an advantage in 
determining the number of MUs.  The lower rate of boundary placement errors is particularly 
noteworthy due to the fact that the monmonier-BSA trials involved twice as many sampling sites as 
the hyptest-BSA trials.  The greater number of sampling sites means that monmonier-BSA was less 
constrained and therefore had more opportunities to make mistakes than hyptest-BSA.  Additional 
trials of hyptest-BSA utilizing twelve sampling sites will be necessary in order to directly compare 
its performance to that of monmonier-BSA. 

Though monmonier-BSA exhibited the best performance of the three BSAs we tested, it 
cannot be considered a complete method of defining MUs.  Monmonier-BSA does not include any 
mechanism for determining the number of MUs that should be defined.  Its performance in these 
trials is therefore predicated on the assumption that the correct number of MUs is known a priori.  
Further development of this BSA should therefore include testing its performance when combined 
with other methods intended for evaluating the demographic independence (or lack thereof) of 
groups defined by the Monmonier algorithm.  For instance, the Monmonier algorithm could be 
combined with methods designed to estimate dispersal rates between putative populations, such as 
Migrate (Beerli and Felsenstein, 1999; 2001), BayesAss (Fisher et al., 2002), or LAMARC 
(Kuhner, 2006). 

None of the BSAs was able to accurately identify population structure when the annual 
dispersal rate was 5x10-3.  A recent study examining the performance of the CLA when population 
structure was not correctly identified showed that detecting such a dispersal rate is necessary in 
order to avoid over-harvest of undetected populations (Martien et al., 2008b).  This conclusion is 
supported by the results of this study, which show that P1 failed to recover to greater than 0.54K in 
most of the trials utilizing this dispersal rate.  Though low enough to render the populations 
demographically independent (Palsbøll et al., 2007; Taylor, 1997; 2005; Waples and Gaggiotti, 
2006), an annual dispersal rate of 5x10-3 is high enough to largely counteract the effects of genetic 
drift.  Consequently, populations exchanging dispersers at this rate will exhibit very low levels of 
genetic differentiation, and therefore be very difficult to detect using genetic methods (Morin et al., 
In press; Palsbøll et al., 2007; Taylor et al., submitted).  Though P1 failed to recover to greater than 
0.54K in the majority of trials with this dispersal rate, none of these trials resulted in the complete 
extirpation of P1.  Rather, P1 was ‘rescued’ by recruitment via dispersal from its neighboring 
population.   

All three BSAs had lower performance in the ‘2-uneven’ trials than they did in the trials 
where the population polygons were of equal size.  Wombsoft-BSA performed particularly poorly 
in these trials.  Unlike hyptest-BSA and monmonier-BSA, both of which work by maximizing 
differentiation between sampling sites, wombsoft-BSA searches for gradients in allele frequencies 
across the entire study area.  These gradients may be harder to detect when they occur close to the 
edge of the study area, as was the case for the ‘2-uneven’ trials (Fig. 1).  It is possible that more 
thorough testing of alternative parameters to use in the WombSoft package would yield more 
accurate boundary placement in these trials. 

Wombsoft-BSA is also disadvantaged relative to the other BSAs because it works at the 
level of the individual and disregards sampling sites.  Monmonier-BSA and hyptest-BSA both 
assume that all animals within a sampling site belong to the same MU, and therefore only have the 
much easier task of deciding which MU each sampling site belongs to.  Because there are only a 
limited number of ways that the sampling sites can be combined into MUs, the chance of errors is 
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greatly reduced.  The advantages of working at the sampling site level rather than the individual 
level were magnified in our trials due to the fact that our sampling polygons covered the entire 
study area.  Thus, hyptest-BSA and monmonier-BSA had only to assign sampling sites to MUs and 
did not have to divide up any area between sampling sites. 

Because hyptest-BSA and monmonier-BSA require that samples be grouped a priori into 
sampling sites, they are vulnerable to errors in sampling site definition.  For instance, if a sampling 
site included samples from two different populations, both hyptest-BSA and monmonier-BSA 
would be precluded from the outset from placing an MU boundary in exactly the correct location.  
Wombsoft-BSA does not suffer from this shortcoming. 

Though none of the BSAs was able to detect population structure across the full range of 
dispersal rates required, our results suggest that hyptest-BSA and monmonier-BSA show promise as 
methods for defining MUs in species managed under the IWC’s CLA.  However, further testing of 
all of these BSAs is necessary before firm conclusions can be drawn.  All of our trials were 
conducted using a relatively large total sample size of 600, which is larger than the sample sizes 
available for many species of large whales.  Reduced sample size will reduce the methods’ ability to 
accurately detect population structure.  Conversely, with larger samples, some of the BSAs may be 
able to detect population structure at annual dispersal rates of 5x10-3 or higher, something they 
failed to do in our simulations.  The performance of hyptest-BSA and monmonier-BSA is also 
likely to be influenced by the number and spatial configuration of sampling sites.  In real studies, 
both the number and spatial complexity of sampling sites are likely to be higher than they were in 
our simulations, increasing the complexity of the problem the BSAs face and likely reducing their 
performance.  Thus, further testing with more realistic sampling polygons is warranted. 
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