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Abstract 

Genetic data are often critical for defining populations for management, and recent IWC policies have 
dictated sharing of data so that all interested parties can critically review and analyze them. Genetic data 
quality standards have been discussed, but guidelines have not yet been agreed to. We present a template for 
quality control and quality analysis (QC/QA), outlining the major steps that we apply to two of the most 
common types of genetic data, mitochondrial DNA sequences and microsatellite genotypes. These steps can 
serve both as guides to conservation geneticists, and as an initial protocol to be used by managers and others 
to evaluate genetics studies to determine whether they may hold up against legal and scientific challenges. 

 

Introduction 

Genetics studies are playing a substantial role in delimiting units to conserve in marine animals. These 
decisions in turn affect conservation and management with significant impacts on not only the animals but 
also the human enterprises that depend upon the animal populations. There have recently been full or partial 
fisheries closures resulting from such decisions, and debates of the merits and uses of genetic data used to 
define conservation units (King et al. 2006, Ramey II et al. 2007). Efficient use of genetic data when sample 
sizes are expected to increase through time also requires planning to allow tracking of additions, changes 
and corrections, careful documentation of laboratory protocols to ensure that current datasets will be 
compatible with expected future data, and mechanisms to ensure access to the most up-to-date results by all 
researchers engaged in the analysis.  For these reasons, the methodology used for collecting genetic data and 
their application in management decisions should be as transparent as possible, and methods for assessment 
of data quality and the results of such assessments should also be clearly described and controlled.  

 As a potential template for quality control and quality analysis (QC/QA), we outline the major steps that 
we apply to two of the most common types of genetic data, mitochondrial DNA sequences and 
microsatellite genotypes. Many of these steps can and should also be applied to any type of genetic data 
used to make management decisions. These steps can serve both as guides to conservation geneticists, and 
as an initial protocol to be used by managers and others to evaluate genetics studies to determine whether 
they may hold up against legal and scientific challenges. A summary of the steps in a genetics study, with 
types of quality control that can be implemented to maximize data quality and transparency, is shown in 
Table 1. 

 Establishment of the biological question is critical, as it will affect the choice and number of markers 
(loci) used, analytical methods, decision criteria, and interpretation of data, all of which play different roles 
in the detection of population structure. (Taylor & Dizon 1996, Taylor et al. 1997, Taylor & Dizon 1999, 
Palsboll et al. 2007, Morin et al. 2008, Morin & Dizon in press, Taylor et al. submitted). For the purposes of 
this paper, we will focus on the effects of data quality on the interpretation of data under the assumption that 
the focus of the study has been determined and appropriate markers have been selected, and that those 
markers include (but are not necessarily limited to) mitochondrial DNA sequences and nuclear 
microsatellite genotypes.  

 We structure the paper to follow, step-by-step, the process from receiving samples to making data 
available that are ready for analysis.  We begin with steps to quantify the quality of the DNA, and then 
separately treat mtDNA sequencing and microsatellite genotyping and the relevant laboratory and data 
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quality checks. 

 

Quality Control/Quality Analysis Considerations at each Step of Genetic Analysis 

Step 1: Assessing sample quality prior to genetic analysis 

For all genetic studies, variation in sample quality will be a consideration (e.g., degraded samples from 
stranded animals, non-invasively collected samples such as faeces and sloughed skin, samples degraded 
from long-term storage or improper handling, etc.). Few studies can claim that sample quality is equal for all 
samples, and that variation in quality has not affected the researchers’ ability to generate accurate data. 
There are many publications discussing methods to assure data accuracy for samples known to be of poor 
quality, (e.g., Navidi et al. 1992, Taberlet et al. 1996, Morin et al. 2001, Paetkau 2003, McKelvey & 
Schwartz 2004), and the need to estimate error rates (Bonin et al. 2004, Broquet & Petit 2004, Morin et al. 
2007b).  

Sample quality variation can be quantified prior to attempting to generate genetic data, resulting in cost 
and time savings as well as higher quality data. Although not strictly necessary, DNA sample quality 
analysis prior to genetic data generation can ensure, for example, that low quality (and therefore highly error 
prone) samples are either removed from the study, or replicated sufficiently to ensure accuracy. This is 
particularly important for studies involving sample types that are very likely to be of poor quality (e.g., non-
invasive and historical samples; Taberlet et al. 1996, Morin et al. 2001, Paetkau 2003, McKelvey & 
Schwartz 2004, Morin & McCarthy 2007), but can also be important for any study, as sample quality can 
vary significantly even when samples appear be of relatively high and uniform quality. Indeed, the presence 
of even a single poor quality sample in a small population sample can result in false inference of population 
structure (Morin & LeDuc 2004, Morin et al. 2007b).  

 For these reasons, we strongly recommend that samples be pre-screened for at least DNA concentration 
prior to beginning a study with nuclear markers. When samples are expected to meet a minimum threshold 
level of DNA (e.g., 20ng per PCR), quantification by absorbance or fluorescence spectrophotometry (e.g., 
Pico Green) can be rapid and inexpensive, allowing sample concentrations to be normalized to produce 
consistent results. When samples are expected to be of low quality or concentration, more sensitive methods 
such as quantitative PCR (qPCR) can provide highly accurate data on DNA concentration, and even on 
relative abundance of DNA at multiple fragment sizes, to optimize sample selection and data replication 
criteria (Morin et al. 2001, Morin et al. 2007a, Morin & McCarthy 2007). 

Step 2: Data Generation 

Sample controls: 

To estimate error rates once data have been generated, replicated blind controls that can be used to compare 
genotypes generated throughout the data generation process are required, and should be specified in the 
initial study design. These controls serve several purposes: 

1. Random sample replication to identify random and systematic errors. A subset of samples (a few 
percent of the total) scattered throughout the samples and genotyped/sequenced at all loci will help 
to identify errors that have to do with both sample handling and raw data interpretation.  

2. Control samples (2-3) replicated in every genotyping experiment (PCR and electrophoresis) serve 
to verify alleles and normalize sizes across time, laboratories and technologies. 

3. Targeted replication of samples after the majority of data are generated will allow verification of 
data quality and can also detect sample handling errors (e.g., reversal of a sample plate). This 
should involve some samples from every sample group run together, and result in ≥10% replication 
of the data set (in combination with the controls from (1) and (2)).  

 

Double blind genotype scoring: 

In addition to controls, genotype scoring can be prone to biases and common error types. At least 10% of 
microsatellite genotypes (across all loci) should be scored (blind to the original scores) by a second 
experienced genotyper. This serves to identify particular loci that may be difficult to score consistently, and 
biases in the way one genotyper interprets raw data.  

 

Electronic capture of raw and scored genotypes: 
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Most genotyping now makes use of fluorescently labelled PCR products detected by automated detection 
systems (e.g. capillary electrophoresis), followed by automated or semi-automated allele size scoring. The 
data that can be captured automatically from the software include sample names, raw allele sizes, 
fluorescence peak heights, scored genotypes, fluorophore, run date, instrument type, capillary length, 
polymer, etc. When data may be compared across time or laboratories, these ancillary data can be critical 
for proper allele binning and data quality checking. Electronic capture of the data in a simple database (e.g., 
Microsoft Access) can reduce errors due to manual transcription of genotypes to spreadsheets, and has the 
added benefit of easily capturing all experimental results, including those that failed to be scored. Failed 
genotypes can be indicative of both sample and marker quality problems, so provide important information 
for quality analysis. An example of some of the data that can be automatically captured for storage in a 
database is shown in Table 2. This type of database storage of genotype data simplifies analysis of 
replicates and calculation of error rates, as well as facilitating more sophisticated queries of the data for QC, 
data analysis, and data reporting. 

 

Allele size binning: 

One of the biggest technical difficulties for microsatellites is the variability in allele size that can be 
introduced because of variation in chemical and physical conditions. Electrophoretic migration can be 
affected by both size and nucleotide composition of the alleles, plus the addition of fluorescent molecules 
for detection. Inferred allele size is, therefore, not always perfectly correlated with the actual size of the 
amplified alleles; allele sizes can differ by more or less than the size of the microsatellite repeat unit (e.g., a 
CA repeat can have alleles that differ on average by 1.8-2.2bp; Amos et al. 2007). In addition, 
electrophoresis is itself variable, and can cause allelic size differences of up to 7bp across time, 
technologies, and instruments (LaHood et al. 2002, Davison & Chiba 2003). Several methods have been 
introduced to facilitate normalization of alleles, but all require that controls or allelic ladders (LaHood et al. 
2002) are included with each run to verify that alleles are correctly assigned to bins (Amos et al. 2007, 
Morin et al. in prep). 

 

Step 3: Assessing sample-specific data quality 

The other source of error is sample-dependent, and needs to be evaluated on a per-sample basis. Several 
methods can be used to investigate data quality for individual samples (Table 3), ranging from simple 
calculations, like the number of homozygous genotypes per individual, to more complicated analysis of the 
effects of individual genotypes on deviations from Hardy-Weinberg Equilibrium (HWE). Indeed, if genomic 
DNA quantity and/or quality is assayed, the correlation of DNA concentration (or other qualitative or 
quantitative quality measures) with error rates can be used to predict which samples might require additional 
replication or error checking to ensure correct genotypes and low error rates (Morin et al. 2001, Morin & 
McCarthy 2007).  

With or without such DNA characterization, individual samples with unusual characteristics warrant 
extra scrutiny to verify genotypes and sequences, as these samples are both more likely to contain errors and 
more likely to bias analytical results. For microsatellite data, a simple analysis of the number or percentage 
of homozygous genotypes per individual can rapidly identify individuals likely to have experienced high 
levels of “allelic dropout” (failure to amplify one of the alleles in a heterozygote). Plotting the values 
indicates which samples are outliers from the general population (figure 1), so that genotypes can be 
replicated to correct seemingly homozygous genotypes that are due to allelic dropout. In some cases it might 
be better to simply exclude the samples from further analysis rather than spend the time and money to 
replicate a poor quality sample if exclusion doesn’t significantly impact sample size in the strata or 
introduce bias (e.g., poor quality samples disproportionately present in one stratum). 

Mitochondrial sequence data should also be carefully scrutinized for sample-specific errors.  Simply 
calculating haplotype frequencies and the nucleotide frequency at each position across sequences can reveal 
anomalous data.  If a sample is found to have a unique haplotype sequence (i.e., a haplotype not found in 
any other sample), then the trace file should be checked to ensure that all nucleotides were called correctly.  
If there is uncertainty about any of the nucleotides, the sequence should be replicated.  This is especially true 
if the haplotype differs from other haplotypes by only a single nucleotide.  Similarly, any nucleotide 
substitution that is unique to a single haplotype should be checked.  Finally, unique haplotypes containing 
transversion substitutions should be checked and replicated. 

 Although it is not practical to detect and correct every error, some errors have potentially greater impact 
on analysis than others. One example of this is the presence of erroneous homozygous genotypes at rare 
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alleles. Presence of a single rare homozygous genotype in a stratum has been shown to cause significant 
deviations from Hardy-Weinberg equilibrium, resulting in false inference of population structure (Morin et 
al. 2007b). Jackknife analysis of genotypic data (repeated analysis with the removal of one sample at a time) 
can reveal which samples have the greatest effect on HWE, so that they can be re-checked to verify the 
genotypes (Morin et al. 2007b). 

 Finally, sample replication can include both intentional and unintentional replicates, e.g., samples 
included multiple times in the data generation process specifically to control for variability across sample 
runs, time, laboratories etc., and samples unknowingly replicated because animals were sampled multiple 
times or because of sample handling errors. These replications can be identified by using software that 
identifies genotypes that match at more loci than is typical for unrelated individuals (e.g., DropOut; 
McKelvey & Schwartz 2004). When no genotyping errors are present in the replicated samples, these are 
easy to identify because of perfect genotype matches at all loci. Genotyping errors introduce uncertainty, 
however, and software that identifies near matches can help to identify potential replicates to be re-checked. 
It is important to note that even with low error rates, the chances that replicated samples will not match at all 
loci increases with the number of loci. For example, an error rate of 1% per genotype, which is typical of 
microsatellite studies, would result in a 40% probability that the same sample genotyped twice for 20 
microsatellites wouldn’t match at all alleles.  

 

Step 4: assessing data set quality 

Mitochondrial DNA sequence data are rarely evaluated for error rates or types, as it is generally 
assumed that, especially for current data sets, sequencing technologies have advanced to the point where 
sequencing is routine and generally of high quality. Nevertheless, there can be systematic errors in mtDNA 
sequencing that should be checked and reported. Replication of a portion of the samples is important to 
identify random and systematic sequencing errors. In addition, a potential error that is often ignored and 
difficult to detect is the presence of nuclear copies of mitochondrial sequences, or NuMts (Lopez et al. 1994, 
Bensasson et al. 2001). NuMts are pervasive in some species (e.g. Tursiops sp; Dunshea et al. 2008), and 
can easily be mistaken for actual mitochondrial haplotypes, potentially leading to false inference of 
population structure or other analysis errors. Several methods have been described that can in most cases 
help to identify NuMts (Bensasson et al. 2001, Dunshea et al. 2008). 

For microsatellite data, the use of a set of replicated controls results in an estimate of the overall, 
averaged error rate for the whole data set, under the assumption that the control samples reflect the quality 
of the overall data set. In reality, however, the control samples rarely reflect average quality. This is because 
controls are often chosen because they represent samples that have yielded high quantity and/or high quality 
DNA that won’t be exhausted during the data generation period, and which will yield data that can be used 
for inter-experiment normalization and validation as well as estimates of error rates due to experimental 
factors (sample handling, variation in experimental conditions, systematic errors) and genetic marker 
characteristics (e.g., short-allele dominance, allelic stutter, PCR product adenylation; reviewed in van 
Oosterhout et al. 2004, Morin et al. 2007b). 

Finally, genetic marker characteristics, especially for microsatellites, can be highly variable. 
Microsatellite data quality can be affected by repeat complexity, the number of alleles, the size range of 
alleles, tendency of microsatellite PCR products to “stutter” (van Oosterhout et al. 2004) or be adenylated 
(also called “plus-A”), and variation in experimental conditions (LaHood et al. 2002, Davison & Chiba 
2003). Many papers have been published describing these issues and suggesting methods to deal with them, 
but every dataset differs, so it is up to individual researchers to decide which markers can be genotyped 
reliably and accurately. There are some analytical ways to assess marker quality, however, that can be used 
to decide whether markers should ultimately be included or excluded from analysis (Givens et al. 2007). 
This has been the subject of intense debate for some data sets at previous IWC meetings, and ultimately the 
decision to exclude a marker must be justified by objective description of marker issues (such as 
identification of null alleles, high failure rates, inconsistent genotypes, binning problems, etc.). Significant 
deviation from Hardy-Weinberg expectations within a population can be indicative of marker problems, but 
should not in itself be considered reason to exclude a marker from analysis. For this reason, it is imperative 
that researchers routinely assess and report marker quality control issues thoroughly enough to justify 
exclusion of data from analysis. Reasons for marker exclusion include (but are not limited to) evidence of 
systematic errors or unusually high error rates, high-frequency null alleles, or high frequency of PCR failure 
or failure to score genotypes (relative to other markers). When marker quality is questionable but not 
obviously poor, analysis of data with and without a marker can help to determine whether a single marker is 
causing a particular result.  
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Step 5: reporting data 

For management decisions based on genetic data, transparency in analysis and data quality will be 
critical, as the survival of species and populations is at stake, and economic and personal impacts can be 
substantial. Scientific and legal challenges can be costly and delay implementation of management 
decisions. For these and other reasons, we advocate standards for genetic data reporting that go far beyond 
what is typical for academic research reporting, summarized in Table 4. Specifically, raw data need to be 
made available for replication of the analysis and quality evaluation by independent researchers. We do not 
advocate that scientists simply post all data for anyone to use as they see fit, but rather that data be made 
available on request, and under legally binding limits on their use by those requesting the data. This protects 
the scientific investment of those generating the data while creating necessary transparency for 
management. In addition to raw data, a thorough presentation of the quality control methods and results as 
discussed above will provide scientists evaluating the results with appropriate context to judge the data 
quality, and can be used by managers to determine whether to request additional analyses or opinions on 
data quality. As an example of how samples and genetic markers have been checked, and QA/QC steps 
documented, we have provided a summary of data QA/QC for a sperm whale genetic project currently in 
progress at the SWFSC (Table 5). 
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Table 1: Application of quality control steps in each phase of a conservation genetics study. 

Project stage Quality control References 
Study design Determine level of differentiation that is relevant to 

conservation 
(Moritz 1994, Taylor & Dizon 1999, Palsboll et al. 2007, Taylor et 
al. submitted) 

  Selection of samples and genetic markers and statistical power
analysis 

 (Taylor & Dizon 1996, Ryman & Palm 2006, Morin et al. 2007b, 
Narum et al. 2008) 

Data generation Marker quality check (allele binning, allelic stutter, null 
alleles, NuMts, etc.) 

(van Oosterhout et al. 2004, Dunshea et al. 2008) 

 Replication controls for estimation of error rates and detection 
of systematic errors 

(Taberlet et al. 1996, Morin et al. 2001, Miller et al. 2002, Bonin et 
al. 2004, Broquet & Petit 2004, McKelvey & Schwartz 2004, Morin 
et al. 2007b) 

  Checks for sample-specific variation in data quality (Morin et al. 2001, Morin & LeDuc 2004, Morin et al. 2007a, Morin 
& McCarthy 2007) 
 

Data presentation Publication of raw/normalized allele sizes; Sequences in 
public databases; samples used in each stratum, description of 
sample exclusion procedures/policies 
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Table 2: Some of the data captured by the software “GeneMapper” (Applied Biosystems) that can be exported from the software and stored in a database. 

Sample File Marker Dye Sample ID Allele 1 Allele 2 Size 1 Size 2 height1 height2 polymer capillary length run_date 

51485-D17_B11_003.fsa             D17 B 51485 144 214 143.52 213.99 7589 2217 pop4 50 20-Nov-06

51486-D17_C11_005.fsa             D17 B 51486 144 144 143.67 143.67 6469 6469 pop4 50 20-Nov-06

51487-D17_D11_007.fsa             D17 B 51487 144 144 143.67 143.67 7580 7580 pop4 50 20-Nov-06

51488-D17_E11_009.fsa             D17 B 51488 140 196 139.22 196.33 4070 1682 pop4 50 20-Nov-06

37775-D17_B01_003.fsa             D17 B 37775 144 144 143.67 143.67 4072 4072 pop4 50 28-Nov-06

42271-D17_F01_011.fsa D17 B 42271     116.98 116.98 40 40 pop4 50 28-Nov-06 

42273-D17_G01_013.fsa D17 B 42273     190.9 190.9 32 32 pop4 50 28-Nov-06 
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Table 3: sample-dependent error checking methods 

 

Method   Application References
DNA quantification Identifies samples likely to produce poor quality data 

(allelic dropout, spurious alleles, short-allele 
dominance) 

(Morin et al. 2001, Morin & LeDuc 2004, 
Morin et al. 2007a, Morin & McCarthy 
2007) 

Excess homozygosity Identifies samples with unusual (outlier) levels of 
homozygosity that could be due to allelic dropout. 

(Taberlet et al. 1996, Miller et al. 2002, 
Morin & LeDuc 2004, Johnson & Haydon 
2007) 
 

Genetic identity or similarity Identifies known and unknown sample duplicates, and 
types of genotyping errors found in duplicates that don't 
match perfectly. 

(McKelvey & Schwartz 2004) 

Effect on HWE (Jackknife analysis) Jackknife analysis of microsatellite data for the effect of 
individual samples on significant deviations from HWE. 
Identifies rare homozygous genotypes and influential 
samples 

(Morin et al. 2007b) 
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Table 4: Reporting of genetic and quality control data. 

Microsatellites
Genotype data Uncorrected raw allele sizes, normalized allele sizes, scored genotypes 
Summary statistics Deviation from HWE, number of alleles, allele size range, repeat size, heterozygosity, results of MicroChecker or other error detection software 

Error rates Per marker and whole data set error and PCR failure rates 
Analysis exclusion Justification for exclusion of markers and samples from all or some analyses 
QA/QC Description of all quality control and quality analysis methods used and their results (if not included above, e.g. in estimating error rates) 
  

  mtDNA
Haplotype sequences Submitted to public sequence databases (e.g. Genbank), with haplotype designations 
Summary statistics Haplotypic diversity, number of haplotypes 
Error rates Whole data set, based on replication and double checking of novel haplotypes differing by 1 nucleotide 
QA/QC Description of all quality control and quality analysis methods used and their results (if not included above, e.g. in estimating error rates) 
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Table 5: Sperm whale microsatellite genotyping QC/QA summary for genotyping project with 8 microsatellite 
markers and 320 samples. 

 

QC/QA step Results Sample 
No. 

Checked allele binning for all 
experiments using control samples 

Could not bin alleles for loci EV37, EV30; excluded 
loci from further analysis 

320 

Checked for genotype mismatches 
between replicated samples 

16 out of 1849 replicated genotypes (0.9%) didn't 
match; most were resolved by looking at the raw data, 
and others were re-genotyped to verify the genotype 

320 

Checked for samples with ≤50% 
completed genotypes 

28 samples had 3 or fewer completed genotypes. All 
had been attempted multiple times from ≥2 extractions, 
so they were excluded from further analysis. 

292 

Calculated % homozygosity for all 
samples 

6 samples had >50% homozygosity across 6 loci; re-
genotyped homozygous loci. 5 were excluded due to 
high failure rate and evidence of allelic dropout at 
several loci. 

287 

Used MicroChecker to analyse all 
remaining data 

Two loci have potential null alleles, but effect is 
limited; all loci retained for analysis. 

287 

Jackknife analysis of deviations from 
Hardy-Weinberg equilibrium 

6 samples caused two markers to deviate from HWE 
because of homozygous rare alleles (odds ratio > 2). 4 
were re-genotyped; 2 had been previously replicated. 
After re-genotyping, no samples had odds ratios >2. 

287 

Checked for duplicate samples using 
program "Dropout" to find multi-locus 
genotype matches and near-matches 
among samples 

Identified 27 perfect matches* across 6 loci, plus 10 
potential matches (1 or two differences, usually where 
one genotype was homozygous for an allele for which 
the other individual was heterozygous). After re-
genotyping homozygotes, all were confirmed to be 
perfect matches. (mtDNA haplotypes also verified to 
match). One sample of each matched set was retained 
and the rest were excluded from further analysis. 

250 

Final data set released for population 
structure analysis 

Six microsatellite loci completed for 250 samples, 
quality checked for common genotyping problems, with 
>97% completion of genotypes for all loci, and an 
estimated error rate of 0.9%. Duplicate and poorest 
quality samples removed. 

250 

*most duplicated samples were from animals biopsied from the same group, so represent accidental double 
sampling of the same individual. At least one duplication represents genetic re-sampling identification of the 
same individual at different locations in the migratory route. 
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Figure 1: Proportion homozygosity for 138 bottlenose dolphin samples genotyped for 11 microsatellites. The 
proportion is the number of homozygous genotypes divided by the number of completed genotypes. 
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