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INTRODUCTION

Recently, statistical geneticists have developed a number of model-based

methods that use genetic data to infer the population of origin of the

gene copies within an individual. In this chapter we focus on three of

these methods which are known by the software that implements them:

structure (Pritchard et al 2000), NewHybrids (Anderson and Thompson

2002) and BayesAssh- (Wilson and Rannala 2003). These programs are

increasingly used in animal conservation for population assignment, detec

tion ofhybridization and estimation ofrecent migration rates. Unlike more

generic statistical approaches (Bowcock et al. 1994; Roques et al 2001), the

three methods we review here are all based on an underlying probability

model that is intended to mimic the inheritance ofgenes and the sampling

of individuals. Such model-based inference has a number of advantages.

First, it typically uses more ofthe information in the data than approaches

that are not based explicitly on genetic models, and second, the variables

appearing in genetically based statistical models relate directly to genetic

phenomena, so they are easily interpreted.

The statistical genetic models underlying structure, NewHybrids and

BayesAssh- are simple and quite similar. The primary goal ofthis chapter is

to describe these models with as few equations as possible. In lieu of

mathematical equations we will explore the structure of these models in

terms of simple, intuitive diagrams called directed acyclic graphs (DAGs),

which show the relationship between variables in a model. This should

allow users to better understand what the methods do, how they are similar,

and the important ways in which they differ. Though the softwares imple

menting these techniques are user-friendly, they are certainly not 'plug-and-

play' methods. I hope that this chapter will allow users to understand the
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methods enough to ensure they get reasonable results and they can inter

pret them appropriately.

After discussing the three different models, we focus on practical issues.

Because previous reviews (Pearse and Crandall 2004; Manel et al. 2005)

have summarized when these various methods (and many related ones, e.g.

Rannala and Mountain 1997; Dawson and Belkhir 2001; Corander et al.

2004; Piry et al. 2004) are useful, and have offered many general guidelines

for their use, this final section is devoted to the simple proposition that it is

important to assess the results of these programs by comparison to simu

lated data that look like your own.

CONCEPTUAL MODELS AND GRAPHICAL MODELS

All statistical inference depends in some way on a probability model. This

model may be completely specified in terms ofthe equations describing the

statistical distributions involved; though if you simply want to understand

the assumptions of the model, it is usually sufficient to understand the

verbal description ofthe model. As a model gets more complex, however, it

is helpful to have a visual roadmap as well as a verbal description. A DAG

is such a roadmap, providing a diagram of the relationship between com

ponents in a model and a comparison of the structure of different models.

We will illustrate our first DAG by considering the estimation of allele

frequencies in a closed population.

Let us imagine that we are interested in estimating the frequency of

alleles at a single locus in a lake population of fish. An obvious course of

action would be to draw a sample ofM fish from the lake, genotype them at

the locus, and estimate the allele frequencies from the observed proportion

ofalleles in the sample. The conceptual model underlying this procedure is

one in which each fish carries two gene copies drawn at random from a

large pool of alleles whose proportions are the unknown allele frequencies

in the lake.

The relationship between the allelic types in the fish we sample and the

population allele frequencies is captured in the DAG ofFig. 2.1a. The circles

(called nodes) in the graph represent the different variables in the model.

The frequencies of the alleles are denoted by 0. The node associated with 0

is unshaded, representing the fact that the values of the population allele

frequencies are unknown. The type of the allele is denoted by Yitl for the

first gene copy of the ith sampled fish, and Yi2 for the second gene copy.

The nodes associated with these variables are shaded black to denote that

they are observed - i.e. the fish are genotyped. The allelic type of each gene

Figure 2.1.
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Figure 2.1. DAGs describing the sampling to estimate allele frequency 0: (a) and

(b) describe identical models.

copy is independent (under the assumption of Hardy-Weinberg equili

brium) and depends only on the frequency of alleles in the population.

Hence, there are distinct arrows drawn from the node at 9 to the nodes

for Yitl and Yit2i. The meaning ofthe arrow can be read as, for example, 'the

allelic type, Yilt depends on 9\ Finally, the two Ynodes are placed inside a

box which is known as a plate (or, in this case, an M-plate). The legend at

the lower right of the plate indicates that the variables within the plate are

duplicated M times, over the subscript i. This shorthand expresses that M

fish are sampled independently from the lake. The node for 9 is not

included on the plate because each of the M fish is assumed to be sampled

from the same population with the same allele frequencies. Figure 2.1b

represents exactly the same model. This figure is included to emphasize

that the spatial position of variables in the graph is unimportant; only the

orientation of the arrows, and the connections they make, are relevant.

Recall that the original problem was to estimate the allele frequencies, 0,

given the observed genotypes of a sample of fish. This problem is also

apparent in the DAG because 9 is something we wish to know about, and

yet it is unknown (as signified by its unshaded node). Generally, the prob

lem of estimation can be interpreted in a DAG as the process of learning

about variables or parameters with unshaded nodes given what is observed

in the data (the shaded nodes).

As a final word on Fig. 2.1, we should keep in mind that we would have

obtained the same DAG ifwe were sampling any objects, two at a time, from

a large population of objects. In fact, it is often easier to think of the

sampling process as that of randomly drawing coloured balls, two at a

time, out of a large barrel. In this case, each ball is a gene copy, its colour

is its allelic type, and the barrel full ofballs is the population ofgene copies
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carried by fish in the lake. We have explored this example in detail because

the 'balls-in-barrels' conceptual model, and the DAG that goes with it, are

basic building blocks for understanding more complex models. In the next

section we use these building blocks to describe a class of models called

mixture models.

MIXTURE MODELS

The problem recently called 'population assignment' in the molecular

ecology literature is a special case of inference in a finite mixture model.

In statistics, a finite mixture model is one in which the collection from

which the sample is taken is a mixture of individuals from different pop

ulations. Such models were applied to the problem of population assign

ment and 'genetic stock identification' as early as 1981 in the fisheries

management literature (Milner tt oX. 1981). The programs structure,

NewHybrids and BayesAss+ are all elaborations of the basic mixture

model. In fact, the version of structure 'without admixture' employs the

same mixture model as an earlier method used to estimate proportions of

Columbia River tributary salmon caught in a mixed stock fishery (Smouse

et al. 1990).

This salmon-fishery mixture model arises from a scenario such as the

following: K separate spawning populations of salmon, each with its own

unknown allele frequencies, reproduce in different tributaries of a river.

Fish from each population migrate through the same place (for example,

the mouth of the river), where they are subject to a fishery. By sampling M

fish in the fishery and genotyping them at I loci we hope to estimate the

proportion offish from each ofthe K tributaries that were at the fishery site

when the sample was taken. We might also want to infer the population of

origin of each ofthe sampled fish.

Figure 2.2(a) shows the DAG for the mixture model described above.

This DAG is composed of a number of elements that look suspiciously like

the DAG of Fig. 2.1. Working our way through the graph, from top to

bottom, we first have tc, which denotes the unknown proportions of fish

from the K different populations at the fishery site. Wi is a variable that

denotes the population oforigin ofthe ith fish. It can be thought of as a ball

that is tied to the fin of the fish, with the colour of the ball telling us where

the fish comes from. Under this interpretation, each fish is sampled from

the fishery as if it were a coloured ball drawn from a barrel in which the

different colours of balls are in the unknown proportions n. Of course, the

node associated with Wt is unshaded because we don't know where the fish
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Figure 2.2. DAGs for the mixture model: (a) represents the likelihood model,

(b) includes nodes associated with the prior distributions for a Bayesian

specification of the problem.

come from - that is what we would like to learn. The remainder ofthe graph

looks complicated, but we can break it down as follows: the L-plate (the

lower of the two plates, with the legend ll: 1, ..., I') signifies that for each

fish, there are L loci genotyped, and that their allelic types are independent,

given the fish's population of origin, Wj. 6^ is the frequency of alleles

at locus I in population fc (where k denotes any one ofthe Kpopulations). Y^fI

and Yitif2 are the allelic types ofthe gene copies carried by fish i at locus L As

the arrows in the graph show, the allelic types ofthese gene copies depend both

on Wi and on the allele frequencies in the different populations. The nature

of this dependence is straightforward: the two allelic types Yie>1 and YiXt2i are

drawn from the population that the fish is from - which is denoted by W*.

The whole sampling model can be summarized by thinking about gen

erating a sample from it. The steps in doing so would be: (1) Draw a ball from

a barrel with frequencies n. (2) The colour of the ball tells you which

population to sample a fish from. (3) To generate the genotype for that fish

you draw two balls, representing the genes in that fish, from each ofI barrels.

Each barrel represents the alleles in the population at one ofthe L loci.

As before, the inference problems that can be tackled with this model

can be seen in the DAG. The exercise of population assignment (Paetkau

et al. 1995; Rannala and Mountain 1997) is merely that of inferring the

values of the W; variables. On the other hand, estimating the proportion

of fish from different populations is just the process of inferring the

value of 7t. Finally, if desired, one could also pursue inference of the allele
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frequencies in the populations. These are all inference problems that are

just different uses of the same underlying model. In actual practice, these

different inference problems are typically tackled at the same time, but it is

still useful to view them as separate inference problems.

Many times, individuals known to be from particular populations may

be sampled. Such individuals constitute what are called learning samples

or training samples. These would be represented in the DAG simply as

individuals for whom the node associated with W{ was shaded. Inference

then proceeds much as before - unknown quantities of interest are esti

mated given the observed data, which in this case includes the Wts of the

individuals in the learning samples. Though with multiple loci mixture

inference may be possible without learning samples, if there are many

populations contributing to the mixture then accurate inference may be

impossible without learning samples.

BAYESIAN INFERENCE

Structure, NewHybrids and BayesAss+ all use the Bayesian paradigm

for inferring quantities ofinterest. This means that estimation is conducted

by summarizing the posterior distribution of quantities of interest.

The posterior distribution of an unknown variable is just its probability

distribution conditional on the observed data. Computing the posterior

distribution can be difficult, and, indeed, in structure, NewHybrids and

BayesAss+ it is approximated using Markov chain Monte Carlo. However,

the fact that the inference is done in a Bayesian manner does not substan

tially alter the structure of the underlying models. This is illustrated in

Fig. 2.2b, which shows the DAG for a Bayesian specification ofthe mixture

model of Fig. 2.2a. It is apparent that the 'heart' ofthe model is unchanged.

In fact, the only modification is the addition of prior distributions para

metrized by 5 for n and kt for the 0£s. The nodes for £ and kt are shaded grey

to denote that values ofthose parameters are assumed rather than observed.

Prior distributions are necessary for Bayesian inference. Usually the para

meters ofthe prior distribution are chosen to reflect prior knowledge - or in

many cases, ignorance - about the associated variables.

A SURVEY OF METHODS

Having established the language of graphical models, we are now in posi

tion to quickly survey the models used in structure, NewHybrids and

BayesAss+.
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The structure model without admixture

A indicated above, the structure model without admixture is identical to

the model shown in Fig. 2.2 (b), and the details of that model have already

been described. It assumes that all individuals descend exclusively from one

f K populations, where K can be set by the user. In other words, there is no

facility in this model for explicitly dealing with hybrids or admixed individ

uals Therefore, the method should be used with collections of organisms

that are believed to be non-interbreeding. The data required are the multi-

locus genotypes ofthe individuals in a sample. The individuals may belong

to 'cryptic' subpopulations. That is, it is not necessary to have prior knowl

edge of separate groups - the program will automatically infer K subpop

ulations; however, the inclusion of learning samples can be helpful in

resolving groups, especially if Kis large, or genetic differentiation between

populations is limited. The program computes the posterior probability that

each individual belongs to each ofthe K subpopulations, and, in the process

it also estimates the allele frequencies in the K separate subpopulations.

It is worth noting that when structure uses the model with no admix

ture, it assumes that the proportion ofindividuals from each subpopulation

is equal (each subpopulation contributes a proportion i/Kto the mixture).

This feature will cause structure to overestimate the true posterior pro

bability of group membership for individuals from subpopulations that are

rare in the mixture. If this is a concern, then it may be preferable to use the

program BAYES (Pella and Masuda 2001) which was developed for analy

sing large mixtures of salmon.

The structure model with admixture

This model provides a flexible way of accommodating individuals ofmixed

ancestry. No longer must each individual be purely descended from one of

the K subpopulations. Rather, each gene copy within an individual may

come from a different one ofthe K subpopulations. The subpopulations of

origin ofthe two gene copies at locus I in the ith individual are indicated by

the unobserved variables Wix>1 and WiXt2, and the expected proportion of

ancestry ofthe ith individual from each ofthe K subpopulations is a variable

to be inferred, denoted by Q. The DAG for this model appears in Fig. 2.3a.

Here, a is a parameter that determines whether individuals tend to be

mostly admixed (high values of a) or mostly purebred (low values of a).

It is a value that can be assumed, or inferred. If it is inferred, its prior

distribution is assumed to be uniform on the interval (o, A).

We can use the DAG to follow how we would generate data under the

model, given a and the allele frequencies: (1) Conditional on a we would
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unif. v n

(b> oq p

Figure 2.3. (a) The structure model with admixture, (b) The structure model with

admixture and prior population information.

simulate a different, random Q for each individual i in the sample. Q>

can be thought of as the proportion of balls of K different colours filling a

'Q-barrel' associated with individual i. (2) For each locus, we would draw

two balls from individual i's Q-barrel. The colours of the balls drawn tell us

which of the K different subpopulations the two gene copies at each locus

came from. (3) The allelic type ofeach gene copy would then be drawn from

the allele frequencies in the gene copy's subpopulation of origin.

This is a flexible and general model. It applies generically to many

different scenarios: estimating the hybrid index (i.e. Q) of individuals in

hybrid zones, detecting recent gene flow between populations, and eluci

dating population structure (cryptic or otherwise). It also provides a facility

for estimating the number of subpopulations in a structured population,

without prior knowledge about population boundaries.

The data required are the multilocus genotypes of sampled individu

als. Learning samples are not required, so it is possible to identify cryptic

genetic population structure in a sample of individuals from a single

location. However, the capacity to detect cryptic structure declines as the

degree of admixture of the individuals in the sample increases (Falush

et a\. 2003). In other words, if most individuals in the sample are highly

admixed members of a hybrid swarm, it will be more difficult to correctly

infer the nature ofthe population structure than ifsome ofthe individuals

in the sample retain the genotypes of pure subspecies, and others are

admixed.
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The structure model with admixture and prior

population information

A variant available with structure is the model with 'prior population

information' in which genotyped individuals have been sampled from K

known, separate subpopulations. This model is used to identify individu

als in each sample that are migrants from other subpopulations or that

have recent immigrant ancestry. In this case, it is necessary to have prior

knowledge that there are distinct subpopulations, and that K ofthem have

been sampled. A subpopulation is typically comprised of individuals

living in a particular locality; however, the definition of 'subpopulation7

is flexible. For example, one might be able to define K subpopulations on

the basis of distinct morphological traits possessed by different species or

subspecies.

Figure 2.4a is a schematic of the population model in the case of K=3

subpopulations ofcats. The subpopulations are distinct, but there is migra

tion between them. Immigration is assumed to be symmetrical and equal

between all subpopulations. The model specifies that each individual has a

probability 1 - v ofbeing descended purely from ancestors belonging to the

subpopulation from which it was sampled. With probability v, however, an

individual has immigrant ancestry. If v is unknown (as it usually is) then it

must be assumed.

If individual i has immigrant ancestry, then it is assumed that only one

ancestor in the last n generations was a migrant, and that this migrant

ancestor arrived from subpopulation O; in the Tf1 generation before sam

pling. If Ti = o then the sampled individual i is itself the migrant; if Tt = 1

then one ofindividual i's two parents was a migrant; if T; = 2 then one of i's

four grandparents was a migrant, and so forth (Fig. 2.4c). Oi and T{ are

unknown. We will let Si denote the subpopulation from which the ith

individual was sampled; Si is an observed variable.

The DAG in Fig. 2.3b shows that this model with prior population

information is identical to the original structure model, except for the

parts 'upstream' from the Q node. In effect, the model with admixture

and prior population information just establishes a new, and more easily

interpreted, prior probability distribution for Q that ultimately depends on

v and n. The arrows in the DAG appear as they do because 1) the parameters

v and n determine the probability that an individual has a migrant ancestor

at time Tt; 2) if individual i has a migrant ancestor, then the origin of

that migrant depends on Si because the migrant must have come from

somewhere other than S*; and finally 3) given Ti9 Si and Oit the value Q is

determined (Fig. 2.4c).
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Figure 2.4. (a) A schematic of the structure model with prior population

information assuming three subpopulations of cats, v is the fraction ofindividuals

in any subpopulation having a single immigrant ancestor in the last n generations

from any of the other subpopulations. The other subpopulations are assumed to

contribute migrants at the same rate so the probability that an individual has an

ancestor from a specific subpopulation is v/(K-1), which in this case is v/2 because

there are £=3 subpopulations. (b) The migration model in BayesAss+. vj>k is the

fraction of individuals in subpopulation fc having immigrant ancestors from

subpopulation j in the last n generations, (c) Notation relating to migrants and

their descendants. S* is the location where cat i was sampled. Tt is the number of
generations back in time that i had a single migrant ancestor. Ot is the origin ofthat

migrant, n is the total number of generations in the past during which it is

assumed an individual might have a migrant ancestor. The cat shown at the

bottom of the pedigree was sampled from the White Subpopulation (S^ 2) and it

has a single migrant ancestor from the Black Subpopulation (0* = 1) two

generations ago (T; = 2). Correspondingly, it is expected to have ^ of its ancestry

from the Black Subpopulation, ^ from the White Subpopulation, and no ancestry

from the Grey Subpopulation, i.e. Qt= (^, ^, oJ.

This specialized model is tailored to provide more power than the

generic structure model for detecting individuals with recent immigrant

ancestry. The data required are the multilocus genotypes of the sampled
individuals and knowledge ofthe subpopulation each individual was sampled

from. Being n
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from. Being more specialized, this model also makes more assumptions.

Specifically, it is assumed that migration occurs infrequently at a known

rate, and that migration occurs at the same rate from and into all subpopu-

lations. This is a model for detecting migrants; not for detecting non-

migrants. It is important to note that given the way the model is set up, if

there were no genetic data, the posterior probability that a individual is not a

migrant is 1 - v. Therefore, ifyou choose v to be 0.01 and run structure to

discover that the posterior probability that each individual in your sample is

a non-migrant is 0.99, you must not infer that this is telling you anything

about the power of your genetic data to distinguish the subpopulations -

you would have obtained the same result even if you had no genetic data.

Looking at the DAG ofFig. 2.3b, one might not immediately see how the

genetic data, YiXil and Yix>2, will influence the posterior distribution of % -

after all, there are no arrows from Yix>1 or YiXf2 to Q, so how can Q depend

on Yi9i,i or YixJ The answer is that, even though it is natural in the

formulation of a probability model to speak of one variable depending on

another - for example, the colour of a ball drawn from a barrel depends on

the frequency of different-coloured balls in the barrel - the influence

between variables runs in both directions along the arrow. This is, in fact,

why it is possible to do inference: ifmost ofthe balls you draw from a barrel

are orange, then you may infer that there is a high frequency oforange balls

in the barrel. In other words, the observed data influence your belief about

unobserved variables. In the case of the structure model of Fig. 2.3b,

knowing the allelic type YiXtl gives you some information about where that

gene copy came from (WiXfI) ifyou have some idea about the allele frequen

cies. Information about WiXtI, in turn, influences your belief about Q;

which, in turn, influences your belief about T; and O; which are variables

that describe whether an individual is a migrant or not. In other words,

during the inference process information obtained from observed variables

flows throughout the graph to influence one's belief about all the unob

served variables and parameters. A corollary is that with no data, the

posterior distribution of variables or parameters will merely be their prior

distribution, i.e. with no genetic data, the posterior probability that an

individual is a migrant is merely its prior probability, v.

There are two important limitations of the structure model with

admixture and prior population information. The first is that it does not

account for the fact that descendants of migrants will inherit genes in

predictable patterns (not just in predictable proportions) from the different

subpopulations (more details appear in the following section). The

second limitation is the requirement that the migration rate v must
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be known, or assumed. It would be preferable to allow the estimation of

v from the data.

The NewHybrids model

NewHybrids is designed to identify individuals that are recent hybrids

between two species or populations. It can distinguish between genealog

ical classes like V19 F2, and backcrosses in a way that structure cannot

because the NewHybrids model takes account ofthe predictable patterns of

gene inheritance in hybrids, while the structure model does not. The

simplest example occurs in comparing VT hybrids (the offspring of parents

from different populations or species) with F2 hybrids (the offspring oftwo

parents who are themselves Fx hybrids). Fx hybrids will have exactly one

gene copy from one population and one gene copy from the other popula

tion at every locus. An F2 individual will also have, on average, halfofits gene

copies from one population and halffrom the other; however, only in halfof

its loci, on average, will there be exactly one gene copy from each popula

tion. The model in structure is not able to detect differences between VTs

and F2s because it models admixture strictly in terms of Q, which is the

proportion ofgene copies an individual will have, on average, from different

subpopulations.

The DAG for the NewHybrids model (Fig. 2.5a), shows that it is a

mixture model. In this case, however, the different components of the

mixture are different genealogical classes, rather than simply different

Figure 2.5. (a) The NewHybrids model, (b) The model used in BayesAss+. The

additions to the model that make it different from structure with admixture and
prior population information are depicted with dashed lines.
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populations, n denotes the proportions of individuals ofdifferent genealog

ical classes present where the sample is drawn, and Z; is an unobserved

variable that denotes the genealogical class of individual i. There are only

two different species or populations (A and B) that an individual's genes

may come from.

The model can be described by imagining simulating data from it,

conditional on n and the allele frequencies. For the ith individual: (1) A

coloured ball is drawn from a barrel with balls in the proportions of jr. The

colour ofthe ball gives the genealogical class (Z;) ofthe individual. (2) Given

the genealogical class, the population oforigin ofthe individual's first gene

copy (Wifefi) is drawn from a barrel much like the Q-barrel described before.

(3) The origin ofthe second gene copy (WiXf2) is drawn from a distribution

that depends not only on the genealogical class, but also on the origin ofthe

first gene copy. For example, ifthe genealogical class is Fx, and the first gene

copy came from population A, then the second gene copy must come from

population B. (4) The allelic type ofeach gene copy is drawn from the allele

frequencies in their respective populations of origin.

Visible in the DAG are the inference problems that can be tackled with

NewHybrids. The value oftt can be estimated, and the genealogical class of

each individual in the sample can be inferred. Also, the allele frequencies in

populations A and B may be estimated.

The number of genealogical classes used in NewHybrids can be deter

mined by the user. The default is six: two pure species categories, V19 F2, A-

backcross, and B-backcross categories. A considerable amount of genetic

data is required to distinguish genealogical classes, even with as few as six

classes (Vaha and Primmer 2006). It is even more difficult to resolve other

genealogical classes like second- or third-generation backcrosses. Hence,

NewHybrids is particularly appropriate for the study of hybrid zones

in which hybridization has started to occur only recently, or in which the

degree ofintrogression and backcrossing is limited due to selection against

hybrids. It is worth pointing out that if only the two pure categories (Pure A

and Pure B) are used, the NewHybrids model reduces to the standard

mixture model of Fig. 2.2b with K=2.

The data required are the multilocus genotypes of the sampled individ

uals. Learning samples are not necessary, but they may be included. It is not

necessary to have prior information about subpopulations or species.

The BayesAss+ model

The model in BayesAss+ is a natural extension ofthe structure model with

admixture and prior population information. Figure 2.4b gives a schematic
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of the migration model. Importantly, migration rates are not constrained to

be the same between all pairs of populations. Further, with BayesAss+ it is

not necessary to assume a value of the migration rate. Rather, BayesAss+

endeavours to estimate the (possibly nonsymmetrical) rates of migration

between all subpopulations. The other two advances over structure are

the correct modelling of patterns of gene inheritance and the inclusion of

an inbreeding parameter F=(FIf ..., FK) that tries to account for possible

departures from Hardy-Weinberg equilibrium within each subpopulation.

Comparing the DAG for the BayesAss+ model (Fig. 2.5b) to that of

structure with admixture and prior population information (Fig. 2.3b)

shows that the two are similar, differing only in a few variables, and a

few extra arrows. Proceeding from top to bottom in the DAG, we first see

that v has been replaced with a matrix v of individual migration rates

between the populations (Fig. 2.4b). There is a new arrow connecting v to

Oi because, since immigration rates are no longer symmetrical and equal,

the origin of immigrants depends both on their destination S; and on the

migration matrix v. The two new arrows, from T; and WittfI to Wite,2 are

there as a consequence of the fact that BayesAss+ models the inheritance

of genes from migrants in the same way that NewHybrids does genes

in Fzs and backcrosses. Finally, the arrows from Wiyz,lf Yu,i> and F to Y^t.

describe the interdependence of those variables induced by the possibility

of inbreeding (departures from Hardy-Weinberg equilibrium). In words,

the type of the second gene copy at a locus is no longer independent of

the type of the first gene copy even if they both originate from the same

population.

The primary goal of inference using this model is the estimation of the

migration matrix. The data requirements for BayesAss+ are the same as

they are for structure with admixture and prior population information -

it requires multilocus genotypes sampled from K distinct subpopulations.

The model provides a more faithful representation of the data than does

structure and it is appropriate for estimating recent migration between

populations that are well differentiated genetically. However, it is apparent

that ifthe populations are not greatly differentiated, then it may be difficult

to estimate the migration rates between them. This could lead to misleading

results if attempting to estimate migration rates between demes of a

recently fragmented population. The various demes will be similar genet

ically due to recent common ancestry, and this might lead to inflated

estimates of migration rates, even if no migration is presently occurring

due to the recent fragmentation. Similarly, users should be suspicious of

nonmigration rates close to | as this is the minimum allowed by the

program and ma;
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PRACTICAL ISSUES

Quite reasonably, an entirely separate chapter could be written dealing with

practical issues involved in running the programs described here; issues

from 'How large should my samples be?' and 'How many loci should I use?'

to issues like 'Why do I get different results in NewHybrids using different

priors for the allele frequencies?' and 'Can I trust the results from these

programs?' While some recent simulation studies (Evanno et al 2005; Vaha

and Primmer 2006) have addressed these sorts of questions, and have

provided some general answers, the behaviour ofthese methods is affected

by many different features ofthe data, including the genetic differentiation

between the populations, the number of alleles at each locus, the degree of

admixture, etc. It is unlikely that any simulations that have been done will

correspond well to all such features in your own data set. Furthermore, you

may have different questions in mind than the ones that were addressed in

any particular simulation study. In such cases, it is valuable to compare your

results to the results obtained by analysing data simulated to look like your

own data set under different hypotheses of interest.

An excellent example of this type of effort appears in an analysis of

structure in cod (Gadus morhua) populations in the seas around Denmark

(Nielsen et al 2003). The authors were interested in whether the patterns of

genotypes they observed in a contact zone were concordant with mechanical

mixing of pure members of two populations, or with a zone of admixture

between two populations. This is not a question that structure automati

cally addresses, so the two different scenarios were simulated with a pro

gram called HybridLab (see Nielsen et al 2003 for details ofthe program)

using allele frequencies from the two different pure populations. The

results from the simulated admixture scenario were more similar to the

results from the real data than were the results from the simulated mechan

ical mixing scenario, providing evidence that admixture between the pop

ulations may be occurring.

Simulating multilocus genotype data from specific allele frequencies

is not a difficult task, but is not a standard feature in many genetic simu

lation programs. In addition to HybridLab, the program spip (Anderson

and Dunham 2005) simulates multilocus genotypes from specified allele

frequencies, and the program simdata_nh (available from eric.anderson@

noaa.gov) simulates genotypes ofindividuals ofdifferent genealogical classes
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under the NewHybrids model. These programs can be used to test the

inferences from the three programs structure, NewHybrids and

BayesAss+.

The methods reviewed in this chapter are complex enough that it is

difficult (even for the authors ofthe programs) to make specific predictions

about how these methods will behave when confronted with specific data

sets. For this reason, the most important practical advice I can give is that

it is incumbent upon the careful user of these programs to simulate data

that are similar to their own and then analyse them with the program they

are using. In order to gain insight about the results ofthese programs, there

really is no substitute for comparing your results to the results achieved

using simulated data that look like your own, but in which you know the truth

(i.e. you know which individuals are Fxs, and F2s, or which ones are

migrants).
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