# Allele ladder-based standardization of existing coho salmon microsatellite data and implementation in the GAPS database

Donald Van Doornik<sup>1</sup>, Michael Banks<sup>2</sup>, John Carlos Garza<sup>3</sup>, Libby Gilbert<sup>3</sup>, Todd Kassler<sup>4</sup>, Eric

LaHood<sup>5</sup>, Cara Lewis<sup>6</sup>, Paul Moran<sup>5</sup>, Veronique Theriault<sup>2</sup>, Ken Warheit<sup>4</sup>, John Wenburg<sup>6</sup>

Report to the Pacific Salmon Commission Southern Boundary Restoration & Enhancement Fund;

Project SF-2008-I-4

<sup>1</sup>National Marine Fisheries Service, Northwest Fisheries Science Center, 7305 Beach Dr E, Port Orchard, WA, 98366, USA;

<sup>2</sup>Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, 2030 SE Marine Science Drive, Newport, OR 97365, USA;

<sup>3</sup>National Marine Fisheries Service, Southwest Fisheries Science Center, 110 Shaffer Rd, Santa Cruz, CA, 95060, USA;

<sup>4</sup>Washington Department of Fish and Wildlife, 600 Capitol Way N, Olympia, WA 98501, USA;
 <sup>5</sup>National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard E, Seattle, WA 98112, USA;

<sup>6</sup>U.S. Fish & Wildlife Service, Conservation Genetics Laboratory, 1011 E Tudor Rd, Anchorage, AK, 99503

#### Summary

This project used a demonstrated method to simplify microsatellite DNA standardization and to consolidate existing data for coho salmon microsatellite loci currently in common use among multiple laboratories. By analyzing an allele ladder sample for eight microsatellite markers (loci), five different laboratories converted existing data to a common allele naming system. Genotypes from 8,879 coho salmon collected from 110 locations were uploaded into the Genetic Analysis of Pacific Salmonids (GAPS) database. Forty two of the locations were represented by samples collected in multiple years. These data represent the first coho salmon data to be included in the GAPS database. Analyses showed that these data can be used for genetic stock identification (GSI) of coho mixed-fisheries, as well as for population structure analyses to identify genetically significant stock groups.

#### Introduction

Microsatellite DNA data has proven to be useful for mixture analyses and delineating genetic population structure of coho salmon (Beacham et al 2001; Ford et al. 2004; Van Doornik et al. 2007; Johnson and Banks 2008). With multiple laboratories collecting such data, having the ability to pool data together greatly increases the usefulness of these types of datasets, compared to the efforts of a single laboratory working alone. Combining data collected by different laboratories using different genotyping platforms has been difficult for a number of reasons (LaHood et al. 2002), but the recent successes of creating standardized baselines of genetic data for Chinook salmon (Seeb et al. 2007) and steelhead (Stephenson et al. In press) have proven that these types of standardization efforts are worth the effort. The development of allele ladders has overcome many of the challenges of standardizing microsatellite data, and has proven to be a highly efficient and accurate way to transform inter-laboratory microsatellite data to a common allele naming system (LaHood et al. 2002).

This project was designed to extend the power and utility of the current Genetic Analysis of Pacific Salmonids (GAPS) database to include coho salmon, and would make those data readily available to harvest managers interested in Genetic Stock Identification (GSI) applications, and to others interested in a wide range of ecological studies such as coho salmon juvenile migration, habitat use, and population structure. Facilitating access to these types of data in an interactive GSI environment will support (and be supported by) a wide range of ecological genetic studies and fishery management objectives.

This report describes the efforts undertaken to achieve the project's three main objectives:

 Collect reference DNA samples and create and distribute allele ladders for at least eight microsatellite loci among five laboratories - Northwest Fisheries Science Center (NWFSC), Oregon State University (OSU), Southwest Fisheries Science Center (SWFSC), Washington Department of Fish and Wildlife (WDFW), U.S. Fish & Wildlife Service – Alaska (USFWS);

2) Standardize and upload existing microsatellite data from contributing laboratories, as well as any available single nucleotide polymorphisms (SNP) data, into the GAPS web accessible database already in place and maintained by the NWFSC;

3) Collect user input on the coho database from GAPS collaborators and interested PSC parties for improvements in this and future performance periods.

#### Methods

#### Locus selection/Ladder construction

We identified 4 microsatellite loci (Ocl8, Oki1, Ots103, P53; Table 1) for which data were or had been collected for coho salmon by the 4 laboratories participating in this study within the Southern Fund's region (NWFSC, OSU, SWFSC, WDFW). An additional 4 loci were selected (Omy1011, One13, OtsG422, Ots213), based upon which ones were already in use by the greatest number of laboratories, which had the most existing data, and which could be reliably amplified by all of the participating laboratories. Samples were then selected from archived samples at the NWFSC for each locus that would represent the entire known allelic range for each locus. Allele ladders were then constructed using these samples following the procedures described by LaHood et al. (2002).

#### Data Standardization

Allele ladders for the eight chosen loci and 96 reference samples were distributed to each of the participating laboratories. Information regarding the name given to each allele in the ladders, and the genotypes of the samples on the reference plate (as determined by the project lead) were also distributed. Each laboratory used their own genotyping methods to analyze the ladders and reference samples and compare them to coho salmon samples they had previously analyzed. They then compared their allele names to those designated by the ladders and made the necessary conversions to their data.

#### Data Submission

Laboratories with previously existing data or who were currently collecting data, converted their data so that it was standardized to the allele ladders, and submitted the standardized data to the project lead. Each laboratory was responsible for implementing their own quality control to assure that the data submitted was free of errors, however, the project lead did check all submitted data for conformance to the proper data format, and examined it for any missing or inconsistent data. The data were then uploaded into the GAPS database by IT personnel at the NWFSC.

#### Data Analyses

A few basic analyses were conducted by the project leader to examine the capabilities of the newly compiled database. Only samples with data for all eight loci were used. Conformance of the observed allele frequencies to expected Hardy-Weinberg proportions was tested with a Fisher's exact test (Guo and Thompson 1992) in the computer program GENEPOP (Raymond and Rousset 1995). The sequential Bonferroni method (Rice 1989) was then used to adjust the critical significant level for multiple tests. Observed and expected heterozygosity were determined using the program GDA (Lewis and Zaykin 2002). Allelic richness values for each locus were determined using the program FSTAT (Goudet 1995).

The genetic population structure of the populations was examined by calculating the amount of gene diversity ( $F_{st}$ ) among populations using FSTAT (Goudet 1995). For these analyses, and all subsequent ones, temporal replicates collected from the same population were pooled together. Genetic distances among populations were visualized by calculating Corvalli-Sforza and Edwards (1967) chord distances over 1000 bootstrap replicates with the program PHYLIP (Felenstein 2005), and creating a consensus neighbor-joining tree.

In order to test the baseline's ability to estimate stock of origin for mixture samples we used the program ONCOR (Kalinowski 2007) to make proportional stock estimates and individual assignments of a mixture of coho salmon of known origins. This sample consisted of 197 fish collected as juveniles off the coasts of Washington and Oregon that had been implanted with a coded wire tag (CWT). Thus, their region of origin was known. Estimates were made to nine reporting groups. Some of these groups consisted of multiple regions combined (ex. Hood Canal was combined with Puget Sound; Strait of Juan de Fuca was combined with north and south Washington Coast). Only fish with four or more loci genotyped were used in the baseline created to make these estimates. The baseline and mixture sample were bootstrapped 1000 times when estimating mixture proportions to generate 95% confidence intervals. Individual assignment results included not only the estimated reporting group of origin, but also the probability (*P*) that the individual originated from that region compared to all other reporting groups.

#### Results

#### **Standardization**

All participating laboratories successfully used the allele ladders and reference plate to standardize their coho salmon microsatellite genotyping (Appendix A). There were a small number of discrepancies noted while genotyping the reference samples. These were most likely due to the low DNA concentration of some of the reference plate samples. Overall, all of the participating laboratories expressed confidence in their ability to produce standardized data for the eight microsatellite loci. *Database Creation* 

Genotypes from 8,879 coho salmon were compiled and added to the current GAPS database. These represent 175 samples collected from 110 populations (42 populations were sampled in 2 or more years).

Of these, 154 had genotypes for all 8 loci. Sample locations ranged from Big Creek Hatchery on Scott Creek in Central California to the Kuskokwim River in Alaska, however the majority of samples were concentrated in Washington and Oregon (Figure 1). We grouped the populations into 20 geographic regions (Table 2). The boundaries of these regions were based upon geography and previous studies of coho salmon population structure (Weitkamp et al. 1995; Beacham et al. 2001; Ford et al. 2004; Van Doornik et al. 2007).

In addition to genotypes for eight loci, the database includes other important information for each individual fish. When available and appropriate, this information includes:

- Run timing
- Origin (hatchery vs. wild)
- Life stage collected (parr, smolt, adult)
- Collecting agency
- Collecting method
- Collection year
- Brood year
- Genotyping agency
- Latitude and longitude of sample location
- Other notes on collection, sampling or genotyping

The database also has an interactive map feature that allows the user to quickly visualize the geographic coverage of available data, and to easily choose samples of interest for download (Figure 1). The database can output data in GENEPOP format, which can then be easily converted for use with other programs. The database resides on computer servers at the NWFSC and can be accessed via the internet at http://webapps.nwfsc.noaa.gov/gaps. Access to the database is controlled through the use of

user names and passwords. A user name and password can be obtained by contacting the NWFSC's Scientific Data Management group at nwfsc.sdm@noaa.gov.

#### Data Analyses

A total of 298 alleles were observed in the eight loci. The number of alleles per locus ranged from 16 for Omy1011 to 71 for OtsG422 (Table 1). We found that 8.1% of the tests for conformance to expected Hardy-Weinberg proportions were significant at P < 0.05. Over half of the significant tests (52%) occurred at Ots103, a locus known to have null alleles (Beacham et al. 2001). Over all eight loci, we observed a heterozygosity value of 0.811. Expected heterozygosity was slightly higher at 0.885. Allelic richness values ranged from 6.8 for Omy1011 to 13.8 for Ots103.  $F_{st}$  among all populations was 0.062 (95% confidence interval = 0.047 – 0.074).

A dendrogram of genetic distances showed that samples from within the same geographic area tended to cluster together (Figure 2). However, there were several exceptions, including the odd clustering of Yakoun R. from Queen Charlotte Island, Grizzly Cr. from Puget Sound, Hoko R. from the Washington Coast, and Rockybrook Cr. from Hood Canal.

Proportional stock estimates of a mixture of known origins are shown in Table 3. Estimates were fairly accurate. With the exception of the North/Central Oregon Coast, whose proportion was significantly overestimated, the true proportion was within the 95% confidence interval for each reporting group. Attempting to assign each individual fish to a reporting group yielded an accuracy rate of 75.1%. If only assignments where P > 0.95 are considered, the accuracy improves to 87.4%, with 104 of 119 individuals correctly identified to its group of origin. Improved mixture estimates and individual assignments, as well as having the ability to use smaller reporting units, may be possible pending further analyses and the addition of more data to the database.

#### Discussion

This project has completed its three main objectives. First, we successfully created allele ladders for eight microsatellite loci to be used for coho salmon. These allele ladders contain alleles that span most of the known range of each locus. In addition to distributing the allele ladders to each of the participating laboratories, several aliquots of each allele ladder are being stored at the NWFSC and will be available for distribution to any other laboratory who wants to become standardized for these loci.

Secondly, the allele ladders that were constructed allowed all participating laboratories to standardize their data. The reference samples that were distributed also proved to be valuable part of the standardization process. The two combined gave each laboratory multiple examples of most of the alleles being standardized. By comparing the genotyping results of these samples to their own samples, each laboratory could determine the proper standardized name to give to each allele observed in their samples.

A sizeable amount of coho salmon genetic data has now been loaded into the existing GAPS database as a result of this project, where it will complement the Chinook salmon data already present. Although we expect this database to grow in the number of samples and loci it contains, our preliminary analyses showed that as it currently exists, it is capable of providing information about coho salmon population structure, and can be used to make accurate proportional stock estimates of coho salmon mixtures in the southern part of their range. We expect that as more data is added to the database, and as more people use the data, its full capabilities and limitations will become better known. Although the samples in the baseline represent a large geographic range, the best coverage is in the southern regions. Samples are few and far between from central British Columbia northward. Hopefully, future sample collecting and genotyping by the participating laboratories will add data for these areas. While no SNP

data for coho salmon were available to upload, the database is easily capable of adding such data in the future when it becomes available.

Finally, the goal of collecting user input on the coho database from GAPS collaborators has been accomplished. Success of this project is largely due to the fact that all of the participating laboratories in this project have experience standardizing microsatellite data for other salmonid species, and are accustomed to collaborating with each other. All participants provided valuable insight, ideas and data throughout the course of this project. This expertise and cooperation has helped create the first database of standardized genetic data for coho salmon, which will be the foundation of a coastwide database that will be useful for numerous management applications and ecological studies. We expect that further input from interested parties will occur as additional people make use of the database.

#### References

- Beacham, T. D., J. R. Candy, K. J. Supernault, T. Ming, B. Deale, A. Schulze, D. Tuck, K. H. Kaukauna, J. R. Irvine, K. M. Miller, and R. E. Wither. 2001. Evaluation and application of microsatellite and major histocompatibility complex variation for stock identification of coho salmon in British Columbia. Transactions of the American Fisheries Society 130:1116-1149.
- Condrey, M. J., and P. Bentzen. 1998. Characterization of coastal cutthroat trout (*Oncorhynchus clarki clarki*) microsatellites and their conservation in other salmonids. Molecular Ecology 7:787–789.
- de Fromentel, C. C., F. Pakdel, A. Chapus, C. Baney, P. May, and T. Soussi. 1992. Rainbow-Trout P53 cDNA cloning and biochemical-characterization. Gene 112:241-245.
- Felsenstein, J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. Available at http://evolution.genetics.washington.edu/phylip.html.
- Ford, M. J., D. Teel, D. M. Van Doornik, D. Kuligowski, and P. W. Lawson. 2004. Genetic population structure of central Oregon Coast coho salmon (*Oncorhynchus kisutch*). Conservation Genetics 5:797-812.
- Goudet, J. 1995. FSTAT, Version 1.2: a computer program to calculate F-statistics. Journal of Heredity 86:485-486.Greig, C., D. P. Jacobson, and M. A. Banks. 2003. New tetranucleotide microsatellites for fine-scale discrimination among endangered chinook salmon (*Oncorhynchus tshawytscha*). Molecular Ecology Notes 3:376-379.
- Guo, S.W., and E.A. Thompson. 1992. Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361-372.
- Johnson, M.A. and M.A. Banks. 2008. Genetic structure, migration, and patterns of allelic richness among coho salmon (*Oncorhynchus kisutch*) populations of the Oregon coast. Canadian Journal of Fisheries and Aquatic Sciences 65:1274-1285.
- Kalinowski, S.T. 2007. ONCOR. Distributed by the author, Department of Ecology, Montana State University, Bozeman, MT. Available at http://www.montana.edu/kalinowski/Software.htm.

- LaHood, E. S., P. Moran, J. Olsen, W. S. Grant, and L. K. Park. 2002. Microsatellite allele ladders in two species of Pacific salmon: preparation and field-test results. Molecular Ecology Notes 2:187-190.
- Lewis, P.O. and D. Zaykin. GDA, version 1.1. Distributed by the author, Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT. Available at http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php.
- Raymond, M. and F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact test and ecumenicism. Journal of Heredity 86:248-249.
- Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43:223-225.
- Scribner, K. T., P. A. Crane, W. J. Spearman, and L. W. Seeb. 1996. DNA and allozyme markers provide concordant estimates of population differentiation: analyses of US and Canadian populations of Yukon River fall-run chum salmon (*Oncorhynchus keta*). Canadian Journal of Fisheries and Aquatic Sciences 55:1748-1758.
- Seeb, L.W. and 19 others. 2007. Development of a standardized DNA database for Chinook salmon. Fisheries 32:540-552.
- Small, M. P., T. D. Beacham, R. E. Withler, and R. J. Nelson. 1998. Discriminating coho salmon (*Oncorhynchus kisutch*) populations within the Fraser River, British Columbia, using microsatellite DNA markers. Molecular Ecology 7:141-155.
- Smith, C. T., B. F. Koop, and R. J. Nelson. 1998. Isolation and characterization of coho salmon (*Oncorhynchus kisutch*) microsatellites and their use in other salmonids. Molecular Ecology 7:1614-1616.
- Spies, I.B, D.J. Brasier, P.T.L. O'Reilly, T.R. Seamons, and P. Bentzen. 2005. Development and characterization of novel tetra-, tri-, and dinucleotide microsatellite markers in rainbow trout (*Oncorhynchus mykiss*). Molecular Ecology Notes 5:278-281.
- Stephenson, J.J and 12 others. In press. A centralized model for creating shared, standardized, microsatellite data that simplifies inter-laboratory collaboration. Conservation Genetics, published online October 22, 2008, DOI 10.1007/s10592-008-9729-4.

- Van Doornik, D.M., D.J. Teel, D.R. Kuligowski, C.A. Morgan, and E. Casillas. 2007 Genetic analyses provide insight into the early ocean stock distribution and survival of juvenile coho salmon (*Oncorhynchus kisutch*) off the coasts of Washington and Oregon. North American Journal of Fisheries Management 27:220-237.
- Weitkamp, L.A., T.C. Wainwright, G.J. Bryant, G.B. Milner, D.J. Teel, R.G. Kope, and R.S. Waples. Status review of coho salmon from Washington, Oregon, and California. U.S. Department of Commerce, NOAA Technical Memorandum, NMFS-NWFSC-24, 258p.
- Williamson, K. S., J. F. Cordes, and B. May. 2002. Characterization of microsatellite loci in chinook salmon (*Oncorhynchus tshawytscha*) and cross-species amplification in other salmonids. Molecular Ecology Notes 2:17-19.

Table 1. Microsatellite loci added to the GAPS database for 110 populations of coho salmon. For each locus, the number of alleles, expected heterozygosity ( $H_e$ ), observed heterozygosity ( $H_o$ ) and allelic richness ( $A_r$ ) was calculated.

| Locus   | N alleles | H <sub>e</sub> | Ho    | A <sub>r</sub> | Primer reference          |
|---------|-----------|----------------|-------|----------------|---------------------------|
| Ocl8    | 30        | 0.912          | 0.836 | 10.1           | Condrey and Bentzen, 1998 |
| Oki1    | 23        | 0.864          | 0.784 | 8.3            | Smith et al. 1998         |
| Omy1011 | 16        | 0.816          | 0.762 | 6.8            | Spies et al. 2005         |
| One13   | 26        | 0.915          | 0.834 | 9.8            | Scribner et al. 1996      |
| Ots103  | 65        | 0.967          | 0.803 | 13.8           | Small et al. 1998         |
| Ots213  | 42        | 0.785          | 0.739 | 7.3            | Greig et al. 2003         |
| OtsG422 | 71        | 0.965          | 0.932 | 13.7           | Williamson et al. 2002    |
| P53     | 25        | 0.856          | 0.800 | 7.5            | de Fromentel et al. 1992  |
| Overall | 298       | 0.885          | 0.811 |                |                           |

Table 2. List of coho salmon samples that have been genotyped at eight microsatellite loci and added to the GAPS database. Letter abbreviations are as follows: Cr = creek, E = early, H = hatchery, L= late, Lk = lake, R = river, W = Wild.

|                                    |      | N Fish    |
|------------------------------------|------|-----------|
|                                    | Year | Genotyped |
| Kuskokwim                          |      |           |
| Arolik R.                          | 1997 | 88        |
| Big R., Kuskokwim                  | 2008 | 23        |
| Highpower Cr.                      | 2004 | 29        |
|                                    | 2005 | 21        |
| Kisaralik R.                       | 1997 | 82        |
| Middle Fork                        | 2008 | 21        |
| Salmon R., Kuskkokwim              | 2007 | 197       |
| South Fork                         | 2008 | 65        |
| Stony R.                           | 2008 | 27        |
| Tin Cr.                            | 2008 | 120       |
| Windy Fork R.                      | 2008 | 27        |
| Kuskokwim Total                    |      | 700       |
| North British Columbia Coast       |      |           |
| Babine R.                          | 1996 | 22        |
| Cedar R.                           | 1995 | 40        |
| Clearwater Cr.                     | 1995 | 58        |
| Zolzap Cr., Nass R.                | 1996 | 38        |
| North British Columbia Coast Total |      | 158       |
| Queen Charlotte Is.                |      |           |
| Yakoun R.                          | 1995 | 79        |
| Queen Charlotte Is. Total          |      | 79        |
| West Vancouver Island              |      |           |
| Nitinat R. H.                      | 1996 | 24        |
|                                    | 1997 | 23        |
|                                    | 1998 | 24        |
|                                    | 2000 | 24        |
| Tranquil Cr. H.                    | 1998 | 32        |
|                                    | 1999 | 32        |
|                                    | 2001 | 31        |
| Up. Kennedy R. H.                  | 1996 | 24        |
|                                    | 1999 | 23        |
|                                    | 2000 | 25        |
| West Vancouver Island Total        |      | 262       |
| East Vancouver Island              |      |           |
| Cowichan H.                        | 1998 | 45        |

|                                   | 1999         | 30       |
|-----------------------------------|--------------|----------|
|                                   | 2000         | 14       |
| Goldstream H.                     | 1998         | 96       |
| Nanaimo R. H.                     | 1996         | 24       |
|                                   | 1997         | 24       |
|                                   | 1998         | 24       |
|                                   | 1999         | 24       |
| East Vancouver Island Total       |              | 281      |
| Lower Fraser R.                   |              |          |
| Chehalis H.                       | 1996         | 39       |
|                                   | 1997         | 22       |
|                                   | 1999         | 32       |
| Chilliwack H.                     | 1997         | 22       |
|                                   | 1998         | 23       |
|                                   | 2000         | 46       |
| Inch Cr. H.                       | 1996         | 31       |
|                                   | 1998         | 29       |
|                                   | 2000         | 32       |
| Lower Fraser R. Total             |              | 276      |
| Mid Fraser R. / Thompson R.       |              |          |
| Dunn Cr.                          | 1997         | 24       |
|                                   | 1998         | 23       |
|                                   | 1999         | 23       |
|                                   | 2000         | 22       |
| Bridge Cr.                        | 1996         | 30       |
|                                   | 1998         | 49       |
|                                   | 1999         | 15       |
| Bessette Cr.                      | 1996         | 4        |
|                                   | 1997         | 45       |
|                                   | 1998         | 13       |
|                                   | 1999         | 6        |
|                                   | 2000         | 1        |
|                                   | 2001         | 1        |
|                                   | 2002         | 11       |
| Mid Fraser R. / Thompson R. Total |              | 267      |
| South British Columbia Coast      |              |          |
| Capilano H.                       | 1997         | 31       |
|                                   | 1998         | 31       |
|                                   | 2000         | 30       |
| Homathko R.                       | 1998         | 36       |
|                                   | 2002         | 40       |
|                                   |              | 40       |
| Tenderfoot H.                     | 1998         | 48       |
| Tenderfoot H.                     | 1998<br>1999 | 48<br>48 |

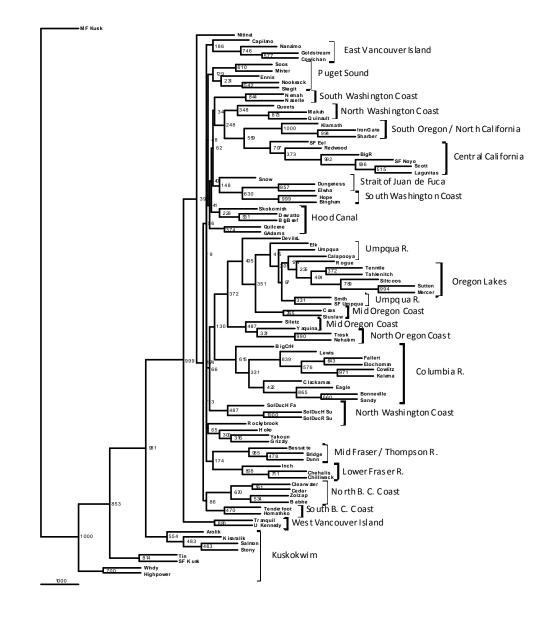
| Puget Sound                    |      |           |
|--------------------------------|------|-----------|
| Ennis Cr.                      | 1997 | 12        |
|                                | 1997 | 42        |
| Grizzly Cr.                    | 1999 | 42        |
| Minter Cr. H.                  | 1995 | 40        |
| Winter CL. H.                  | 2002 | 40        |
| Nooksack H.                    | 2002 | 48<br>96  |
|                                |      |           |
| Skagit H.<br>Soos Cr. H.       | 2003 | 96<br>48  |
| 5005 Cr. H.                    | 1997 |           |
| Puget Sound Total              | 1998 | 47<br>477 |
| Hood Canal                     |      | 477       |
| Big Beef Cr.                   | 2003 | 77        |
| Dewatto R.                     | 1997 | 44        |
|                                | 1998 | 37        |
| Rockybrook Cr., Dosewallips R. | 2003 | 34        |
| George Adams H.                | 1999 | 94        |
| Quilcene H.                    | 2000 | 48        |
| Quiterie II.                   | 2000 | 48        |
|                                | 2001 | 48        |
| Grizzly Cr., Skokomish R.      | 2002 | 48<br>96  |
| Hood Canal Total               | 2003 | 526       |
| Strait of Juan de Fuca         |      |           |
| Dungeness H.                   | 2003 | 48        |
| Elwha R. H.                    | 2005 | 96        |
| Hoko R.                        | 2002 | 78        |
| Snow Cr.                       | 2002 | 47        |
|                                | 2003 | 48        |
|                                | 2004 | 48        |
| Strait of Juan de Fuca Total   |      | 365       |
| North Washington Coast         |      |           |
| Makah H.                       | 2001 | 48        |
|                                | 2002 | 47        |
|                                | 2003 | 47        |
| Queets R.                      | 2002 | 92        |
| Quinault H.                    | 2002 | 48        |
| SolDuc H. Fall                 | 2003 | 95        |
| SolDuc H. Summer               | 2003 | 96        |
| SolDuc R. Summer               | 1995 | 101       |
| North Washington Coast Total   |      | 574       |
| South Washington Coast         |      |           |
| Bingham Cr. H.                 | 1995 | 47        |
| Hope Cr.                       | 1999 | 47        |
| Naselle H.                     | 2003 | 96        |
|                                |      |           |

| Nemah H.                     | 2003 | 48  |
|------------------------------|------|-----|
| South Washington Coast Total |      | 238 |
| Columbia R.                  |      |     |
| Big Cr. H.                   | 2002 | 96  |
| Bonneville H.                | 2002 | 96  |
| Clackamas R. E.              | 1998 | 63  |
| Clackamas R. L.              | 1998 | 33  |
| Cowlitz H.                   | 2002 | 95  |
|                              | 2003 | 48  |
| Eagle Cr. H.                 | 2001 | 96  |
| Elochoman H.                 | 2003 | 94  |
| Fallert H.                   | 2003 | 90  |
| Kalama Falls H.              | 2003 | 90  |
| Lewis H. E.                  | 2003 | 47  |
| Lewis H. L.                  | 2003 | 48  |
| Sandy H.                     | 2002 | 9   |
| Columbia R. Total            |      | 993 |
| North Oregon Coast           |      |     |
| Alsea R. W.                  | 2002 | 102 |
| Beaver Cr. W.                | 2002 | 3   |
| Devils Cr. W.                | 2002 | 38  |
| Necanicum R. W.              | 2002 | 3   |
| Nehalem H.                   | 2002 | 90  |
| Nehalem R. W.                | 2002 | 14  |
| Nestucca R. W.               | 2002 | 54  |
| Salmon R. W., OR             | 2002 | 3   |
| Trask H.                     | 2002 | 9   |
| North Oregon Coast Total     |      | 62  |
| Mid Oregon Coast             |      |     |
| Coos R. H.                   | 2004 | 9   |
| Coos R. W                    | 2004 | 73  |
| Coquille R. H.               | 2004 | 49  |
| Coquille R. W.               | 2002 | 40  |
|                              | 2004 | 4   |
| Devil's Lk.                  | 2002 | 39  |
| Siletz R.                    | 2000 | 6   |
|                              | 2001 | 1   |
| Siuslaw R.                   | 2000 | 7   |
| Yachats R. W.                | 2003 | 2   |
|                              | 2004 | 20  |
| Yaquina R.                   | 2000 | 43  |
|                              | 2001 | 30  |
|                              |      |     |

Oregon Lakes Complex

| Mercer Lk.                                  | 2003 | 28  |
|---------------------------------------------|------|-----|
| Siltcoos Lk.                                | 2000 | 31  |
|                                             | 2001 | 27  |
| Siltcoos Lk.                                | 2002 | 24  |
| Sutton Cr.                                  | 2002 | 50  |
| Sutton Lk.                                  | 2002 | 35  |
| Tahkenitch Lk.                              | 2000 | 32  |
|                                             | 2001 | 26  |
|                                             | 2002 | 39  |
|                                             | 2004 | 48  |
| Tenmile Lk.                                 | 2000 | 35  |
|                                             | 2001 | 30  |
|                                             | 2002 | 99  |
| Oregon Lakes Complex Total                  |      | 504 |
| Umpqua R.                                   |      |     |
| Calapooya Cr.                               | 2000 | 22  |
|                                             | 2001 | 17  |
|                                             | 2006 | 85  |
|                                             | 2007 | 112 |
|                                             | 2008 | 96  |
| Elk Cr.                                     | 2000 | 24  |
|                                             | 2001 | 10  |
| South Fork Umpqua R.                        | 2000 | 39  |
|                                             | 2001 | 29  |
| Smith R.                                    | 1997 | 33  |
|                                             | 2000 | 38  |
|                                             | 2001 | 37  |
| Umpqua R. W.                                | 2002 | 277 |
|                                             | 2004 | 48  |
| Umpqua R. Total                             |      | 867 |
| South Oregon Coast / North California       |      |     |
| Iron Gate H.                                | 2002 | 48  |
| Klamath R.                                  | 2003 | 47  |
| Redwood Cr.                                 | 2002 | 48  |
| Rogue R. W.                                 | 2002 | 125 |
| South Fork Eel R.                           | 2003 | 96  |
| Sharber & Dutch Cr., Trinity R.             | 2003 | 96  |
| South Oregon Coast / North California Total |      | 460 |

| Central California |             |       |
|--------------------|-------------|-------|
| Big R.             | 2003        | 48    |
| Lagunitas Cr.      | 2001        | 94    |
| Scott, Big Cr. H.  | 2006        | 96    |
| South Fork Noyo R. | 2001        | 96    |
| Central Califo     | ornia Total | 334   |
| G                  | irand Total | 8,879 |
|                    |             |       |


Table 3. Estimated stock proportions of a mixture of 197 coded-wire tagged coho salmon that were caught off the coasts of Washington and Oregon. Estimates were made using the 8 microsatellite locus GAPS coho salmon database.

|                                     | Estimated  | 95%                 | True       |
|-------------------------------------|------------|---------------------|------------|
| Reporting group                     | proportion | Confidence interval | proportion |
| Kuskokwim                           | 0.000      | 0.000 - 0.011       | 0.000      |
| North British Columbia              | 0.000      | 0.000 - 0.012       | 0.000      |
| South British Columbia              | 0.022      | 0.006 - 0.077       | 0.010      |
| Puget Sound                         | 0.049      | 0.023 - 0.130       | 0.025      |
| Washington Coast                    | 0.183      | 0.097 - 0.250       | 0.244      |
| Columbia R.                         | 0.645      | 0.521 - 0.692       | 0.675      |
| North/Mid Oregon Coast              | 0.099      | 0.048 - 0.166       | 0.046      |
| South Oregon/North California Coast | 0.002      | 0.000 - 0.0224      | 0.000      |
| Central California                  | 0.000      | 0.000 - 0.000       | 0.000      |
|                                     |            |                     |            |

Figure 1. A screen capture from the GAPS database showing the locations of the 110 coho salmon populations currently in the database.



Figure 2. Neighbor-joining dendrogram of Corvalli-Sforza and Edwards (1967) chord distances for 92 coho salmon populations, with bootstrap values given for each branch (out of 1,000 bootstraps). Clusters of two or more populations from the same region are identified.



### Appendix A: Reports received from participating laboratories

#### Southwest Fisheries Science Center, NOAA Fisheries

This report summarizes the work conducted at the Southwest Fisheries Science Center, Fisheries Ecology Division for the process of standardization of eight microsatellite markers in coho salmon.

A list of 8 microsatellite loci to be standardized among participating laboratories was determined with a survey of participating laboratories conducted by project leader Don VanDoornik, NWFSC. Using the provided size range information for each of the selected loci, along with fluorescent dye labeled primers, two panels of markers were constructed such that loci could be multiplexed on two ABI377 automated sequencer gel runs: one panel with 5 loci and the other with 3 loci (Table 1). Of the 8 selected loci, prior to this standardization process, 6 had been amplified successfully and extensively used to genotype coho salmon in this lab, one gave marginal success but was not widely used (Omy1011) and the other had not been previously assessed by us in coho salmon (Ots213).

Upon receipt of the reference DNA plate and 8 allelic ladders, a dilution tray was made, containing 1:10 dilutions (in 5mM Tris) of reference samples and a 1:5 dilution of each allelic ladder. In the interest of efficiency and per the project leader's suggestion, in order to run both reference samples and ladders on the same gel, one column (4a-4h) of reference sample DNA was omitted from the dilution tray and replaced with the 8 allelic ladders; hence, a total of 88 reference samples and 8 ladders were analyzed.

Loci were amplified according to PCR recipes and protocols (available upon request) already proven successful in this lab, using 35-cycle thermal-cycling profiles with annealing at 53/55°C (Omy1011, Ots213, OtsG422, P53, Ots103) or 55/57°C (Oki1, Ocl8, One13). For each panel of markers, PCR products were pooled at the post-PCR stage and electrophoresed on an ABI377 automated sequencer. Gels were tracked using GeneScan 3.0 and allele calls made in Genotyper 2.1 software (Applied Biosystems, Inc.). All loci but one (OtsG422) successfully amplified in most individuals on the first attempt. Some loci had somewhat high dropout rates and/or low overall signal, and these were re-amplified and re-run to obtain more complete data coverage: Ocl8, Ots103 and Omy1011. The FAM-labeled version of OtsG422 F, on Panel A, was found to not amplify in any individuals on two separate PCR attempts using two separate batches of primer mix, so it was concluded that there may be an error in the sequence of the F primer. An existing TET-labeled version of OtsG422 F, redesigned and widely used in coho salmon in our lab, called OtsG422b F, was used instead for this standardization process.

For each marker, raw decimal data from scored peaks was used to construct categories in Genotyper 2.1, such that the category (allele) names matched the GAPS allele names provided in the reference plate genotype data. As amplification of or distinction between the allelic ladder peaks was inconsistent between markers, only some of the ladders proved useful in ground-truthing the allele names. Once the GAPS categories had been created, decimal allele calls were changed to reflect the GAPS names. As is customary in this lab, allele calls were made independently by two people, and all discrepancies were resolved by reviewing the raw data in Genotyper 2.1.

After genotype data had been error-checked, our allele calls were compared to the reference genotype data in a similar manner. The majority of the discrepancies at this stage were call/no-call, and these were left in the dataset. An additional 15 discrepancies involved actual allele call discrepancies. Of

these, 8 appear to be true discrepancies involving an allele that amplified in this lab but not in the lab where the reference data was generated, or vice versa. These 8 discrepancies, involving 1 or 2 individuals each for Omy1011, Ots213, One13, Ots103 and P53, were also left in the dataset, each with a comment explaining the rationale for the discrepancy. There were no instances of GAPS category or allele name discrepancies in any of the 8 loci. Sample DNA quality was highly variable, with 48 of the 88 samples assayed providing full 8 locus genotypes, but 5 of these samples failed at 5 loci or more. The overall missing data rate was ~13%, or a mean of approximately 2 allele calls (of 16) per sample.

#### Conservation Genetics Laboratory, U.S. Fish and Wildlife Service

This report summarizes the work conducted at U.S. Fish and Wildlife Alaska Region Conservation Genetics Laboratory (CGL) as directed by the principal investigator, Don VanDoornik, NWFSC.

Eight microsatellite loci were chosen for use on an Applied Biosystem Incorporated (ABI) 3730 DNA Analyzer. The NWFSC distributed recommendations for amplification and scoring of these loci, allelic ladders and a 96-sample DNA reference plate to participating laboratories.

Four of these loci had been used previously in the CGL for coho salmon using Li-Cor IR<sup>2®</sup> DNA scanner: Ocl8, Oki1, Ots213, and Omy1011. Conversion factors for these loci were determined by comparing previously scored populations from the Li-Cor platform to new data for the same populations generated with the ABI platform.

It is important to note that there are multiple primer sequences for Ocl8 in circulation (Table 1). For the purpose of this study, we used the sequences provided by NWFSC. However, both the forward and reverse sequences they provided differ from the original sequences published in: Condrey and Benzen (1998) Characterization of coastal cutthroat trout (*Oncorhychus clarki clarki*) microsatellites and their conservation in other salmonids, Molecular Ecology, 7, 783-792.

The allelic ladders distributed by NWFSC were amplified to create scoring bins with the ABI GeneMapper v4.0 software. The ladders all amplified successfully and we assigned bin names based on those provided by NWFSC.

After creating the bins, the reference DNA plate was analyzed. Initial amplification yielded lower than normal success rates. We believe this was due, primarily to the low concentration of the DNA in the reference plate. The CGL typically standardizes all DNA to 30 ng/µl for PCR amplification. Quantification of the DNA in the reference plate revealed DNA concentrations several orders of magnitude lower ( $\leq 0.01 \text{ ng/µl}$ ). After adjusting PCR conditions by increasing TAQ, primer concentrations, and DNA, results were improved. However, the overall missing data rate remained abnormally high (~20%), and near 40% for OtsG422 and Ots213. For the 96 reference samples, complete genotypes for all 8 loci were obtained for only 40 samples, and 12 samples failed at 5 or more loci. Given the extremely low quantity of DNA provided, we determined that additional rounds of amplification would not be cost effective.

The CGL scores were compared to those provided for the reference plate samples. There were 1209 data points that allowed for direct comparisons between the CGL and NWFSC scores and only five discrepancies (0.4%). In all five cases, the discrepancies were scored as heterozygotes by the CGL, but as homozygotes by NWFSC (Table 2).

## Table 1. Ocl8 Primer Sequences.

| Ocl8 Reverse Sequences        | Source                  |
|-------------------------------|-------------------------|
| CCC TGT CCC TTC CAT CTC T     | NWFSC                   |
| CAC CTT CCA TCT CTC ATT CCA C | Condrey and Benzen 1998 |
|                               |                         |
| Ocl8 Forward Sequences        |                         |
| TAg TgT TTC gTg TTC gCC Tg    | NWFSC                   |
| TAg TgT TCC gTg TTC gCC Tg    | Condrey and Benzen 1998 |

Table 2. Scoring Discrepancies

| Locus   | Well Location | CGL Score | Reference Score |
|---------|---------------|-----------|-----------------|
| Ocl8    | F7            | 98/104    | 98/98           |
| Omy1011 | E2            | 186/206   | 186/186         |
| Ots213  | A5            | 155/271   | 155/155         |
| P53     | F7            | 161/171   | 171/171         |
| P53     | H7            | 161/177   | 177/177         |

#### Washington Department of Fish and Wildlife

#### State of Washington Department of Fish and Wildlife Fish Management Program - Science Division Conservation Biology - Molecular Genetics Laboratory

March 3, 2009 To: Don Van Doornik From: Todd W. Kassler Subject: WDFW coho standardization

A plate of genomic DNA sent to WDFW was used to compare allele sizes of a standard plate of individuals to allele sizes generated at WDFW using existing equipment and conditions. After analyzing the standard plate a conversion table was generated to align allele names from WDFW to a standardized naming that can be used by all participating labs for eight microsatellite loci. Aligning data among the labs has allowed sharing of datasets to expand baselines for data analysis of coho populations.

Descriptions of the eight loci and the PCR conditions used by WDFW are given in Table 1. Microsatellite alleles were sized using an internal size standard. GENEMAPPER (Version 3.7) software (Applied Biosystems) was used to collect and analyze the microsatellite data. Allele binning and naming were accomplished using MicrosatelliteBinner-v1h (Young, WDFW available from the author). MicrosatelliteBinner creates groups (bins) of alleles with similar mobilities (alleles with the same number of repeat units). The upper and lower bounds of the bins are determined by identifying clusters of alleles separated by gaps (nominally 0.4 base pairs in size) in the distribution of allele sizes. The bins are then named as the mean allele size for the cluster rounded to an integer.

Allele sizes for the eight loci analyzed by WDFW were aligned to the allele sizes of the standardized plate of individual coho (Table 2). The size adjustment between WDFW and the standardized data are shown in Table 3. This conversion table can be used for future conversion of coho data to the standardized format.

#### Literature Cited

- Baker, J., P. Bentzen, and P. Moran. 2002. Molecular markers distinguish coastal cutthroat trout from coastal rainbow trout/steelhead and their hybrids.
  Transactions of the American Fisheries Society 131:404-417.
- Condrey, M.J. and P. Bentzen. 1998. Characterization of coastal cutthroat trout (Oncorhynchus clarki clarki) microsatellites and their conservation in other salmonids. Molecular Ecology 7:787-789.
- Greig, C., J.P. Jacobson, and M.A. Banks. 2003. New tetranucleotide microsatellites for fine-scale discrimination among endangered Chinook salmon (Oncorhynchus tshawytscha). Molecular Ecology Notes 3:376-379.
- Scribner, K.T., J.R. Gust, and R.L. Fields. 1996. Isolation and characterization of novel salmon microsatellite loci: Cross-species amplification and population genetic applications. Canadian Journal of Fisheries and Aquatic Sciences 53:833-841.
- Small, M.P., T. Beacham, R. Withler, and R.J. Nelson. 1998. Discriminating coho salmon (*Oncorhynchus kisutch*) populations within the Fraser River, British Columbia using microsatellite DNA markers. Molecular Ecology 7:141-155.
- Smith, C.T., B.F. Koop, and R.J. Nelson. 1998. Isolation and characterization of coho salmon (Oncorhynchus kisutch) microsatellites and their use in other salmonids. Molecular Ecology 7:1613-1621.
- Spies, I.B., D.J. Brasier, P.T.L. OReilly, T.R. Seamons, and P. Bentzen. 2005. Development and characterization of novel tetra-, tri-, and dinucleotide microsatellite markers in rainbow trout (Oncorhynchus mykiss). Molecular Ecology Notes 5:278-281.
- Williamson, K.S., J.F. Cordes, and B. May. 2002. Characterization of microsatellite loci in Chinook salmon (*Oncorhynchus tshawytscha*) and cross-species amplification in other salmonids. Molecular Ecology Notes 2:17-19.

| Locus                | Annealing<br>temp C° | dye  | WDFW Allelic<br>Range | Number of<br>alleles per locus Cit | tation                   |  |
|----------------------|----------------------|------|-----------------------|------------------------------------|--------------------------|--|
| Oki-1                | 54                   | hex  | 91 - 162              | 16                                 | Smith et al. 1998        |  |
| Ocl-8                | 55                   | hex  | 98 - 135              | 17                                 | Condrey and Bentzen 1998 |  |
| p53                  | 46                   | hex  | 163 - 197             | 13                                 | Baker et al. 2002        |  |
| One-13M              | 56                   | hex  | 193 - 226             | 16                                 | Scribner et al. 1996     |  |
| Omy-1011             | 54                   | ned  | 179 - 211             | 8                                  | Spies et al. 2005        |  |
| Ots-103 <sup>b</sup> | 56                   | hex  | 85 - 291              | 42                                 | Small et al. 1998        |  |
| Ots-213              | 54                   | pet  | 183 - 316             | 21                                 | Greig et al. 2003        |  |
| Ots-G422             | 54                   | 6fam | 228 - 418             | 27                                 | Williamson et al. 2002   |  |

Table 1. Microsatellite loci used for coho standardization including dye, number alleles, and allele size range for each

| microsatellite loci. |              |            |             |     |        |        |      |      |
|----------------------|--------------|------------|-------------|-----|--------|--------|------|------|
| Sample#              | Plate Well W | DFW Ocl-8a | WDFW Ocl-8b |     | Ocl8_1 | Ocl8_2 | Diff | Diff |
| 90210-13228          | A01          |            |             |     | 110    | 110    |      |      |
| 90210-13229          | B01          |            |             |     | 102    | 108    |      |      |
| 90210-13231          | C01          |            |             |     | 126    | 126    |      |      |
| 90210-13232          | D01          |            |             |     | 102    | 124    |      |      |
| 90210-13233          | E01          |            |             |     | 122    | 126    |      |      |
| 90210-13234          | F01          |            |             |     | 098    | 098    |      |      |
| 90210-13235          | G01          |            |             |     | 098    | 102    |      |      |
| 90210-13239          | H01          |            |             |     | 128    | 128    |      |      |
| 90210-13241          | A02          | 125        |             | 127 | 124    | 126    | 001  | 001  |
| 90210-13294          | B02          | 106        |             | 110 | 106    | 110    | 000  | 000  |
| 90210-13295          | C02          | 102        |             | 106 | 102    | 106    | 000  | 000  |
| 90210-13300          | D02          | 110        |             | 123 | 110    | 122    | 000  | 001  |
| 90210-13348          | E02          | 106        |             | 127 | 106    | 126    | 000  | 001  |
| 90210-13349          | F02          |            |             |     | 110    | 116    |      |      |
| 90210-13350          | G02          | 108        |             | 117 | 108    | 116    | 000  | 001  |
| 90210-13351          | H02          | 106        |             | 129 | 106    | 128    | 000  | 001  |
| 90210-13352          | A03          | 119        |             | 127 | 118    | 126    | 001  | 001  |
| 90210-13353          | B03          | 102        |             | 110 | 102    | 110    | 000  | 000  |
| 90210-13358          | C03          |            |             |     | 098    | 126    |      |      |
| 90210-13371          | D03          |            |             |     | 122    | 122    |      |      |
| 90210-13373          | E03          | 106        |             | 123 | 106    | 122    | 000  | 001  |
| 90210-13374          | F03          | 117        |             | 125 | 116    | 124    | 001  | 001  |
| 90210-13375          | G03          | 121        |             | 121 | 120    | 120    | 001  | 001  |
| 90210-13377          | H03          | 104        |             | 112 | 104    | 112    | 000  | 000  |
| 90210-13378          | A04          | 123        |             | 133 | 122    | 132    | 001  | 001  |
| 90210-13379          | B04          | 104        |             | 127 | 104    | 126    | 000  | 001  |
| 90210-13380          | C04          |            |             |     | 110    | 122    |      |      |
| 90210-13381          | D04          | 102        |             | 127 | 102    | 126    | 000  | 001  |
| 90210-13382          | E04          | 123        |             | 127 | 122    | 126    | 001  | 001  |
| 90210-13383          | F04          | 104        |             | 106 | 104    | 106    | 000  | 000  |
| 90210-13384          | G04          |            |             |     | 114    | 126    |      |      |
| 90210-13385          | H04          | 102        |             | 127 | 102    | 126    | 000  | 001  |
| 90210-13386          | A05          | 98         |             | 127 | 098    | 126    | 000  | 001  |
| 90210-13387          | B05          | 98         |             | 110 | 098    | 110    | 000  | 000  |
| 90210-13388          | C05          | 108        |             | 123 | 108    | 122    | 000  | 001  |
| 90210-13389          | D05          | 98         |             | 123 | 098    | 122    | 000  | 001  |
| 90210-13390          | E05          |            |             |     | 106    | 122    |      |      |
| 90210-13391          | F05          | 98         |             | 119 | 098    | 118    | 000  | 001  |
| 90210-13392          | G05          |            |             |     | 110    | 122    |      |      |
| 90210-13393          | H05          | 127        |             | 133 | 126    | 132    | 001  | 001  |
| 90210-13394          | A06          | 106        |             | 123 | 106    | 122    | 000  | 001  |
| 90210-13395          | B06          | 127        |             | 133 | 126    | 132    | 001  | 001  |
| 90210-13396          | C06          | 98         |             | 115 | 098    | 114    | 000  | 001  |
| 90210-13398          | D06          | 98         |             | 106 | 098    | 106    | 000  | 000  |
| 90210-13399          | E06          | 127        |             | 127 | 126    | 126    | 001  | 001  |
| 90210-13400          | F06          | 110        |             | 110 | 110    | 110    | 000  | 000  |
| 90210-13401          | G06          | 104        |             | 115 | 104    | 114    | 000  | 001  |
| 90210-13402          | H06          | 121        |             | 127 | 120    | 126    | 001  | 001  |
|                      |              |            |             |     |        |        |      |      |

Table 2. Comparison of allele sizes between WDFW and the standardized plate for eight microsatellite loci.

| Table 2 conti | nued.      |             |             |        |        |      |      |
|---------------|------------|-------------|-------------|--------|--------|------|------|
| Sample#       | Plate Well | WDFW Ocl-8a | WDFW Ocl-8b | Ocl8_1 | Ocl8_2 | Diff | Diff |
| 90210-13407   | A07        | 102         | 123         | 102    | 122    | 000  | 001  |
| 90215-13962   | B07        | 115         | 117         | 114    | 116    | 001  | 001  |
| 90215-13963   | C07        | 117         | 119         | 116    | 118    | 001  | 001  |
| 90215-14031   | D07        | 110         | 127         | 110    | 126    | 000  | 001  |
| 90215-14032   | E07        | 98          | 123         | 098    | 122    | 000  | 001  |
| 90215-14034   | F07        | 98          | 98          | 098    | 098    | 000  | 000  |
| 90215-14035   | G07        | 102         | 115         | 102    | 114    | 000  | 001  |
| 90215-14036   | H07        | 104         | 117         | 104    | 116    | 000  | 001  |
| 90215-14037   | A08        | 98          | 127         | 098    | 126    | 000  | 001  |
| 90215-14113   | B08        | 98          | 123         | 098    | 122    | 000  | 001  |
| 90215-14114   | C08        | 110         | 121         | 110    | 120    | 000  | 001  |
| 90215-14115   | D08        | 98          | 121         | 098    | 120    | 000  | 001  |
| 90215-14116   | E08        | 98          | 127         | 098    | 126    | 000  | 001  |
| 90215-14117   | F08        | 110         | 127         | 110    | 126    | 000  | 001  |
| 90215-14174   | G08        | 119         | 127         | 118    | 126    | 001  | 001  |
| 90215-14175   | H08        | 123         | 127         | 122    | 126    | 001  | 001  |
| 90215-14176   | A09        | 110         | 127         | 110    | 126    | 000  | 001  |
| 90215-14177   | B09        | 98          | 108         | 098    | 108    | 000  | 000  |
| 90215-14178   | C09        | 106         | 106         | 106    | 106    | 000  | 000  |
| 90215-14179   | D09        |             |             | 110    | 138    |      |      |
| 90215-14181   | E09        | 104         | 112         | 104    | 112    | 000  | 000  |
| 90215-14182   | F09        | 98          | 117         | 098    | 116    | 000  | 001  |
| 90215-14183   | G09        | 108         | 115         | 108    | 114    | 000  | 001  |
| 90215-14457   | H09        | 108         | 135         | 108    | 134    | 000  | 001  |
| 90215-14505   | A10        | 106         | 129         | 106    | 128    | 000  | 001  |
| 90215-14618   | B10        | 123         | 127         | 122    | 126    | 001  | 001  |
| 90215-14625   | C10        | 123         | 127         | 122    | 126    | 001  | 001  |
| 90215-14639   | D10        | 104         | 104         | 104    | 104    | 000  | 000  |
| 90215-14640   | E10        | 106         | 123         | 106    | 122    | 000  | 001  |
| 90215-14661   | F10        | 110         | 127         | 110    | 126    | 000  | 001  |
| 90253-17700   | G10        | 108         | 108         | 108    | 108    | 000  | 000  |
| 90253-17703   | H10        | 102         | 102         | 102    | 102    | 000  | 000  |
| 90253-17704   | A11        | 106         | 108         | 106    | 108    | 000  | 000  |
| 90253-17712   | B11        | 108         | 108         | 108    | 108    | 000  | 000  |
| 90253-17713   | C11        | 102         | 121         | 102    | 120    | 000  | 001  |
| 90253-17714   | D11        | 108         | 108         | 108    | 108    | 000  | 000  |
| 90253-17715   | E11        | 104         | 108         | 104    | 108    | 000  | 000  |
| 90253-17836   | F11        | 110         | 127         | 110    | 126    | 000  | 001  |
| 90253-17837   | G11        | 115         | 127         | 114    | 126    | 001  | 001  |
| 90253-17838   | H11        | 110         | 127         | 110    | 126    | 000  | 001  |
| 90253-17866   | A12        | 98          | 98          | 098    | 098    | 000  | 000  |
| 90253-17867   | B12        | 123         | 123         | 122    | 122    | 001  | 001  |
| 90253-17868   | C12        | 123         | 127         | 122    | 126    | 001  | 001  |
| 90253-17869   | D12        |             |             | 122    | 126    |      |      |
| 90253-17871   | E12        | 98          | 112         | 098    | 112    | 000  | 000  |
| 90253-17872   | F12        |             |             | 098    | 102    |      |      |
| 90253-17893   | G12        | 108         | 119         | 108    | 118    | 000  | 001  |
| 90253-17995   | H12        | 106         | 121         | 106    | 120    | 000  | 001  |
|               |            |             |             |        |        |      |      |

| Table 2 conti<br>Sample#   | nued.<br>Plate Well | WDFW Oki-1a | WDFW Oki-1b | Oki1_1 | 061  | 2                 |            | Diff | Diff       |
|----------------------------|---------------------|-------------|-------------|--------|------|-------------------|------------|------|------------|
| 90210-13228                | A01                 |             |             |        | UKI1 | _ <b>-</b><br>106 | 142        | Dill | DIII       |
| 90210-13229                | B01                 |             |             |        |      | 098               | 142        |      |            |
|                            | C01                 |             |             |        |      |                   | 094        |      |            |
| 90210-13231<br>90210-13232 | D01                 |             |             |        |      | 094<br>098        | 094<br>110 |      |            |
| 90210-13232<br>90210-13233 | E01                 |             |             |        |      | 098               | 110        |      |            |
|                            | E01<br>F01          |             |             |        |      |                   |            |      |            |
| 90210-13234                |                     |             |             |        |      | 098               | 110        |      |            |
| 90210-13235                | G01                 |             |             |        |      | 106               | 110        |      |            |
| 90210-13239                | H01<br>A02          | 400         |             | 407    |      | 094               | 114        |      |            |
| 90210-13241                |                     | 103         |             | 107    |      | 102               | 106        | 001  | 001        |
| 90210-13294                | B02                 | 107         |             | 127    |      | 106               | 126        | 001  | 001        |
| 90210-13295                | C02                 | 099         |             | 127    |      | 098               | 126        | 001  | 001        |
| 90210-13300                | D02<br>E02          | 095         |             | 095    |      | 094<br>094        | 094<br>098 | 001  | 001        |
| 90210-13348<br>90210-13349 | E02<br>F02          | 095         |             | 099    |      | 094               | 130        | 001  | 001        |
|                            |                     | 000         |             | 107    |      |                   |            | 001  | 001        |
| 90210-13350                | G02                 | 099         |             | 107    |      | 098               | 106        | 001  | 001        |
| 90210-13351                | H02                 | 095         |             | 107    |      | 094               | 106        | 001  | 001        |
| 90210-13352                | A03                 | 107         |             | 123    |      | 106               | 122        | 001  | 001        |
| 90210-13353                | B03                 | 099         |             | 158    |      | 098               | 154        | 001  | 004        |
| 90210-13358                | C03                 |             |             |        |      | 114               | 118        |      |            |
| 90210-13371                | D03                 | 205         |             |        |      | 098               | 130        |      |            |
| 90210-13373                | E03                 | 095         |             | 115    |      | 094               | 114        | 001  | 001        |
| 90210-13374                | F03                 |             |             |        |      | 098               | 118        |      |            |
| 90210-13375                | G03<br>H03          |             |             |        |      | 094               | 118        |      |            |
| 90210-13377<br>90210-13378 | A04                 |             |             |        |      | 094<br>114        | 098        |      |            |
| 90210-13378                | A04<br>B04          | 115<br>099  |             | 119    |      | 098               | 118<br>110 | 001  | 001<br>001 |
| 90210-13380                | C04                 | 099         |             | 111    |      | 090               | 110        | 001  | 001        |
| 90210-13381                | D04                 | 107         |             | 140    |      | 106               | 138        | 001  | 002        |
| 90210-13382                | E04                 | 107         |             | 140    |      | 100               | 134        | 001  | 002        |
| 90210-13383                | F04                 | 095         |             | 115    |      | 094               | 134        | 001  | 002        |
| 90210-13384                | G04                 | 095         |             | 115    |      | 098               | 106        | 001  | 001        |
| 90210-13385                | H04                 | 107         |             | 127    |      | 106               | 126        | 001  | 001        |
| 90210-13386                | A05                 | 095         |             | 107    |      | 094               | 106        | 001  | 001        |
| 90210-13387                | B05                 | 099         |             | 115    |      | 098               | 100        | 001  | 001        |
| 90210-13388                | C05                 | 107         |             | 115    |      | 106               | 114        | 001  | 001        |
| 90210-13389                | D05                 | 115         |             | 145    |      | 114               | 142        | 001  | 003        |
| 90210-13390                | E05                 | 127         |             | 140    |      | 126               | 138        | 001  | 002        |
| 90210-13391                | F05                 | 095         |             | 136    |      | 094               | 134        | 001  | 002        |
| 90210-13392                | G05                 | 000         |             | 100    |      | 098               | 098        | 001  | 002        |
| 90210-13393                | H05                 | 099         |             | 127    |      | 098               | 126        | 001  | 001        |
| 90210-13394                | A06                 | 095         |             | 123    |      | 094               | 122        | 001  | 001        |
| 90210-13395                | B06                 | 095         |             | 127    |      | 094               | 126        | 001  | 001        |
| 90210-13396                | C06                 | 099         |             | 111    |      | 098               | 110        | 001  | 001        |
| 90210-13398                | D06                 | 099         |             | 107    |      | 098               | 106        | 001  | 001        |
| 90210-13399                | E06                 | 099         |             | 103    |      | 098               | 102        | 001  | 001        |
| 90210-13400                | F06                 |             |             |        |      | 098               | 134        |      |            |
| 90210-13401                | G06                 | 107         |             | 111    |      | 106               | 110        | 001  | 001        |
| 90210-13402                | H06                 | 099         |             | 115    |      | 098               | 114        | 001  | 001        |
|                            |                     |             |             |        |      |                   |            |      |            |

| Table 2 con                | tinued     |             |             |        |      |     |     |      |      |
|----------------------------|------------|-------------|-------------|--------|------|-----|-----|------|------|
| Sample#                    | Plate Well | WDFW Oki-1a | WDFW Oki-1b | Oki1 1 | Oki1 | 2   |     | Diff | Diff |
| 90210-13407                | A07        | 099         |             | 099    |      | 098 | 098 | 001  | 001  |
| 90215-13962                | B07        | 095         |             | 136    |      | 094 | 134 | 001  | 002  |
| 90215-13963                | C07        | 095         |             | 099    |      | 094 | 098 | 001  | 001  |
| 90215-14031                | D07        | 099         |             | 103    |      | 098 | 102 | 001  | 001  |
| 90215-14032                | E07        | 099         |             | 119    |      | 098 | 118 | 001  | 001  |
| 90215-14034                | F07        | 095         |             | 095    |      | 094 | 094 | 001  | 001  |
| 90215-14035                | G07        | 099         |             | 119    |      | 098 | 118 | 001  | 001  |
| 90215-14036                | H07        | 099         |             | 099    |      | 098 | 098 | 001  | 001  |
| 90215-14037                | A08        | 103         |             | 107    |      | 102 | 106 | 001  | 001  |
| 90215-14113                | B08        | 103         |             | 140    |      | 102 | 138 | 001  | 002  |
| 90215-14114                | C08        | 099         |             | 111    |      | 098 | 110 | 001  | 001  |
| 90215-14115                | D08        | 095         |             | 099    |      | 094 | 098 | 001  | 001  |
| 90215-14116                | E08        | 103         |             | 119    |      | 102 | 118 | 001  | 001  |
| 90215-14110                | F08        | 105         |             | 113    |      | 094 | 098 | 001  | 001  |
| 90215-14174                | G08        | 099         |             | 111    |      | 098 | 110 | 001  | 001  |
| 90215-14174                | 600<br>H08 | 119         |             | 136    |      | 118 | 134 | 001  | 002  |
| 90215-14175                | A09        | 095         |             | 099    |      | 094 | 098 | 001  | 002  |
| 90215-14170                | A09<br>B09 | 095         |             | 103    |      | 094 | 102 | 001  | 001  |
| 90215-14177                | C09        | 103         |             | 132    |      | 102 | 130 | 001  | 001  |
| 90215-14178<br>90215-14179 | D09        | 095         |             | 099    |      | 094 | 098 | 001  | 002  |
| 90215-14179<br>90215-14181 |            |             |             |        |      |     |     |      | 001  |
|                            | E09        | 107         |             | 119    |      | 106 | 118 | 001  |      |
| 90215-14182                | F09        | 103         |             | 162    |      | 102 | 158 | 001  | 004  |
| 90215-14183                | G09        | 095         |             | 099    |      | 094 | 098 | 001  | 001  |
| 90215-14457                | H09        |             |             |        |      | 098 | 098 | 004  | 004  |
| 90215-14505                | A10        | 099         |             | 099    |      | 098 | 098 | 001  | 001  |
| 90215-14618                | B10        | 099         |             | 103    |      | 098 | 102 | 001  | 001  |
| 90215-14625                | C10        | 095         |             | 107    |      | 094 | 106 | 001  | 001  |
| 90215-14639                | D10        | 099         |             | 127    |      | 098 | 126 | 001  | 001  |
| 90215-14640                | E10        | 095         |             | 115    |      | 094 | 114 | 001  | 001  |
| 90215-14661                | F10        |             |             |        |      | 098 | 138 |      |      |
| 90253-17700                | G10        | 099         |             | 132    |      | 098 | 130 | 001  | 002  |
| 90253-17703                | H10        | 099         |             | 099    |      | 098 | 098 | 001  | 001  |
| 90253-17704                | A11        | 099         |             | 107    |      | 098 | 106 | 001  | 001  |
| 90253-17712                | B11        | 111         |             | 111    |      | 110 | 110 | 001  | 001  |
| 90253-17713                | C11        | 099         |             | 111    |      | 098 | 110 | 001  | 001  |
| 90253-17714                | D11        | 095         |             | 099    |      | 094 | 098 | 001  | 001  |
| 90253-17715                | E11        | 099         |             | 127    |      | 098 | 126 | 001  | 001  |
| 90253-17836                | F11        | 095         |             | 123    |      | 094 | 122 | 001  | 001  |
| 90253-17837                | G11        | 103         |             | 107    |      | 102 | 106 | 001  | 001  |
| 90253-17838                | H11        | 107         |             | 136    |      | 106 | 134 | 001  | 002  |
| 90253-17866                | A12        | 091         |             | 107    |      | 090 | 106 | 001  | 001  |
| 90253-17867                | B12        | 095         |             | 140    |      | 094 | 138 | 001  | 002  |
| 90253-17868                | C12        | 095         |             | 136    |      | 094 | 134 | 001  | 002  |
| 90253-17869                | D12        | 115         |             | 140    |      | 114 | 138 | 001  | 002  |
| 90253-17871                | E12        | 099         |             | 127    |      | 098 | 126 | 001  | 001  |
| 90253-17872                | F12        | 095         |             | 115    |      | 094 | 114 | 001  | 001  |
| 90253-17893                | G12        | 099         |             | 127    |      | 098 | 126 | 001  | 001  |
| 90253-17995                | H12        | 111         |             | 145    |      | 110 | 142 | 001  | 003  |

| Table 2 con | tinued.    |                |                |       |                 |      |     |      |
|-------------|------------|----------------|----------------|-------|-----------------|------|-----|------|
| Sample#     | Plate Well | WDFW Omy-1011a | WDFW Omy-1011b | Omy10 | 011_1 Omy1011_2 | Diff |     | Diff |
| 90210-13228 | A01        |                |                |       | 186             | 190  |     |      |
| 90210-13229 | B01        |                |                |       | 182             | 198  |     |      |
| 90210-13231 | C01        |                |                |       | 178             | 182  |     |      |
| 90210-13232 | D01        |                |                |       | 182             | 190  |     |      |
| 90210-13233 | E01        |                |                |       | 182             | 190  |     |      |
| 90210-13234 | F01        |                |                |       | 178             | 210  |     |      |
| 90210-13235 | G01        |                |                |       | 186             | 190  |     |      |
| 90210-13239 | H01        |                |                |       | 190             | 210  |     |      |
| 90210-13241 | A02        | 183            | 187            |       | 182             | 186  | 001 | 001  |
| 90210-13294 | B02        | 179            | 183            |       | 178             | 182  | 001 | 001  |
| 90210-13295 | C02        | 179            | 183            |       | 178             | 182  | 001 | 001  |
| 90210-13300 | D02        | 183            | 211            |       | 182             | 210  | 001 | 001  |
| 90210-13348 | E02        | 187            | 187            |       | 186             | 186  | 001 | 001  |
| 90210-13349 | F02        |                |                |       |                 |      |     |      |
| 90210-13350 | G02        | 183            | 191            |       | 182             | 190  | 001 | 001  |
| 90210-13351 | H02        |                |                |       | 194             | 194  |     |      |
| 90210-13352 | A03        | 183            | 211            |       | 182             | 210  | 001 | 001  |
| 90210-13353 | B03        | 179            | 183            |       | 178             | 182  | 001 | 001  |
| 90210-13358 | C03        |                |                |       | 186             | 210  |     |      |
| 90210-13371 | D03        |                |                |       | 178             | 182  |     |      |
| 90210-13373 | E03        | 183            | 199            |       | 182             | 198  | 001 | 001  |
| 90210-13374 | F03        |                |                |       | 182             | 182  |     |      |
| 90210-13375 | G03        |                |                |       | 182             | 186  |     |      |
| 90210-13377 | H03        |                |                |       | 194             | 194  |     |      |
| 90210-13378 | A04        | 179            | 187            |       | 178             | 186  | 001 | 001  |
| 90210-13379 | B04        |                |                |       | 186             | 210  |     |      |
| 90210-13380 | C04        |                |                |       |                 |      |     |      |
| 90210-13381 | D04        |                |                |       | 178             | 210  |     |      |
| 90210-13382 | E04        |                |                |       | 186             | 186  |     |      |
| 90210-13383 | F04        | 191            | 211            |       | 190             | 210  | 001 | 001  |
| 90210-13384 | G04        |                |                |       |                 |      |     |      |
| 90210-13385 | H04        |                |                |       | 206             | 206  |     |      |
| 90210-13386 | A05        | 187            | 191            |       | 186             | 190  | 001 | 001  |
| 90210-13387 | B05        | 183            | 187            |       | 182             | 186  | 001 | 001  |
| 90210-13388 | C05        |                |                |       | 178             | 198  |     |      |
| 90210-13389 | D05        | 183            | 187            |       | 182             | 186  | 001 | 001  |
| 90210-13390 | E05        | 183            | 187            |       | 182             | 186  | 001 | 001  |
| 90210-13391 | F05        | 183            | 187            |       | 182             | 186  | 001 | 001  |
| 90210-13392 | G05        |                |                |       | 186             | 186  |     |      |
| 90210-13393 | H05        | 191            | 211            |       | 190             | 210  | 001 | 001  |
| 90210-13394 | A06        |                |                |       | 178             | 190  |     |      |
| 90210-13395 | B06        |                |                |       | 186             | 198  |     |      |
| 90210-13396 | C06        |                |                |       | 206             | 218  |     |      |
| 90210-13398 | D06        |                |                |       | 182             | 194  |     |      |
| 90210-13399 | E06        |                |                |       | 182             | 186  |     |      |
| 90210-13400 | F06        |                |                |       | 186             | 190  |     |      |
| 90210-13401 | G06        |                |                |       | 178             | 194  |     |      |
| 90210-13402 | H06        | 187            | 187            |       | 186             | 186  | 001 | 001  |
|             |            |                |                |       |                 |      |     |      |

| Table 2 con | tinued.    |                |                    |                  |      |     |      |
|-------------|------------|----------------|--------------------|------------------|------|-----|------|
| Sample#     | Plate Well | WDFW Omy-1011a | WDFW Omy-1011b Omy | 1011_1 Omy1011_2 | Diff |     | Diff |
| 90210-13407 | A07        | 187            | 191                | 186              | 190  | 001 | 001  |
| 90215-13962 | B07        | 187            | 187                | 186              | 186  | 001 | 001  |
| 90215-13963 | C07        | 187            | 187                | 186              | 186  | 001 | 001  |
| 90215-14031 | D07        | 183            | 199                | 182              | 198  | 001 | 001  |
| 90215-14032 | E07        |                |                    | 186              | 194  |     |      |
| 90215-14034 | F07        | 179            | 187                | 178              | 186  | 001 | 001  |
| 90215-14035 | G07        |                |                    | 186              | 190  |     |      |
| 90215-14036 | H07        |                |                    | 182              | 186  |     |      |
| 90215-14037 | A08        | 183            | 183                | 182              | 182  | 001 | 001  |
| 90215-14113 | B08        | 183            | 187                | 182              | 186  | 001 | 001  |
| 90215-14114 | C08        |                |                    | 186              | 198  |     |      |
| 90215-14115 | D08        | 183            | 187                | 182              | 186  | 001 | 001  |
| 90215-14116 | E08        | 211            | 211                | 210              | 210  | 001 | 001  |
| 90215-14117 | F08        | 191            | 195                | 190              | 194  | 001 | 001  |
| 90215-14174 | G08        | 187            | 191                | 186              | 190  | 001 | 001  |
| 90215-14175 | H08        | 187            | 187                | 186              | 186  | 001 | 001  |
| 90215-14176 | A09        | 179            | 187                | 178              | 186  | 001 | 001  |
| 90215-14177 | B09        | 187            | 187                | 186              | 186  | 001 | 001  |
| 90215-14178 | C09        |                |                    | 178              | 190  |     |      |
| 90215-14179 | D09        | 179            | 183                | 178              | 182  | 001 | 001  |
| 90215-14181 | E09        |                |                    | 186              | 210  |     |      |
| 90215-14182 | F09        | 179            | 187                | 178              | 186  | 001 | 001  |
| 90215-14183 | G09        | 187            | 187                | 186              | 186  | 001 | 001  |
| 90215-14457 | H09        |                |                    |                  |      |     |      |
| 90215-14505 | A10        | 183            | 187                | 182              | 186  | 001 | 001  |
| 90215-14618 | B10        | 187            | 191                | 186              | 190  | 001 | 001  |
| 90215-14625 | C10        | 183            | 191                | 182              | 190  | 001 | 001  |
| 90215-14639 | D10        | 179            | 187                | 178              | 186  | 001 | 001  |
| 90215-14640 | E10        | 187            | 187                | 186              | 186  | 001 | 001  |
| 90215-14661 | F10        |                |                    | 182              | 190  |     |      |
| 90253-17700 | G10        | 183            | 191                | 182              | 190  | 001 | 001  |
| 90253-17703 | H10        | 187            | 191                | 186              | 190  | 001 | 001  |
| 90253-17704 | A11        | 183            | 183                | 182              | 182  | 001 | 001  |
| 90253-17712 | B11        | 183            | 187                | 182              | 186  | 001 | 001  |
| 90253-17713 | C11        | 183            | 187                | 182              | 186  | 001 | 001  |
| 90253-17714 | D11        | 179            | 183                | 178              | 182  | 001 | 001  |
| 90253-17715 | E11        | 183            | 187                | 182              | 186  | 001 | 001  |
| 90253-17836 | F11        | 187            | 191                | 186              | 190  | 001 | 001  |
| 90253-17837 | G11        | 187            | 187                | 186              | 214  | 001 | -027 |
| 90253-17838 | H11        | 179            | 183                | 178              | 182  | 001 | 001  |
| 90253-17866 | A12        |                |                    | 198              | 202  |     |      |
| 90253-17867 | B12        | 187            | 199                | 186              | 198  | 001 | 001  |
| 90253-17868 | C12        |                |                    | 178              | 206  |     |      |
| 90253-17869 | D12        | 187            | 187                | 186              | 186  | 001 | 001  |
| 90253-17871 | E12        | 179            | 203                | 178              | 202  | 001 | 001  |
| 90253-17872 | F12        | 187            | 187                | 186              | 186  | 001 | 001  |
| 90253-17893 | G12        | 187            | 191                | 186              | 190  | 001 | 001  |
| 90253-17995 | H12        | 187            | 199                | 186              | 198  | 001 | 001  |
|             |            |                |                    |                  |      |     |      |

| Table 2 cont | tinued.<br>Plate Well |               | WDFW One-13Mb | 0===12 1 0= |     |            | Diff | Diff |
|--------------|-----------------------|---------------|---------------|-------------|-----|------------|------|------|
| Sample#      |                       | WDFW One-13Ma | WDFW One-13Mb | One13_1 Or  | _   | 474        | Diff | υπ   |
| 90210-13228  | A01                   |               |               |             | 161 | 171        |      |      |
| 90210-13229  | B01<br>C01            |               |               |             | 161 | 173        |      |      |
| 90210-13231  | D01                   |               |               |             | 173 | 173<br>185 |      |      |
| 90210-13232  | E01                   |               |               |             | 161 | 165        |      |      |
| 90210-13233  |                       |               |               |             | 151 |            |      |      |
| 90210-13234  | F01                   |               |               |             | 159 | 173        |      |      |
| 90210-13235  | G01                   |               |               |             | 159 | 179        |      |      |
| 90210-13239  | H01                   |               |               |             | 151 | 185        |      |      |
| 90210-13241  | A02                   | 201           |               | 203         | 159 | 161        | 042  | 042  |
| 90210-13294  | B02                   | 203           |               | 223         | 161 | 181        | 042  | 042  |
| 90210-13295  | C02                   | 203           |               | 209         | 161 | 167        | 042  | 042  |
| 90210-13300  | D02                   | 193           |               | 201         | 151 | 159        | 042  | 042  |
| 90210-13348  | E02                   |               |               |             | 151 | 159        |      |      |
| 90210-13349  | F02                   |               |               |             | 161 | 173        |      |      |
| 90210-13350  | G02                   | 201           |               | 221         | 159 | 179        | 042  | 042  |
| 90210-13351  | H02                   |               |               |             | 179 | 185        |      |      |
| 90210-13352  | A03                   | 193           |               | 203         | 151 | 161        | 042  | 042  |
| 90210-13353  | B03                   | 217           |               | 226         | 175 | 185        | 042  | 041  |
| 90210-13358  | C03                   |               |               |             | 159 | 161        |      |      |
| 90210-13371  | D03                   |               |               |             | 151 | 179        |      |      |
| 90210-13373  | E03                   | 203           |               | 215         | 161 | 173        | 042  | 042  |
| 90210-13374  | F03                   |               |               |             | 163 | 185        |      |      |
| 90210-13375  | G03                   |               |               |             | 161 | 161        |      |      |
| 90210-13377  | H03                   |               |               |             | 159 | 185        |      |      |
| 90210-13378  | A04                   |               |               |             | 151 | 179        |      |      |
| 90210-13379  | B04                   |               |               |             | 179 | 179        |      |      |
| 90210-13380  | C04                   |               |               |             | 000 | 000        |      |      |
| 90210-13381  | D04                   | 193           |               | 209         | 151 | 167        | 042  | 042  |
| 90210-13382  | E04                   | 193           |               | 203         | 151 | 161        | 042  | 042  |
| 90210-13383  | F04                   |               |               |             | 173 | 179        |      |      |
| 90210-13384  | G04                   |               |               |             | 151 | 151        |      |      |
| 90210-13385  | H04                   | 217           |               | 226         | 175 | 185        | 042  | 041  |
| 90210-13386  | A05                   | 215           |               | 221         | 173 | 179        | 042  | 042  |
| 90210-13387  | B05                   | 209           |               | 217         | 167 | 175        | 042  | 042  |
| 90210-13388  | C05                   | 209           |               | 217         | 167 | 175        | 042  | 042  |
| 90210-13389  | D05                   | 193           |               | 201         | 151 | 159        | 042  | 042  |
| 90210-13390  | E05                   | 193           |               | 201         | 151 | 159        | 042  | 042  |
| 90210-13391  | F05                   | 193           |               | 193         | 151 | 151        | 042  | 042  |
| 90210-13392  | G05                   |               |               |             | 161 | 161        |      |      |
| 90210-13393  | H05                   | 193           |               | 193         | 151 | 179        | 042  | 014  |
| 90210-13394  | A06                   | 193           |               | 193         | 151 | 151        | 042  | 042  |
| 90210-13395  | B06                   |               |               |             | 151 | 161        |      |      |
| 90210-13396  | C06                   |               |               |             | 151 | 159        |      |      |
| 90210-13398  | D06                   | 193           |               | 218         | 151 | 177        | 042  | 041  |
| 90210-13399  | E06                   | 203           |               | 218         | 161 | 177        | 042  | 041  |
| 90210-13400  | F06                   |               |               |             | 151 | 159        |      |      |
| 90210-13401  | G06                   |               |               |             | 159 | 161        |      |      |
| 90210-13402  | H06                   | 193           |               | 193         | 151 | 151        | 042  | 042  |
|              |                       |               |               |             |     |            |      |      |

| Table 2 con | tinued.    |               |               |           |        |    |     |       |      |
|-------------|------------|---------------|---------------|-----------|--------|----|-----|-------|------|
| Sample#     | Plate Well | WDFW One-13Ma | WDFW One-13Mb | One13_1 C | ne13 2 |    |     | Diff  | Diff |
| 90210-13407 | A07        | 193           |               | 193       |        | 51 | 151 | 042   | 042  |
| 90215-13962 | B07        | 100           |               | 100       |        | 61 | 175 |       |      |
| 90215-13963 | C07        | 193           |               | 221       |        | 51 | 179 | 042   | 042  |
| 90215-14031 | D07        | 201           |               | 218       |        | 59 | 177 | 042   | 041  |
| 90215-14032 | E07        |               |               |           |        | 55 | 159 | • • • | •••• |
| 90215-14034 | F07        |               |               |           |        | 59 | 171 |       |      |
| 90215-14035 | G07        |               |               |           |        | 73 | 181 |       |      |
| 90215-14036 | H07        | 215           |               | 215       |        | 73 | 173 | 042   | 042  |
| 90215-14037 | A08        | 203           |               | 215       |        | 61 | 173 | 042   | 042  |
| 90215-14113 | B08        |               |               |           |        | 51 | 179 |       |      |
| 90215-14114 | C08        |               |               |           |        | 73 | 181 |       |      |
| 90215-14115 | D08        | 215           |               | 221       |        | 73 | 179 | 042   | 042  |
| 90215-14116 | E08        | 201           |               | 207       |        | 59 | 165 | 042   | 042  |
| 90215-14117 | F08        | 201           |               |           |        | 51 | 171 | 0.2   | 0.2  |
| 90215-14174 | G08        | 223           |               | 223       |        | 81 | 181 | 042   | 042  |
| 90215-14175 | H08        | 201           |               | 221       |        | 59 | 179 | 042   | 042  |
| 90215-14176 | A09        | 209           |               | 221       |        | 67 | 179 | 042   | 042  |
| 90215-14177 | B09        | 205           |               | 209       |        | 63 | 167 | 042   | 042  |
| 90215-14178 | C09        | 198           |               | 215       |        | 57 | 173 | 041   | 042  |
| 90215-14179 | D09        | 215           |               | 221       |        | 73 | 179 | 042   | 042  |
| 90215-14181 | E09        | 193           |               | 218       |        | 51 | 177 | 042   | 041  |
| 90215-14182 | F09        | 193           |               | 203       |        | 51 | 161 | 042   | 042  |
| 90215-14183 | G09        | 193           |               | 226       |        | 51 | 185 | 042   | 041  |
| 90215-14457 | H09        |               |               |           |        | 67 | 185 |       | •••• |
| 90215-14505 | A10        | 218           |               | 226       |        | 77 | 185 | 041   | 041  |
| 90215-14618 | B10        | 193           |               | 203       |        | 51 | 161 | 042   | 042  |
| 90215-14625 | C10        | 201           |               | 203       |        | 59 | 161 | 042   | 042  |
| 90215-14639 | D10        | 215           |               | 217       |        | 73 | 175 | 042   | 042  |
| 90215-14640 | E10        | 193           |               | 193       |        | 51 | 151 | 042   | 042  |
| 90215-14661 | F10        |               |               |           |        | 51 | 173 |       |      |
| 90253-17700 | G10        |               |               |           |        | 73 | 179 |       |      |
| 90253-17703 | H10        | 221           |               | 224       |        | 79 | 183 | 042   | 041  |
| 90253-17704 | A11        | 215           |               | 221       |        | 73 | 179 | 042   | 042  |
| 90253-17712 | B11        | 210           |               | 221       |        | 79 | 179 | 042   | 042  |
| 90253-17713 | C11        | 201           |               | 221       |        | 59 | 179 | 042   | 042  |
| 90253-17714 | D11        | 226           |               | 226       |        | 85 | 185 | 041   | 041  |
| 90253-17715 | E11        | 193           |               | 203       |        | 51 | 161 | 042   | 042  |
| 90253-17836 | F11        | 213           |               | 218       |        | 71 | 177 | 042   | 041  |
| 90253-17837 | G11        | 193           |               | 213       |        | 51 | 171 | 042   | 042  |
| 90253-17838 | H11        | 193           |               | 203       |        | 51 | 161 | 042   | 042  |
| 90253-17866 | A12        | 195           |               | 203       |        | 53 | 161 | 042   | 042  |
| 90253-17867 | B12        | 221           |               | 221       |        | 79 | 179 | 042   | 042  |
| 90253-17868 | C12        | 193           |               | 217       |        | 51 | 175 | 042   | 042  |
| 90253-17869 | D12        | 100           |               |           |        | 59 | 161 | 0.12  | V76  |
| 90253-17871 | E12        | 203           |               | 221       |        | 61 | 179 | 042   | 042  |
| 90253-17872 | F12        | 200           |               |           |        | 51 | 179 | 072   | 572  |
| 90253-17893 | G12        | 193           |               | 207       |        | 51 | 165 | 042   | 042  |
| 90253-17995 | H12        | 203           |               | 221       |        | 61 | 179 | 042   | 042  |
|             |            | 200           |               |           |        |    |     | - · L | 57L  |

| Table 2 con<br>Sample# | Plate Well | WDFW Ots-103a | WDFW Ots-103b | Ots103_1 Ots | 103 2 | Diff | Diff |
|------------------------|------------|---------------|---------------|--------------|-------|------|------|
| 90210-13228            | A01        |               |               | 077          | 149   | 2    | 2    |
| 90210-13229            | B01        |               |               | 093          | 093   |      |      |
| 90210-13231            | C01        |               |               | 093          | 161   |      |      |
| 90210-13232            | D01        |               |               | 149          | 149   |      |      |
| 90210-13233            | E01        |               |               | 153          | 153   |      |      |
| 90210-13234            | F01        |               |               | 069          | 117   |      |      |
| 90210-13235            | G01        |               |               | 085          | 145   |      |      |
| 90210-13239            | H01        |               |               | 085          | 085   |      |      |
| 90210-13241            | A02        | 154           | 225           | 145          | 217   | 009  | 008  |
| 90210-13294            | B02        | 093           | 125           | 085          | 117   | 008  | 008  |
| 90210-13295            | C02        |               |               | 073          | 117   |      |      |
| 90210-13300            | D02        | 093           | 197           | 085          | 189   | 008  | 008  |
| 90210-13348            | E02        | 154           | 248           | 145          | 241   | 009  | 007  |
| 90210-13349            | F02        |               |               | 069          | 101   |      |      |
| 90210-13350            | G02        | 125           | 174           | 117          | 165   | 008  | 009  |
| 90210-13351            | H02        | 133           | 133           | 125          | 125   | 008  | 008  |
| 90210-13352            | A03        | 113           | 170           | 105          | 161   | 008  | 009  |
| 90210-13353            | B03        | 109           | 125           | 101          | 117   | 008  | 008  |
| 90210-13358            | C03        |               |               | 165          | 197   |      |      |
| 90210-13371            | D03        |               |               | 125          | 205   |      |      |
| 90210-13373            | E03        | 125           | 190           | 117          | 181   | 008  | 009  |
| 90210-13374            | F03        | 120           | 100           | 077          | 077   |      |      |
| 90210-13375            | G03        |               |               | 125          | 269   |      |      |
| 90210-13377            | H03        |               |               | 085          | 085   |      |      |
| 90210-13378            | A04        | 125           | 158           | 117          | 149   | 008  | 009  |
| 90210-13379            | B04        | 150           | 158           | 141          | 149   | 009  | 009  |
| 90210-13380            | C04        |               |               | 105          | 125   |      |      |
| 90210-13381            | D04        | 170           | 240           | 161          | 233   | 009  | 007  |
| 90210-13382            | E04        | 085           | 193           | 077          | 185   | 008  | 008  |
| 90210-13383            | F04        | 137           | 158           | 129          | 149   | 008  | 009  |
| 90210-13384            | G04        |               |               | 161          | 165   |      |      |
| 90210-13385            | H04        | 105           | 117           | 097          | 109   | 008  | 008  |
| 90210-13386            | A05        | 101           | 137           | 093          | 129   | 008  | 008  |
| 90210-13387            | B05        | 154           | 213           | 145          | 205   | 009  | 800  |
| 90210-13388            | C05        |               |               | 173          | 193   |      |      |
| 90210-13389            | D05        | 197           | 197           | 189          | 189   | 008  | 008  |
| 90210-13390            | E05        | 154           | 197           | 145          | 189   | 009  | 800  |
| 90210-13391            | F05        | 209           | 237           | 201          | 229   | 008  | 800  |
| 90210-13392            | G05        |               |               | 177          | 177   |      |      |
| 90210-13393            | H05        | 162           | 186           | 153          | 177   | 009  | 009  |
| 90210-13394            | A06        | 154           | 154           | 145          | 145   | 009  | 009  |
| 90210-13395            | B06        | 150           | 186           | 141          | 177   | 009  | 009  |
| 90210-13396            | C06        | 125           | 125           | 117          | 117   | 008  | 008  |
| 90210-13398            | D06        | 113           | 145           | 105          | 137   | 008  | 008  |
| 90210-13399            | E06        | 105           | 150           | 097          | 141   | 008  | 009  |
| 90210-13400            | F06        |               |               | 145          | 153   |      |      |
| 90210-13401            | G06        | 117           | 125           | 109          | 117   | 008  | 008  |
| 90210-13402            | H06        | 120           | 182           | 113          | 173   | 007  | 009  |

| Sample#     | Plate Well | WDFW Ots-103a | WDFW Ots-103b | Ots10 | 03_1 Ots103_2 | !   | Diff | Diff |
|-------------|------------|---------------|---------------|-------|---------------|-----|------|------|
| 90210-13407 | A07        | 170           | 288           |       | 161           | 281 | 009  | 007  |
| 90215-13962 | B07        | 170           | 291           |       | 161           | 285 | 009  | 006  |
| 90215-13963 | C07        | 120           | 158           |       | 113           | 149 | 007  | 009  |
| 90215-14031 | D07        | 120           | 178           |       | 113           | 169 | 007  | 009  |
| 90215-14032 | E07        | 125           | 252           |       | 117           | 245 | 008  | 007  |
| 90215-14034 | F07        | 097           | 097           |       | 089           | 089 | 008  | 008  |
| 90215-14035 | G07        | 174           | 201           |       | 165           | 193 | 009  | 008  |
| 90215-14036 | H07        |               |               |       | 073           | 085 |      |      |
| 90215-14037 | A08        | 089           | 133           |       | 081           | 125 | 800  | 800  |
| 90215-14113 | B08        | 145           | 174           |       | 137           | 165 | 008  | 009  |
| 90215-14114 | C08        | 128           | 162           |       | 121           | 153 | 007  | 009  |
| 90215-14115 | D08        | 105           | 217           |       | 097           | 209 | 008  | 008  |
| 90215-14116 | E08        | 105           | 120           |       | 097           | 113 | 008  | 007  |
| 90215-14117 | F08        |               |               |       | 073           | 121 |      |      |
| 90215-14174 | G08        | 174           | 186           |       | 165           | 177 | 009  | 009  |
| 90215-14175 | H08        | 125           | 233           |       | 117           | 225 | 008  | 008  |
| 90215-14176 | A09        |               |               |       | 073           | 077 |      |      |
| 90215-14177 | B09        | 209           | 209           |       | 201           | 201 | 008  | 800  |
| 90215-14178 | C09        | 158           | 186           |       | 149           | 177 | 009  | 009  |
| 90215-14179 | D09        | 205           | 205           |       | 197           | 197 | 008  | 800  |
| 90215-14181 | E09        | 141           | 209           |       | 133           | 201 | 008  | 008  |
| 90215-14182 | F09        | 145           | 145           |       | 137           | 137 | 008  | 800  |
| 90215-14183 | G09        | 097           | 113           |       | 089           | 105 | 008  | 008  |
| 90215-14457 | H09        | 170           | 217           |       | 161           | 209 | 009  | 008  |
| 90215-14505 | A10        | 217           | 217           |       | 209           | 209 | 008  | 008  |
| 90215-14618 | B10        | 158           | 162           |       | 149           | 153 | 009  | 009  |
| 90215-14625 | C10        | 166           | 174           |       | 157           | 165 | 009  | 009  |
| 90215-14639 | D10        | 101           | 209           |       | 093           | 201 | 008  | 800  |
| 90215-14640 | E10        | 162           | 162           |       | 153           | 153 | 009  | 009  |
| 90215-14661 | F10        |               |               |       | 165           | 221 |      |      |
| 90253-17700 | G10        | 186           | 190           |       | 177           | 181 | 009  | 009  |
| 90253-17703 | H10        | 109           | 182           |       | 101           | 173 | 008  | 009  |
| 90253-17704 | A11        |               |               |       | 077           | 109 |      |      |
| 90253-17712 | B11        | 113           | 174           |       | 105           | 165 | 008  | 009  |
| 90253-17713 | C11        |               |               |       |               |     |      |      |
| 90253-17714 | D11        | 128           | 137           |       | 121           | 129 | 007  | 800  |
| 90253-17715 | E11        | 158           | 166           |       | 149           | 157 | 009  | 009  |
| 90253-17836 | F11        | 154           | 190           |       | 145           | 181 | 009  | 009  |
| 90253-17837 | G11        | 105           | 178           |       | 097           | 169 | 008  | 009  |
| 90253-17838 | H11        | 125           | 170           |       | 117           | 161 | 008  | 009  |
| 90253-17866 | A12        | 089           | 105           |       | 081           | 097 | 008  | 008  |
| 90253-17867 | B12        | 237           | 237           |       | 229           | 229 | 008  | 008  |
| 90253-17868 | C12        | 128           | 178           |       | 121           | 169 | 007  | 009  |
| 90253-17869 | D12        | 178           | 197           |       | 169           | 189 | 009  | 800  |
| 90253-17871 | E12        | 113           | 154           |       | 105           | 145 | 008  | 009  |
| 90253-17872 | F12        |               |               |       | 117           | 117 |      |      |
| 90253-17893 | G12        | 105           | 137           |       | 097           | 129 | 008  | 008  |
| 90253-17995 | H12        |               |               |       |               |     |      |      |

| Table 2 con<br>Sample# | Plate Well | WDFW | Ots-213a | WDFW  | Ots-213a   | Ote  | 213_1 Ots213_2 |     | Diff | Diff |
|------------------------|------------|------|----------|-------|------------|------|----------------|-----|------|------|
| 90210-13228            | A01        |      | 013-213d | WDP W | 013-213d   | 015/ | 155            | 155 |      | Dill |
| 90210-13229            | B01        |      |          |       |            |      | 155            | 155 |      |      |
| 90210-13231            | C01        |      |          |       |            |      | 155            | 155 |      |      |
| 90210-13232            | D01        |      |          |       |            |      | 155            | 159 |      |      |
| 90210-13233            | E01        |      |          |       |            |      | 155            | 159 |      |      |
| 90210-13234            | F01        |      |          |       |            |      | 159            | 159 |      |      |
| 90210-13235            | G01        |      |          |       |            |      | 155            | 195 |      |      |
| 90210-13239            | H01        |      |          |       |            |      | 155            | 275 |      |      |
| 90210-13241            | A02        |      | 183      |       | 183        |      | 155            | 155 | 028  | 028  |
| 90210-13294            | B02        |      | 183      |       | 187        |      | 155            | 159 | 028  | 028  |
| 90210-13295            | C02        |      | 100      |       | 101        |      | 159            | 243 | 020  | 020  |
| 90210-13300            | D02        |      | 183      |       | 183        |      | 155            | 155 | 028  | 028  |
| 90210-13348            | E02        |      | 183      |       | 187        |      | 155            | 159 | 028  | 028  |
| 90210-13349            | F02        |      | 100      |       | 101        |      | 159            | 163 | 020  | 020  |
| 90210-13350            | G02        |      |          |       |            |      | 163            | 247 |      |      |
| 90210-13351            | H02        |      |          |       |            |      | 155            | 155 |      |      |
| 90210-13352            | A03        |      | 187      |       | 264        |      | 159            | 239 | 028  | 025  |
| 90210-13353            | B03        |      | 107      |       | 204        |      | 159            | 159 | 020  | 025  |
| 90210-13358            | C03        |      |          |       |            |      | 155            | 195 |      |      |
| 90210-13371            | D03        |      |          |       |            |      | 155            | 159 |      |      |
| 90210-13373            | E03        |      | 183      |       | 187        |      | 155            | 159 | 028  | 028  |
| 90210-13374            | F03        |      | 103      |       | 107        |      | 227            | 275 | 020  | 028  |
| 90210-13375            | G03        |      |          |       |            |      | 155            | 155 |      |      |
| 90210-13373            | H03        |      | 187      |       | 264        |      | 159            | 239 | 028  | 025  |
| 90210-13378            | A04        |      | 187      |       | 204<br>249 |      | 159            | 223 | 028  | 025  |
| 90210-13379            | B04        |      | 107      |       | 245        |      | 155            | 155 | 020  | 020  |
| 90210-13380            | C04        |      |          |       |            |      | 159            | 235 |      |      |
| 90210-13381            | D04        |      | 187      |       | 187        |      | 159            | 159 | 028  | 028  |
| 90210-13382            | E04        |      | 187      |       | 183        |      | 155            | 155 | 028  | 028  |
| 90210-13383            | E04        |      | 105      |       | 105        |      | 155            | 195 | 020  | 020  |
| 90210-13384            | G04        |      |          |       |            |      | 155            | 195 |      |      |
| 90210-13385            | H04        |      | 183      |       | 187        |      | 155            | 159 | 028  | 028  |
| 90210-13386            | A05        |      | 183      |       | 183        |      | 155            | 155 | 028  | 028  |
| 90210-13387            | B05        |      | 183      |       | 183        |      | 155            | 155 | 028  | 028  |
| 90210-13388            | C05        |      | 183      |       | 190        |      | 155            | 163 | 028  | 020  |
| 90210-13389            | D05        |      | 183      |       | 256        |      | 155            | 231 | 028  | 027  |
| 90210-13390            | E05        |      | 100      |       | 200        |      | 155            | 155 | 020  | 020  |
| 90210-13391            | F05        |      |          |       |            |      | 155            | 243 |      |      |
| 90210-13392            | G05        |      | 183      |       | 183        |      | 155            | 155 | 028  | 028  |
| 90210-13393            | H05        |      | 183      |       | 183        |      | 155            | 155 | 028  | 028  |
| 90210-13394            | A06        |      | 100      |       | 100        |      | 155            | 159 | 020  | 020  |
| 90210-13395            | B06        |      | 183      |       | 183        |      | 155            | 155 | 028  | 028  |
| 90210-13396            | C06        |      | 183      |       | 308        |      | 155            | 283 | 028  | 025  |
| 90210-13398            | D06        |      | 272      |       | 276        |      | 247            | 251 | 025  | 025  |
| 90210-13399            | E06        |      | 183      |       | 187        |      | 155            | 159 | 025  | 025  |
| 90210-13400            | E00        |      | 183      |       | 187        |      | 155            | 155 | 028  | 028  |
| 90210-13401            | G06        |      | 185      |       | 268        |      | 159            | 243 | 028  | 025  |
| 90210-13402            | H06        |      | 183      |       | 187        |      | 155            | 159 | 028  | 023  |
| 90210-13402            | ΠUO        |      | 183      |       | 187        |      | 100            | 109 | 028  | 028  |
|                        |            |      |          |       |            |      |                |     |      |      |

| Table 2 con | tinued.    |               |               |                   |     |      |      |
|-------------|------------|---------------|---------------|-------------------|-----|------|------|
| Sample#     | Plate Well | WDFW Ots-213a | WDFW Ots-213a | Ots213_1 Ots213_2 |     | Diff | Diff |
| 90210-13407 | A07        | 183           | 316           | 155               | 291 | 028  | 025  |
| 90215-13962 | B07        | 183           | 249           | 155               | 223 | 028  | 026  |
| 90215-13963 | C07        | 183           | 187           | 155               | 159 | 028  | 028  |
| 90215-14031 | D07        | 183           | 183           | 155               | 155 | 028  | 028  |
| 90215-14032 | E07        | 183           | 183           | 155               | 155 | 028  | 028  |
| 90215-14034 | F07        | 187           | 190           | 159               | 163 | 028  | 027  |
| 90215-14035 | G07        |               |               | 155               | 155 |      |      |
| 90215-14036 | H07        |               |               | 163               | 243 |      |      |
| 90215-14037 | A08        | 183           | 187           | 155               | 159 | 028  | 028  |
| 90215-14113 | B08        | 183           | 183           | 155               | 155 | 028  | 028  |
| 90215-14114 | C08        |               |               | 159               | 171 |      |      |
| 90215-14115 | D08        | 268           | 288           | 243               | 263 | 025  | 025  |
| 90215-14116 | E08        | 187           | 190           | 159               | 163 | 028  | 027  |
| 90215-14117 | F08        | 183           | 187           | 155               | 159 | 028  | 028  |
| 90215-14174 | G08        | 183           | 187           | 155               | 159 | 028  | 028  |
| 90215-14175 | H08        | 183           | 187           | 155               | 159 | 028  | 028  |
| 90215-14176 | A09        | 183           | 300           | 155               | 275 | 028  | 025  |
| 90215-14177 | B09        | 183           | 296           | 155               | 271 | 028  | 025  |
| 90215-14178 | C09        | 183           | 183           | 155               | 155 | 028  | 028  |
| 90215-14179 | D09        |               |               | 159               | 251 |      |      |
| 90215-14181 | E09        | 183           | 183           | 155               | 155 | 028  | 028  |
| 90215-14182 | F09        | 183           | 183           | 155               | 155 | 028  | 028  |
| 90215-14183 | G09        | 183           | 190           | 155               | 163 | 028  | 027  |
| 90215-14457 | H09        |               |               | 171               | 171 |      |      |
| 90215-14505 | A10        | 187           | 198           | 159               | 171 | 028  | 027  |
| 90215-14618 | B10        | 183           | 260           | 155               | 235 | 028  | 025  |
| 90215-14625 | C10        | 183           | 190           | 155               | 163 | 028  | 027  |
| 90215-14639 | D10        |               |               | 155               | 159 |      |      |
| 90215-14640 | E10        | 183           | 183           | 155               | 155 | 028  | 028  |
| 90215-14661 | F10        |               |               | 155               | 155 |      |      |
| 90253-17700 | G10        |               |               | 159               | 271 |      |      |
| 90253-17703 | H10        | 187           | 190           | 159               | 163 | 028  | 027  |
| 90253-17704 | A11        | 183           | 187           | 155               | 159 | 028  | 028  |
| 90253-17712 | B11        | 190           | 209           | 163               | 183 | 027  | 026  |
| 90253-17713 | C11        | 187           | 312           | 159               | 287 | 028  | 025  |
| 90253-17714 | D11        |               |               | 159               | 231 |      |      |
| 90253-17715 | E11        |               |               | 159               | 235 |      |      |
| 90253-17836 | F11        |               |               | 155               | 155 |      |      |
| 90253-17837 | G11        | 187           | 312           | 159               | 287 | 028  | 025  |
| 90253-17838 | H11        | 183           | 187           | 155               | 159 | 028  | 028  |
| 90253-17866 | A12        |               |               | 159               | 259 |      |      |
| 90253-17867 | B12        | 183           | 183           | 155               | 155 | 028  | 028  |
| 90253-17868 | C12        | 183           | 183           | 155               | 155 | 028  | 028  |
| 90253-17869 | D12        | 183           | 312           | 155               | 287 | 028  | 025  |
| 90253-17871 | E12        | 183           | 190           | 155               | 163 | 028  | 027  |
| 90253-17872 | F12        |               |               | 155               | 223 |      |      |
| 90253-17893 | G12        | 183           | 183           | 155               | 155 | 028  | 028  |
| 90253-17995 | H12        | 183           | 187           | 155               | 159 | 028  | 028  |
|             |            |               |               |                   |     |      |      |

| Table 2 cor<br>Sample# | Plate Well | WDFW Ots-G422a | WDFW Ots-G422b | OtsG422_1 OtsG422_2 | Diff |     | Diff |
|------------------------|------------|----------------|----------------|---------------------|------|-----|------|
| 90210-13228            | A01        |                |                | 308                 | 316  |     |      |
| 90210-13229            | B01        |                |                | 272                 | 336  |     |      |
| 90210-13231            | C01        |                |                | 292                 | 352  |     |      |
| 90210-13232            | D01        |                |                | 296                 | 304  |     |      |
| 90210-13233            | E01        |                |                | 300                 | 332  |     |      |
| 90210-13234            | F01        |                |                | 280                 | 328  |     |      |
| 90210-13235            | G01        |                |                | 312                 | 324  |     |      |
| 90210-13239            | H01        |                |                | 304                 | 328  |     |      |
| 90210-13241            | A02        | 305            | 374            | 304                 | 372  | 001 | 002  |
| 90210-13294            | B02        |                |                | 292                 | 308  |     |      |
| 90210-13295            | C02        | 268            | 322            | 268                 | 320  | 000 | 002  |
| 90210-13300            | D02        | 309            | 414            | 308                 | 412  | 001 | 002  |
| 90210-13348            | E02        |                |                | 348                 | 368  |     |      |
| 90210-13349            | F02        |                |                | 328                 | 336  |     |      |
| 90210-13350            | G02        | 293            | 313            | 292                 | 312  | 001 | 001  |
| 90210-13351            | H02        |                |                | 288                 | 312  |     |      |
| 90210-13352            | A03        |                |                | 324                 | 364  |     |      |
| 90210-13353            | B03        | 281            | 313            | 280                 | 312  | 001 | 001  |
| 90210-13358            | C03        |                |                | 364                 | 372  |     |      |
| 90210-13371            | D03        |                |                | 304                 | 320  |     |      |
| 90210-13373            | E03        |                |                | 312                 | 312  |     |      |
| 90210-13374            | F03        | 272            | 301            | 272                 | 300  | 000 | 001  |
| 90210-13375            | G03        |                |                | 328                 | 352  |     |      |
| 90210-13377            | H03        |                |                | 280                 | 328  |     |      |
| 90210-13378            | A04        |                |                | 300                 | 328  |     |      |
| 90210-13379            | B04        |                |                | 324                 | 404  |     |      |
| 90210-13380            | C04        |                |                | 320                 | 320  |     |      |
| 90210-13381            | D04        | 330            | 334            | 328                 | 332  | 002 | 002  |
| 90210-13382            | E04        |                |                | 268                 | 344  |     |      |
| 90210-13383            | F04        | 281            | 289            | 280                 | 288  | 001 | 001  |
| 90210-13384            | G04        |                |                | 316                 | 348  |     |      |
| 90210-13385            | H04        |                |                | 288                 | 332  |     |      |
| 90210-13386            | A05        | 289            | 354            | 288                 | 352  | 001 | 002  |
| 90210-13387            | B05        | 305            | 334            | 304                 | 332  | 001 | 002  |
| 90210-13388            | C05        |                |                | 280                 | 296  |     |      |
| 90210-13389            | D05        |                |                | 312                 | 364  |     |      |
| 90210-13390            | E05        |                |                | 368                 | 396  |     |      |
| 90210-13391            | F05        |                |                | 300                 | 300  |     |      |
| 90210-13392            | G05        |                |                | 304                 | 352  |     |      |
| 90210-13393            | H05        |                |                | 276                 | 332  |     |      |
| 90210-13394            | A06        | 272            | 366            | 272                 | 364  | 000 | 002  |
| 90210-13395            | B06        |                |                | 284                 | 296  |     |      |
| 90210-13396            | C06        | 272            | 330            | 272                 | 328  | 000 | 002  |
| 90210-13398            | D06        |                |                | 260                 | 280  |     |      |
| 90210-13399            | E06        |                |                | 308                 | 316  |     |      |
| 90210-13400            | F06        |                |                | 328                 | 348  |     |      |
| 90210-13401            | G06        |                |                | 272                 | 392  |     |      |
| 90210-13402            | H06        |                |                | 296                 | 372  |     |      |

| Table 2 con |            |                |                |                     |      |     |      |
|-------------|------------|----------------|----------------|---------------------|------|-----|------|
| Sample#     | Plate Well | WDFW Ots-G422a | WDFW Ots-G422b | OtsG422_1 OtsG422_2 | Diff |     | Diff |
| 90210-13407 | A07        | 289            | 346            | 288                 | 344  | 001 | 002  |
| 90215-13962 | B07        |                |                | 328                 | 372  |     |      |
| 90215-13963 | C07        |                |                | 224                 | 300  |     |      |
| 90215-14031 | D07        |                |                | 280                 | 328  |     |      |
| 90215-14032 | E07        |                |                | 332                 | 356  |     |      |
| 90215-14034 | F07        |                |                | 300                 | 352  |     |      |
| 90215-14035 | G07        |                |                | 268                 | 352  |     |      |
| 90215-14036 | H07        |                |                | 252                 | 340  |     |      |
| 90215-14037 | A08        | 285            | 293            | 284                 | 292  | 001 | 001  |
| 90215-14113 | B08        |                |                | 268                 | 308  |     |      |
| 90215-14114 | C08        |                |                | 276                 | 316  |     |      |
| 90215-14115 | D08        |                |                | 296                 | 320  |     |      |
| 90215-14116 | E08        |                |                | 304                 | 352  |     |      |
| 90215-14117 | F08        |                |                | 268                 | 356  |     |      |
| 90215-14174 | G08        |                |                | 276                 | 336  |     |      |
| 90215-14175 | H08        |                |                | 300                 | 368  |     |      |
| 90215-14176 | A09        | 276            | 285            | 276                 | 284  | 000 | 001  |
| 90215-14177 | B09        |                |                | 320                 | 328  |     |      |
| 90215-14178 | C09        |                |                | 296                 | 304  |     |      |
| 90215-14179 | D09        |                |                | 332                 | 348  |     |      |
| 90215-14181 | E09        |                |                | 268                 | 348  |     |      |
| 90215-14182 | F09        |                |                | 308                 | 308  |     |      |
| 90215-14183 | G09        | 228            | 330            | 228                 | 328  | 000 | 002  |
| 90215-14457 | H09        |                |                | 328                 | 344  |     |      |
| 90215-14505 | A10        | 281            | 346            | 280                 | 344  | 001 | 002  |
| 90215-14618 | B10        |                |                | 292                 | 356  |     |      |
| 90215-14625 | C10        |                |                | 272                 | 332  |     |      |
| 90215-14639 | D10        |                |                | 328                 | 332  |     |      |
| 90215-14640 | E10        |                |                | 292                 | 320  |     |      |
| 90215-14661 | F10        |                |                | 356                 | 364  |     |      |
| 90253-17700 | G10        |                |                | 252                 | 300  |     |      |
| 90253-17703 | H10        |                |                | 304                 | 356  |     |      |
| 90253-17704 | A11        |                |                | 296                 | 300  |     |      |
| 90253-17712 | B11        | 289            | 390            | 288                 | 388  | 001 | 002  |
| 90253-17713 | C11        | 342            | 354            | 340                 | 352  | 002 | 002  |
| 90253-17714 | D11        | 285            | 322            | 284                 | 320  | 001 | 002  |
| 90253-17715 | E11        | 276            | 318            | 276                 | 316  | 000 | 002  |
| 90253-17836 | F11        | 334            | 338            | 332                 | 336  | 002 | 002  |
| 90253-17837 | G11        | 285            | 313            | 284                 | 312  | 001 | 001  |
| 90253-17838 | H11        |                |                | 268                 | 304  |     |      |
| 90253-17866 | A12        |                |                | 280                 | 300  |     |      |
| 90253-17867 | B12        | 301            | 301            | 300                 | 300  | 001 | 001  |
| 90253-17868 | C12        | 289            | 297            | 288                 | 296  | 001 | 001  |
| 90253-17869 | D12        |                |                | 340                 | 356  |     |      |
| 90253-17871 | E12        | 313            | 313            | 312                 | 312  | 001 | 001  |
| 90253-17872 | F12        | 330            | 418            | 328                 | 416  | 002 | 002  |
| 90253-17893 | G12        | 276            | 305            | 276                 | 304  | 000 | 001  |
| 90253-17995 | H12        | 326            | 342            | 324                 | 340  | 002 | 002  |

| Table 2 cont | inued.     |           |           |           |     |     |      |      |
|--------------|------------|-----------|-----------|-----------|-----|-----|------|------|
| Sample#      | Plate Well | WDFW p53a | WDFW p53b | P53_1 P53 | _2  |     | Diff | Diff |
| 90210-13228  | A01        |           |           |           | 179 | 181 |      |      |
| 90210-13229  | B01        |           |           |           | 177 | 181 |      |      |
| 90210-13231  | C01        |           |           |           | 163 | 177 |      |      |
| 90210-13232  | D01        |           |           |           | 163 | 169 |      |      |
| 90210-13233  | E01        |           |           |           | 169 | 177 |      |      |
| 90210-13234  | F01        |           |           |           | 163 | 171 |      |      |
| 90210-13235  | G01        |           |           |           | 175 | 177 |      |      |
| 90210-13239  | H01        |           |           |           | 177 | 181 |      |      |
| 90210-13241  | A02        | 178       |           | 182       | 177 | 181 | 001  | 001  |
| 90210-13294  | B02        | 178       |           | 182       | 177 | 181 | 001  | 001  |
| 90210-13295  | C02        | 182       |           | 184       | 181 | 183 | 001  | 001  |
| 90210-13300  | D02        | 172       |           | 178       | 171 | 177 | 001  | 001  |
| 90210-13348  | E02        |           |           |           | 165 | 185 |      |      |
| 90210-13349  | F02        |           |           |           | 165 | 181 |      |      |
| 90210-13350  | G02        | 178       |           | 182       | 177 | 181 | 001  | 001  |
| 90210-13351  | H02        |           |           |           | 169 | 177 |      |      |
| 90210-13352  | A03        | 163       |           | 195       | 163 | 193 | 000  | 002  |
| 90210-13353  | B03        | 176       |           | 178       | 175 | 177 | 001  | 001  |
| 90210-13358  | C03        |           |           |           | 181 | 183 |      |      |
| 90210-13371  | D03        |           |           |           | 169 | 171 |      |      |
| 90210-13373  | E03        | 172       |           | 178       | 171 | 177 | 001  | 001  |
| 90210-13374  | F03        |           |           |           | 163 | 177 |      |      |
| 90210-13375  | G03        |           |           |           | 177 | 181 |      |      |
| 90210-13377  | H03        |           |           |           | 163 | 181 |      |      |
| 90210-13378  | A04        | 178       |           | 184       | 177 | 183 | 001  | 001  |
| 90210-13379  | B04        | 172       |           | 172       | 171 | 171 | 001  | 001  |
| 90210-13380  | C04        |           |           |           | 177 | 181 |      |      |
| 90210-13381  | D04        | 163       |           | 182       | 163 | 181 | 000  | 001  |
| 90210-13382  | E04        |           |           |           | 169 | 171 |      |      |
| 90210-13383  | F04        | 172       |           | 178       | 171 | 177 | 001  | 001  |
| 90210-13384  | G04        |           |           |           | 169 | 183 |      |      |
| 90210-13385  | H04        | 178       |           | 182       | 177 | 181 | 001  | 001  |
| 90210-13386  | A05        | 180       |           | 182       | 179 | 181 | 001  | 001  |
| 90210-13387  | B05        | 182       |           | 197       | 181 | 195 | 001  | 002  |
| 90210-13388  | C05        |           |           |           | 163 | 185 |      |      |
| 90210-13389  | D05        | 172       |           | 182       | 171 | 181 | 001  | 001  |
| 90210-13390  | E05        | 170       |           | 182       | 169 | 181 | 001  | 001  |
| 90210-13391  | F05        | 178       |           | 180       | 177 | 179 | 001  | 001  |
| 90210-13392  | G05        |           |           |           | 177 | 181 |      |      |
| 90210-13393  | H05        | 182       |           | 184       | 181 | 183 | 001  | 001  |
| 90210-13394  | A06        | 178       |           | 182       | 177 | 181 | 001  | 001  |
| 90210-13395  | B06        |           |           |           | 163 | 169 |      |      |
| 90210-13396  | C06        | 178       |           | 182       | 177 | 181 | 001  | 001  |
| 90210-13398  | D06        | 170       |           | 178       | 169 | 177 | 001  | 001  |
| 90210-13399  | E06        | 184       |           | 184       | 183 | 183 | 001  | 001  |
| 90210-13400  | F06        |           |           |           | 169 | 177 |      |      |
| 90210-13401  | G06        |           |           |           | 181 | 181 |      |      |
| 90210-13402  | H06        | 163       |           | 172       | 163 | 171 | 000  | 001  |
|              |            |           |           |           |     |     |      |      |

| Table 2 cont | inued.     |           |           |       |     |     |     |      |      |
|--------------|------------|-----------|-----------|-------|-----|-----|-----|------|------|
| Sample#      | Plate Well | WDFW p53a | WDFW p53b | P53_1 | P53 | _2  |     | Diff | Diff |
| 90210-13407  | A07        | 178       |           | 182   |     | 177 | 181 | 001  | 001  |
| 90215-13962  | B07        |           |           |       |     | 161 | 167 |      |      |
| 90215-13963  | C07        | 182       |           | 195   |     | 181 | 193 | 001  | 002  |
| 90215-14031  | D07        | 178       |           | 187   |     | 177 | 185 | 001  | 002  |
| 90215-14032  | E07        | 178       |           | 184   |     | 177 | 183 | 001  | 001  |
| 90215-14034  | F07        | 172       |           | 172   |     | 171 | 171 | 001  | 001  |
| 90215-14035  | G07        |           |           |       |     | 169 | 181 |      |      |
| 90215-14036  | H07        |           |           |       |     | 177 | 177 |      |      |
| 90215-14037  | A08        | 174       |           | 174   |     | 173 | 173 | 001  | 001  |
| 90215-14113  | B08        |           |           |       |     | 177 | 193 |      |      |
| 90215-14114  | C08        | 178       |           | 180   |     | 177 | 179 | 001  | 001  |
| 90215-14115  | D08        | 163       |           | 178   |     | 163 | 177 | 000  | 001  |
| 90215-14116  | E08        | 182       |           | 184   |     | 181 | 183 | 001  | 001  |
| 90215-14117  | F08        | 170       |           | 182   |     | 169 | 181 | 001  | 001  |
| 90215-14174  | G08        | 178       |           | 182   |     | 177 | 181 | 001  | 001  |
| 90215-14175  | H08        | 182       |           | 184   |     | 181 | 183 | 001  | 001  |
| 90215-14176  | A09        | 182       |           | 182   |     | 181 | 181 | 001  | 001  |
| 90215-14177  | B09        | 163       |           | 178   |     | 163 | 177 | 000  | 001  |
| 90215-14178  | C09        | 174       |           | 178   |     | 173 | 177 | 001  | 001  |
| 90215-14179  | D09        | 178       |           | 180   |     | 177 | 179 | 001  | 001  |
| 90215-14181  | E09        | 170       |           | 178   |     | 169 | 177 | 001  | 001  |
| 90215-14182  | F09        | 170       |           | 178   |     | 169 | 177 | 001  | 001  |
| 90215-14183  | G09        | 163       |           | 172   |     | 163 | 171 | 000  | 001  |
| 90215-14457  | H09        |           |           |       |     | 177 | 179 |      |      |
| 90215-14505  | A10        | 172       |           | 178   |     | 171 | 177 | 001  | 001  |
| 90215-14618  | B10        | 180       |           | 184   |     | 179 | 183 | 001  | 001  |
| 90215-14625  | C10        | 178       |           | 187   |     | 177 | 185 | 001  | 002  |
| 90215-14639  | D10        |           |           |       |     | 169 | 177 |      |      |
| 90215-14640  | E10        | 172       |           | 182   |     | 171 | 181 | 001  | 001  |
| 90215-14661  | F10        |           |           |       |     | 171 | 183 |      |      |
| 90253-17700  | G10        | 182       |           | 182   |     | 181 | 181 | 001  | 001  |
| 90253-17703  | H10        | 178       |           | 182   |     | 177 | 181 | 001  | 001  |
| 90253-17704  | A11        | 178       |           | 184   |     | 177 | 183 | 001  | 001  |
| 90253-17712  | B11        | 172       |           | 178   |     | 171 | 177 | 001  | 001  |
| 90253-17713  | C11        | 178       |           | 182   |     | 177 | 181 | 001  | 001  |
| 90253-17714  | D11        | 172       |           | 184   |     | 171 | 183 | 001  | 001  |
| 90253-17715  | E11        | 163       |           | 178   |     | 163 | 177 | 000  | 001  |
| 90253-17836  | F11        | 170       |           | 172   |     | 169 | 171 | 001  | 001  |
| 90253-17837  | G11        | 178       |           | 182   |     | 177 | 181 | 001  | 001  |
| 90253-17838  | H11        |           |           |       |     | 175 | 177 |      |      |
| 90253-17866  | A12        | 172       |           | 187   |     | 171 | 185 | 001  | 002  |
| 90253-17867  | B12        | 163       |           | 182   |     | 163 | 181 | 000  | 001  |
| 90253-17868  | C12        | 184       |           | 195   |     | 183 | 193 | 001  | 002  |
| 90253-17869  | D12        |           |           |       |     | 169 | 179 |      |      |
| 90253-17871  | E12        | 170       |           | 191   |     | 169 | 189 | 001  | 002  |
| 90253-17872  | F12        |           |           |       |     | 169 | 177 |      |      |
| 90253-17893  | G12        |           |           |       |     | 163 | 169 |      |      |
| 90253-17995  | H12        | 182       |           | 195   |     | 181 | 193 | 001  | 002  |
|              |            |           |           |       |     |     |     |      |      |

| Lower<br>Bounds | Upper<br>Bounds | WDFW<br>Ocl-8 | Ocl-8 | Lower<br>Bounds B | Upper<br>Bounds | WDFW<br>Oki-1 | Oki-1 |
|-----------------|-----------------|---------------|-------|-------------------|-----------------|---------------|-------|
| 97.72           | 98.27           | 98            | 98    | 90.7              | 90.71           | 91            | 90    |
| 101.83          | 102.77          | 102           | 102   | 94.4              | 94.78           | 95            | 94    |
| 104.02          | 104.49          | 104           | 104   | 98.59             | 98.99           | 99            | 98    |
| 106.19          | 106.8           | 106           | 106   | 102.62            | 102.95          | 103           | 102   |
| 108.19          | 108.91          | 108           | 108   | 106.71            | 107.19          | 107           | 106   |
| 110.07          | 110.61          | 110           | 110   | 110.69            | 111.06          | 111           | 110   |
| 112.28          | 112.71          | 112           | 112   | 114.88            | 115.27          | 115           | 114   |
| 114.55          | 114.81          | 115           | 114   | 119.08            | 119.22          | 119           | 118   |
| 116.41          | 116.63          | 117           | 116   | 123.16            | 123.29          | 123           | 122   |
| 118.44          | 119.06          | 119           | 118   | 127.31            | 127.55          | 127           | 126   |
| 120.76          | 120.93          | 121           | 120   | 131.54            | 131.58          | 132           | 130   |
| 122.25          | 123.23          | 123           | 122   | 135.83            | 136.09          | 136           | 134   |
| 124.81          | 124.94          | 125           | 124   | 140.16            | 140.5           | 140           | 138   |
| 126.51          | 127.04          | 127           | 126   | 144.82            | 145.1           | 145           | 142   |
| 129.14          | 129.4           | 129           | 128   | 157.84            | 157.85          | 158           | 154   |
| 133.19          | 133.34          | 133           | 132   | 161.83            | 161.84          | 162           | 158   |
| 135.45          | 135.46          | 135           | 134   |                   |                 |               |       |

Table 3. Lookup table for converting coho data from WDFW allele naming to standardized naming.

## Table 3 continued.

| Lower  | Upper  | WDFW Omy- |          |
|--------|--------|-----------|----------|
| Bounds | Bounds | 1011      | Omy-1011 |
| 179.36 | 179.64 | 179       | 178      |
| 183.16 | 183.65 | 183       | 182      |
| 187.05 | 187.57 | 187       | 186      |
| 191.13 | 191.47 | 191       | 190      |
| 195.3  | 195.31 | 195       | 194      |
| 199.03 | 199.2  | 199       | 198      |
| 202.77 | 202.78 | 203       | 202      |
| 210.46 | 210.58 | 211       | 210      |

| Lower<br>Bounds | Upper<br>Bounds | WDFW<br>One-13M | One-13 |
|-----------------|-----------------|-----------------|--------|
| 192.39          | 193.1           | 193             | 151    |
| 194.92          | 194.93          | 195             | 153    |
| 198.35          | 198.36          | 198             | 157    |
| 200.34          | 200.94          | 201             | 159    |
| 202.47          | 202.92          | 203             | 161    |
| 204.89          | 204.9           | 205             | 163    |
| 206.33          | 206.76          | 207             | 165    |
| 208.5           | 208.84          | 209             | 167    |
| 212.46          | 212.59          | 213             | 171    |
| 214.16          | 214.83          | 215             | 173    |
| 216.42          | 216.8           | 217             | 175    |
| 218.39          | 218.65          | 218             | 177    |
| 220.24          | 220.71          | 221             | 179    |
| 222.59          | 222.74          | 223             | 181    |
| 224.47          | 224.48          | 224             | 183    |
| 226.31          | 226.7           | 226             | 185    |

## Table 3 continued.

| Lower  | Upper  | WDFW Ots- |         |   | Lower  | Upper  | WDFW Ots- |         |
|--------|--------|-----------|---------|---|--------|--------|-----------|---------|
| Bounds | Bounds | 103       | Ots-103 |   | Bounds | Bounds | 213       | Ots-213 |
| 84.83  | 84.84  | 85        | 77      | - | 182.33 | 183.28 | 183       | 155     |
| 88.77  | 88.96  | 89        | 81      |   | 186.42 | 186.88 | 187       | 159     |
| 92.75  | 92.86  | 93        | 85      |   | 190.29 | 190.56 | 190       | 163     |
| 96.74  | 96.9   | 97        | 89      |   | 197.73 | 197.8  | 198       | 171     |
| 100.82 | 101.01 | 101       | 93      |   | 209.33 | 209.34 | 209       | 183     |
| 104.6  | 104.99 | 105       | 97      |   | 226.37 | 226.54 | 226       | 155     |
| 108.68 | 108.74 | 109       | 101     |   | 230.34 | 230.35 | 230       | 159     |
| 112.41 | 112.66 | 113       | 105     |   | 241.43 | 241.44 | 241       | 171     |
| 116.57 | 116.64 | 117       | 109     |   | 248.59 | 248.85 | 249       | 223     |
| 120.37 | 120.56 | 120       | 113     |   | 256.31 | 256.32 | 256       | 231     |
| 124.41 | 124.79 | 125       | 117     |   | 260.48 | 260.49 | 260       | 235     |
| 128.37 | 128.55 | 128       | 121     |   | 264.42 | 264.56 | 264       | 239     |
| 132.6  | 132.77 | 133       | 125     |   | 268.01 | 268.09 | 268       | 159     |
| 136.62 | 136.91 | 137       | 129     |   | 271.86 | 271.87 | 272       | 247     |
| 141.08 | 141.09 | 141       | 133     |   | 275.82 | 275.83 | 276       | 251     |
| 145.38 | 145.51 | 145       | 137     |   | 287.7  | 287.71 | 288       | 263     |
| 149.82 | 150.01 | 150       | 141     |   | 295.57 | 295.58 | 296       | 271     |
| 153.9  | 154.18 | 154       | 145     |   | 299.52 | 299.53 | 300       | 275     |
| 157.88 | 158.1  | 158       | 149     |   | 307.61 | 307.62 | 308       | 283     |
| 161.8  | 162    | 162       | 153     |   | 311.77 | 312.8  | 312       | 243     |
| 165.84 | 165.92 | 166       | 157     |   | 315.65 | 315.66 | 316       | 291     |
| 169.67 | 169.93 | 170       | 161     |   |        |        |           |         |
| 173.74 | 173.95 | 174       | 165     |   |        |        |           |         |
| 177.69 | 177.88 | 178       | 169     |   |        |        |           |         |
| 181.69 | 181.79 | 182       | 173     |   |        |        |           |         |
| 185.56 | 185.74 | 186       | 177     |   |        |        |           |         |
| 189.53 | 189.65 | 190       | 181     |   |        |        |           |         |
| 193.37 | 193.38 | 193       | 185     |   |        |        |           |         |
| 197.37 | 197.51 | 197       | 189     |   |        |        |           |         |
| 201.25 | 201.26 | 201       | 193     |   |        |        |           |         |
| 205.28 | 205.29 | 205       | 197     |   |        |        |           |         |
| 208.97 | 209.15 | 209       | 201     |   |        |        |           |         |
| 213.1  | 213.11 | 213       | 205     |   |        |        |           |         |
| 216.84 | 217.04 | 217       | 209     |   |        |        |           |         |
| 224.78 | 224.79 | 225       | 217     |   |        |        |           |         |
| 232.54 | 232.55 | 233       | 225     |   |        |        |           |         |
| 236.33 | 236.61 | 237       | 229     |   |        |        |           |         |
| 240.39 | 240.4  | 240       | 233     |   |        |        |           |         |
| 248.13 | 248.14 | 248       | 241     |   |        |        |           |         |
| 252.06 | 252.07 | 252       | 245     |   |        |        |           |         |
| 287.52 | 287.53 | 288       | 281     |   |        |        |           |         |
| 291.33 | 291.34 | 291       | 285     | _ |        |        |           |         |

Table 3 continued.

| Lower<br>Bounds | Upper<br>Bounds  | WDFW<br>Ots-G422 | Ots-G422 |
|-----------------|------------------|------------------|----------|
| 228.03          | 228.04           |                  |          |
| 268.40          | 228.04<br>268.41 | 228              | 228      |
|                 |                  | 268              | 268      |
| 272.29          | 272.54           | 272              | 272      |
| 276.36          | 276.57           | 276              | 276      |
| 280.52          | 280.59           | 281              | 280      |
| 284.46          | 284.75           | 285              | 284      |
| 288.44          | 288.70           | 289              | 288      |
| 292.70          | 292.80           | 293              | 292      |
| 296.79          | 296.80           | 297              | 296      |
| 300.82          | 301.10           | 301              | 300      |
| 304.83          | 305.10           | 305              | 304      |
| 309.15          | 309.16           | 309              | 308      |
| 313.26          | 313.42           | 313              | 312      |
| 317.50          | 317.51           | 318              | 316      |
| 321.47          | 321.68           | 322              | 320      |
| 325.89          | 325.90           | 326              | 324      |
| 329.72          | 329.92           | 330              | 328      |
| 333.85          | 334.18           | 334              | 332      |
| 338.29          | 338.30           | 338              | 336      |
| 342.32          | 342.37           | 342              | 340      |
| 346.30          | 346.40           | 346              | 344      |
| 354.20          | 354.27           | 354              | 352      |
| 365.95          | 365.96           | 366              | 364      |
| 373.99          | 374.00           | 374              | 372      |
| 389.60          | 389.61           | 390              | 388      |
| 413.95          | 413.96           | 414              | 412      |
| 418.10          | 418.11           | 418              | 416      |
|                 |                  |                  | -        |

| Lower  | Upper  |          |     |
|--------|--------|----------|-----|
| Bounds | Bounds | WDFW p53 | P53 |
| 163.37 | 163.75 | 163      | 163 |
| 169.58 | 169.9  | 170      | 169 |
| 171.69 | 172.22 | 172      | 171 |
| 173.75 | 173.93 | 174      | 173 |
| 175.94 | 175.95 | 176      | 175 |
| 177.94 | 178.34 | 178      | 177 |
| 180.01 | 180.35 | 180      | 179 |
| 182.12 | 182.56 | 182      | 181 |
| 184.28 | 184.69 | 184      | 183 |
| 186.33 | 186.81 | 187      | 185 |
| 190.77 | 190.78 | 191      | 189 |
| 194.74 | 195.06 | 195      | 193 |
| 196.85 | 196.86 | 197      | 195 |
|        |        |          |     |

## **Appendix B: Financial Statement of Expenditures**

The following table lists the amount of funds spent and the budget that was originally submitted with the proposal for this project. Five thousand dollars that had originally been budgeted for additional Information Technology Specialist labor was instead used to purchase software licensing to maintain the database which maintains the data created by this project. Also, \$1,000 had originally been budgeted for travel for the project lead, but no travel was needed to complete the project. Those funds were instead applied to expenses incurred for supplies.

## **PSC Southern Boundary Restoration & Enhancement Fund**

**Contract #:** SF-2008-I-4

20-May-2009

**Title:** Allele Ladder Based Standardization of existing coho salmon microsatellite data and implications in GAPS

| Item                  | Description                                                                       | Amount spent | Budgeted amount |  |
|-----------------------|-----------------------------------------------------------------------------------|--------------|-----------------|--|
| Labor                 | Technical level Molecular Geneticist - 240 hours<br>to conduct lab work           |              |                 |  |
|                       | Technical level Molecular Geneticist - 240 hours                                  |              |                 |  |
|                       | to conduct lab work and coordinate project                                        |              |                 |  |
|                       | Information Technology Specialist - 240 hours                                     |              |                 |  |
|                       | to carry out database work                                                        | \$33,700     | \$39,876        |  |
| Contractual Services  | To OSU for allele ladder standardization                                          | \$15,000     | \$15,000        |  |
|                       | To WDFW for allele ladder standardization<br>To IT Department for Oracle database | \$15,000     | \$15,000        |  |
|                       | maintenance                                                                       | \$5,000      | \$0             |  |
| Interagency Agreement | To USFWS for allele ladder standardization                                        | \$15,000     | \$15,000        |  |
| Interagency Transfer  | To SWFSC for allele ladder standardization                                        | \$15,000     | \$15,000        |  |

**PI:** Don Van Doornik

| TO <sup>.</sup>           | TAL                              | \$132,000 | \$132,000 |
|---------------------------|----------------------------------|-----------|-----------|
| Overhead (indirect costs) | NOAA, NMFS, NWFSC, GSA rent      | \$18,045  | \$18,200  |
| Travel                    | To cover travel for project lead | \$0       | \$1,000   |
| Supplies & Materials      | To cover "in house" lab costs    | \$15,255  | \$12,924  |
|                           |                                  |           |           |

I certify, to the best of my knowledge, that the above expenditures accurately reflect how the funds in question were expended.

· ·

Signature: Paul Albertal Title: Division Coordinator Date: 6/4/2009