
WEBER AND MCCLATCHIE: CALCOFI DATA IN R
CalCOFI Rep., Vol. 50, 2009

rcalcofi: ANALYSIS AND VISUALIZATION OF CALCOFI DATA IN R
EDWARD D. WEBER, SAM MCCLATCHIE

NOAA Fisheries
Southwest Fisheries Science Center

8604 La Jolla Shores Drive
La Jolla, California 92037-1508

ABSTRACT
We developed a package for the R software environ-

ment called “rcalcofi” designed to facilitate analysis
and visualization of data related to the California
Cooperative Fisheries Investigations program (CalCOFI)
and other similar oceanographic data. The major tasks
the package is designed to accomplish are to: convert
spatial data between the CalCOFI line/station coordi-
nate system and latitude/longitude or other projections;
match nominal spatial locations and nearby points within
a given radius; create enhanced spatial plots of multi-
variable or multivariate data using the lattice graphics
system; grid data in the CalCOFI coordinate system; and
easily download remotely-sensed data for integration
into analyses. The package is freely available, and can be
downloaded at ftp://swfscftp.noaa.gov/users/eweber/
rcalcofi/.

INTRODUCTION
The R software environment (R Development Core

Team 2008) is a tool for conducting statistical comput-
ing and graphics that is becoming increasingly popular
in the fields of ecology, fisheries science, and oceanog-
raphy, among others. Its freely available source code and
active community of scientists contributing extensions
to the base functionality of R make it a flexible tool for
conducting oceanographic research. The capability to
analyze spatial data in a variety of formats (Bivand et al.
2008) and produce publication-quality graphics in R
make it an ideal tool for conducting analyses of data col-
lected as part of the California Cooperative Fisheries
Investigations (CalCOFI). Here we describe an R pack-
age designed to facilitate visualization and analysis of
CalCOFI data and other similar oceanographic data. We
created the rcalcofi package because we found dur-
ing the course of our own research that we wanted to
be able to perform several recurring tasks more conve-
niently than was possible using existing functionality in
R. The major tasks that the package is designed to
accomplish are to: convert spatial data between the
CalCOFI line/station coordinate system and latitude/
longitude or other projections; match nominal spatial
locations and nearby points within a given radius; cre-

ate enhanced spatial plots of multivariable or multivari-
ate data using the lattice graphics system; grid data in
the CalCOFI coordinate system; and easily download
remotely-sensed data for integration into analyses.

In this article, we briefly describe the major func-
tionality of the package; however, we do not attempt to
document every detail of package use. The standard pack-
age documentation contains descriptions of all functions
and options in rcalcofi, along with examples. Many
more examples are contained in the vignette that is
included with the package. It can be accessed directly
from the “doc” folder of the package (rcalcofi.pdf), or
by using the vignette command in R after the package
has been installed.

> vignette(“rcalcofi”)

The standard documentation and vignette should serve
as the primary references for the package. The source
code for the package, and binary packages for the Apple
OS X®, and Microsoft Windows® operating systems, can
be downloaded at ftp://swfscftp.noaa.gov/users/eweber/
rcalcofi.Users who are completely new to R may wish to
access the Comprehensive R Archive Network (CRAN),
www.cran.R-project.org, to view introductory material,
documentation, and references pertaining to the general
use of R before working with rcalcofi. Throughout
this article the Courier font is used to indicate R pack-
age names, command names, or specific R code.

PACKAGE REQUIREMENTS
The general strategy in developing the package was

to use as much of the capability of existing R packages
as possible, thereby preserving conventions that are
familiar to many users and avoiding duplication of effort.
Thus, the package has a relatively long list of depen-
dencies. They are the fields (Furrer et al. 2009),grid
(R Development Core Team 2008), lattice (Sarkar
2009), maptools (Lewin-Koh et al. 2009), methods
(R Development Core Team 2008), rgdal (Keitt et al.
2008), sp (Pebesma and Bivand 2005), and spatstat
(Baddeley and Turner 2005) packages available from
CRAN repositories. The rgdal package further re-
quires the installation of the Geospatial Data Abstraction

178

Weber lo final:• CALCOFI SETUP  11/28/09  5:12 PM  Page 178



WEBER AND MCCLATCHIE: CALCOFI DATA IN R
CalCOFI Rep., Vol. 50, 2009

Library and PROJ4 library for projection and transfor-
mation of spatial data. We also recommend installing the
gshhs shoreline files (Wessels and Smith 1996) so that
higher resolution shoreline images can be plotted. The
package particularly relies on lattice graphics and
spatial classes provided by the sp package. In addition
to the standard documentation, lattice and sp are
described in greater detail by Sarkar (2008) and Bivand
et al. (2008), respectively.

MAJOR FUNCTIONALITY

Converting To and From the CalCOFI
Line/Station Coordinate System

Converting data expressed in CalCOFI line and sta-
tion coordinates to latitude and longitude is a common
task when analyzing or plotting CalCOFI data. The
rcalcofi package contains the function station.to
.latlon to achieve this, and the reverse function
latlon.to.station. These functions accept a ma-
trix or two-column data frame of coordinates and return
a matrix of converted coordinates using the algorithm
described by Eber and Hewitt (1979). For example, a
matrix of CalCOFI coordinates named myCalCOFIdata
could be converted to a matrix of longitudes and lati-
tudes as follows:

> station.to.latlon(myCalCOFIdata)

We note that repeated conversions between coordinate
systems on the same data should be avoided because a
small error is introduced with each conversion (cf., Eber
and Hewitt 1979). That is, raw location data should prob-
ably be retained, and projection done once for each analy-
sis or plot.

A more flexible way to analyze spatial data is to use
the spatial classes provided by the sp package. The sp
package provides methods for projecting, gridding,
overlaying, and converting spatial data (possibly with
attributes) to and from data frames and matrices. We
have adapted these methods in rcalcofi to treat the
CalCOFI coordinate system as if it were any other map
projection (e.g., Mercator, stereographic, etc.). Thus, the
usual spatial methods can be applied to data associated
with CalCOFI lines and stations, and they can be inter-
converted, imported, and exported using standard
methods. The recommended means of working with
CalCOFI spatial data is to convert them to an object
of a spatial class (e.g., a SpatialPointsDataFrame),
and then manipulate them using sp methods. In the
rcalcofi package, the projection “+proj=calcofi”
is used to get the means the CalCOFI line/station co-
ordinate system. The hypothetical myCalCOFI data
matrix could be converted to SpatialPoints and then
transformed as follows:

> spdata <- SpatialPoints(data.frame
(myCalCOFIdata), CRS(“+proj=calcofi”))
> spdata <- spTransform(spdata, CRS
(“+proj=longlat”))

Converting to a spatial data type will also allow the data
to be plotted using the high-level lattice plotting func-
tions in rcalcofi, which we describe below.

Matching Locations
Another common problem when working with

CalCOFI data is that measurements are recorded at loca-
tions near a nominal location (e.g., a station) and must
be matched to the nominal record for further analysis.
The function determine.station matches points
that are within a specified radius of another set of nom-
inal points. For example, a data frame called stations
was created containing the locations of two near-shore
core CalCOFI stations (line 76.7, stations 49 and 51;
tab. 1). We matched four hypothetical points in a data
frame called samples (tab. 2) to the nearest station
within the default 4 km radius using the following call:

> determine.station(samples$lon,
samples$lat, stations$lon, stations$lat,
row.names(stations))

The result is a vector of row names from the station data:

> [1] 1 NA 2 2

The vector indicates the first sample point matches to
station 1, and the last two points match to station 2
(fig. 1). The second result is an NA, indicating the sec-
ond sample point was not located within 4 km of either

179

TABLE 1
The stations data frame containing the longitude

and latitude of two core CalCOFI stations, line 76.7,
stations 49 and 51. The four hypothetical sample points
listed in Table 2 were matched to these data using the
determine.station function, as illustrated in Figure 1.

lon lat

1 239.222 35.088
2 239.082 35.022

TABLE 2
The samples data frame containing the longitude

and latitude of four hypothetical points that are near the
CalCOFI stations listed in Table 1. These data were

matched where they were within 4 km of a station using
the determine.station function, as illustrated in Figure 1.

lon lat

1 239.205 35.080
2 239.203 35.124
3 239.051 35.020
4 239.082 35.043

Weber lo final:• CALCOFI SETUP  11/28/09  5:12 PM  Page 179



WEBER AND MCCLATCHIE: CALCOFI DATA IN R
CalCOFI Rep., Vol. 50, 2009

of the stations. The resulting vector could be assigned as
a column in the samples data frame and used to merge
data sets using the standard R methods.

Enhanced Plotting of Spatial Data in Lattice
It is often useful to visualize multivariable or multi-

variate data by constructing graphics with a panel for
each level of one or more variables. For example, we
frequently plot species abundance separately for each
year, or at different levels of one or more environmen-
tal variables. The R lattice graphics system was de-
signed for plotting these types of data. The rcalcofi
package adds several high-level lattice functions for plot-
ting spatial data using lattice graphics. These functions
have several convenient features for plotting spatial data,
including formula methods similar to standard lattice
functions, automatic conversion and plotting of spatial
data from different projections (including CalCOFI), and
default panel functions that were designed to be inte-
grated into more complex graphics. All of the high-level
plotting functions in rcalcofi accept shoreline maps
that can be created easily using the get.map function.
Nearly all of the standard lattice functions will work as
expected with these functions, thereby allowing users
who are familiar with lattice graphics to customize plots
even further.

The new high-level plotting functions included in
rcalcofi are spxyplot, splevelplot, spcon-
tourplot, spgridplot, and spstickplot. The
spxyplot,splevelplot, and spcontourplot func-
tions are analogous to the standard lattice xyplot,
levelplot, and contourplot functions, except that
they accept spatial data types instead of data frames, and

plot in any desired projection. The splevelplot and
spcontourplot functions actually call the same un-
derlying function with different options, similar to
levelplot and contourplot. A few other adjust-
ments have been made to splevelplot to accommo-
date data projected from a different coordinate system.
If data that were regularly spaced in the original coor-
dinate system are plotted in a different projection, the
function will plot polygons with corners at the appro-
priate projected coordinates rather than rectangles. This
is useful for creating a levelplot on the CalCOFI
grid but plotting it in longitude and latitude, for exam-
ple. A second option for plotting irregularly-spaced data
in splevelplot is to use the krig option. This will
call the Krig function (with user arguments, if speci-
fied) from the fields package to create an interpolated
surface, and then plot the surface as a standard level-
plot in the specified coordinate system.

The spgridplot function plots gridded spatial in-
formation as a standard grid if it is plotted in its native
projection or as a grid with curved lines that reflect dis-
tortion if it has been projected to a new coordinate sys-
tem. It accepts gridded (i.e., regularly spaced) data as
objects of gridded spatial classes from the sp package
(SpatialGrid,SpatialGridDataFrame,Spatial-
Pixels, or SpatialPixelsDataFrame).

The spstickplot function plots data associated with
spatial locations as solid bars or filled frames similar to
“thermometers” in the standard graphics symbols func-
tion. It is useful for creating three-dimensional bar plots.

High-level functions in rcalcofi can be called with
only one or two arguments for basic use. For example,
a SpatialPoints object named mySpatialPoints

180

Figure 1. Four hypothetical sample locations (tab. 1) were matched to two core CalCOFI stations, line 76.7, stations 49 and
51 (tab. 2; designated by the “X” symbol), using the determine.station function if they were within a 4-km radius of a
point. Closed circle indicates a sample location matched to the first station in Table 1 (line 76.7 station 49), and triangles
indicate sample locations matched to the second station in Table 1 (line 76.7 station 51). The open circle indicates a loca-
tion greater than 4 km from either station, so an NA was returned by the function. The gray area represents the shoreline.

Weber lo final:• CALCOFI SETUP  11/28/09  5:12 PM  Page 180



WEBER AND MCCLATCHIE: CALCOFI DATA IN R
CalCOFI Rep., Vol. 50, 2009

can be plotted in its native coordinate system as follows:

> spxyplot(mySpatialPoints)

We provide somewhat more complex examples to illus-
trate multiple features in a single graphic. These examples
also demonstrate how custom panel functions can be used
to combine graph types.Following the standard lattice con-
vention, each high-level plotting function in rcalcofi
has a default panel function that performs the actual plot-
ting of symbols. For example, the default panel function
for spxyplot is panel.spxyplot. More complex
graphs can be created by replacing the default panel func-
tion with a custom panel function that combines several
default types. Figure 2 illustrates the use of splevelplot
as the base high-level plotting function. A custom panel
function was used to over-plot points using panel.sp-
xyplot, and bars using panel.spstickplot. The
figure is based on an example data set called calcofiDat
that is included in the package. The data describe
CalCOFI samples collected during spring in 1954, 2001,
and 2002. The color image depicts mean water temper-
ature in the upper 50 m,as interpolated from data collected
at each station using the krig option in splevelplot.
Sample locations are indicated by black. Bars indicate
densities of sardine eggs captured at each station.

Several other features of high-level plotting functions
in rcalcofi are also illustrated in Figure 2. The shore-
line polygons (technically a gList of polygons; cf.,

Murrell 2006) were passed to the function for plotting
in each panel. The shoreline plotted was from the sam-
ple file named shoreline included with the package
but could have been created using the get.map func-
tion. The figure was conditioned on years using the for-
mula method (e.g., temperature ~ coordinates |
year). For convenience, high-level functions in rcal-
cofi that accept a formula method can accept the word
“coordinates” in place of the coordinate names (e.g., in-
stead of temperature ~ longitude * latitude |
year). The splevelplot function also calculated the
correct aspect ratio and placed degree symbols on axis
labels automatically. These could have been overridden
by providing an aspect argument or a custom axis.

The figure was created from the calcofiDat data
frame as follows. First, a year variable was added to
the data frame based on the datetime column. Then,
the data frame was converted to a SpatialPoints
DataFrame.

> data(calcofiDat)
> ccdat <- calcofiDat
> ccdat$year <- substring
(ccdat$datetime, 1, 4)
> ccdat <- SpatialPointsDataFrame
(SpatialPoints(ccdat[c(“longitude”,
“latitude”)], proj4string = CRS
(“+proj=longlat”)), ccdat)

181

Figure 2. Density of sardine (Sardinops sagax) eggs (bars) sampled at CalCOFI stations in spring of 1954, 2001, and 2002 plotted over an interpolated surface
of mean water temperature in the upper 50 m, as sampled at CalCOFI stations (color image). Black dots indicate sample locations. The plot was created using
splevelplot as the base high-level plotting function. A custom panel function was used to over-plot points using panel.spxyplot, and bars using
panel.spstickplot. The figure is based on an example data set named calcofiDat that is included in the package.

Weber lo final:• CALCOFI SETUP  11/28/09  5:12 PM  Page 181



WEBER AND MCCLATCHIE: CALCOFI DATA IN R
CalCOFI Rep., Vol. 50, 2009

Then the plot was created as follows:

> splevelplot(temperature ~ coordinates
| year, ccdat, krig = TRUE, as.table =
TRUE, xlab = “”, ylab = “”, main =
expression(paste(‘Egg density
(eggs/100’, m^3, ‘)’, sep = ‘’)),
sub = ‘Background image is Temperature
(C)’, strip = strip.custom(bg =
“transparent”), layout = c(3, 1),
panel = function(...)
{
panel.splevelplot(...)
panel.map(map = shoreline,

proj4string = “+proj=longlat”)
subscripts <- list(...)$subscripts
panel.spxyplot(ccdat[subscripts, ],

proj4string = “+proj=longlat”, col =
“black”, pch = 20, cex = 0.1)
panel.spstickplot(ccdat[subscripts,

“eggs”], proj4string = “+proj=longlat”,

filledBars = FALSE, col = “black”,
width = unit(0.01, “npc”))
})

The key for the stickplot was added using the function
spstickplotKey:

> spstickplotKey(width = unit(0.01,
“npc”), minval = min(ccdat$eggs,
na.rm = TRUE), maxval = max(ccdat$eggs,
na.rm = TRUE), col = ‘black’, border =
‘black’, vp = viewport(x = unit(0.8,
“npc”), y = unit(0.6, “npc”)),
draw = TRUE)

We used a subset of the same data, years 2001 and
2002, to plot mean water temperature in the upper
50 m (fig. 3). The data were plotted in two ways. The
spstickplot function was used to indicate measure-
ments at each station, with framed bars indicating the
minimum and maximum values of bars. An interpolated

182

Figure 3. Mean water temperature in the upper 50 m, as measured at CalCOFI stations during spring 2001 and 2002. Data are plotted in
two ways. First, filled bars indicate mean temperature at each station similarly to “thermometers” symbols in the standard symbols plot-
ting function. An interpolated temperature surface is also over-plotted as a contour plot. The graph was created using spstickplot as
the high-level plotting function with a custom panel function that called panel.spcontourplot to plot contours. A groups argument
was used to plot stations where sardine eggs were present in black and stations where sardine eggs were absent in gray. Data are in the
calcofiDat example data frame that is included in the package.

Weber lo final:• CALCOFI SETUP  11/28/09  5:12 PM  Page 182



WEBER AND MCCLATCHIE: CALCOFI DATA IN R
CalCOFI Rep., Vol. 50, 2009

surface of temperature was over-plotted as contours on
each panel using panel.spcontourplot. The plot
was conditioned on years, and grouped by the logical
variable presence to indicate stations where sardine
eggs were captured in black, and stations where no sar-
dine eggs were captured in gray. The data were prepared
and the basic graph was plotted using the following
commands:

> ccdat2 <- ccdat[ccdat$year %in%
c(‘2001’, ‘2002’), ]
> ccdat$presence <- ifelse(ccdat$eggs >
0, “present”, “absent”)
> spstickplot(temperature ~ coordinates
| year, ccdat2, as.table = TRUE,
groups = presence, xlab = “”,
ylab = “”, width = unit(0.015, “npc”),
col = c(‘darkgray’, ‘black’), border =
c(‘darkgray’, ‘black’), strip =
strip.custom(bg = “transparent”),
layout = c(2, 1), main = ‘Mean water
temperature (C)’,
panel = function(...)
{
subscripts <- list(...)$subscripts
panel.map(shoreline, ‘+proj=longlat’)
panel.spstickplot(...)
panel.spcontourplot(ccdat2[subscripts,

‘temperature’], krig = TRUE,
proj4string = ‘+proj=longlat’,
cex = 0.5)
})

Two additional commands were used to generate the
group key and the bar key:

> draw.key(list(text=list(lab =
c(‘sardine eggs absent’, ‘sardine eggs
present’)), rect = list(col =
c(‘darkgray’, ‘black’))),
vp = viewport(x = unit(0.75, “npc”),
y = unit(0.22, “npc”)), draw = TRUE)
> spstickplotKey(width = unit(0.015,
“npc”), minval = min(ccdat$temperature,
na.rm = TRUE), maxval =
max(ccdat$temperature, na.rm = TRUE),
col = ‘black’, border = ‘black’,
vp = viewport(x = unit(0.5, “npc”),
y = unit(0.22, “npc”)), main = TRUE,
draw = TRUE)

Gridding Data in the CalCOFI
Coordinate System

Gridding data can be accomplished using the overlay
method exactly as described in the sp package. Basic

gridding of data can be accomplished in rcalcofi even
more conveniently using the pixelize.spatialdat
function. This calls the overlay function to match spa-
tial data to grid cells, and then creates a new grid with
average values for the data in each grid cell (or another
specified function such as the median). For example, a
grid in the form of a SpatialPixels object from
line 30 to line 120, with default cell sizes 3-1/3 lines
by 10 stations, was created using the calcofi.grid
function:

> ccgrd <- calcofi.grid(lineRange =
c(30, 120))

We overlayed the grid onto the example data set named
TPH_ssta_8day_20060416 that is included in the
package. The data set consists of remotely-sensed sea
surface temperature measured at 5.5 km resolution by
the Pathfinder mission. The data are expressed in longi-
tude and latitude for geographic range 28˚ to 42˚N and
-135˚ to -112˚W for the eight-day period centered on
16 April 2006. These data were downloaded from the
NOAA Coastwatch server using the get.dap.data
function described below. The data were converted to
a SpatialPointsDataFrame named llimagedat
using the standard sp method:

> data(TPH_ssta_8day_20060416)
> llimagedat <- TPH_ssta_8day_20060416
> llimagedat <- SpatialPointsDataFrame
(cords = llimagedat[c(“x”, “y”)], data
= llimagedat[“z”],proj4string =
CRS(“+proj=longlat”))

A new grid named ccimage, containing mean sea surface
temperatures for each cell of the CalCOFI grid, was cre-
ated using the pixelize.spatialdat function. The
function handled the different projections of the two
data sets automatically:

> ccimage <- pixelize.spatialdat
(llimagedat, ccgrd)

The gridded data are plotted in Figure 4. The plot was
further customized before plotting with a different shore-
line map. We created shoreline2 using the get.map
function. The map used a high-resolution gshhs shore-
line file similar to the shoreline data, but light yellow
as a fill color:

> gshhsPath <-
‘/Users/eweber/calcofi/gshhs/gshhs_h.b’
> shoreline2 <- get.map(gshhsPath =
gshhsPath, col = ‘lightyellow’, border
= ‘transparent’, xlim = c(-136, -114),
ylim = c(22, 45))

183

Weber lo final:• CALCOFI SETUP  11/28/09  5:12 PM  Page 183



WEBER AND MCCLATCHIE: CALCOFI DATA IN R
CalCOFI Rep., Vol. 50, 2009

The graph was plotted using the following commands:

> proj4string <- ‘+proj=longlat’
> trellis.par.set(axis.text = list
(cex = 0.9))
> splevelplot(ccimage, proj4string =
proj4string, xlim = c(-136, -114),
ylim = c(22, 45), proj4string.limits =
proj4string, xlab = ‘’, ylab = ‘’,
main = ‘Sea-Surface Temperature
(C)\nGridded to CalCOFI’, col.regions =
tim.colors(100),
panel = function(...)
{
panel.fill(col = ‘lightblue’)
panel.splevelplot(...)
panel.spgridplot(ccimage,

proj4string)
panel.map(shoreline2, proj4string)

})

Note that the grid was expressed in the CalCOFI coor-
dinate system, but plotted in longitude and latitude by
providing the proj4string argument +proj=longlat.
The panel.fill function was used to create the light

blue background behind the image and the shoreline. A
different color palette for the image was also specified
using the col.regions argument.

Downloading Remotely Sensed Data
The rcalcofi package includes functions to down-

load freely available remotely sensed data from the NOAA
Coastwatch server (http://coastwatch.pfel.noaa.gov/).
The package includes a summary table of available sensors
and data types called dapDat.Rda. The get.dap.info
function can be used to print these data or construct a
call to the get.dap.data function, which is used to
download data. For example, the following code will
download SEAWIFS monthly chlorophyll data for the
given date and range, which is summarized as row 63 in
dapDat.Rda:

> dapcall <- get.dap.info(63, c(28,
29), c(-135, -134), “2006-04-16”,
saveFile = FALSE)
> dapcall
> eval(dapcall)

The get.dap.data function can also be called directly:

> fileType <-”xyz”
> latRange <- c(28, 29)
> lonRange <- c(-135, -134)
> satellite <- “TPH”
> variable <- “ssta”
> dte <- “2006-04-16”
> timePeriod <- “8day”
> get.dap.data(satellite, variable,
timePeriod, dte, lonRange, latRange)

The function will automatically save the file in the
default directory using a file name that indicates the
sensor, date, and time period downloaded (e.g., the
TPH_ssta_8day_20060416 data frame was down-
loaded using this function), unless the saveFile argu-
ment is set to FALSE. The check.dap.dates function
queries the NOAA Coastwatch servers to find available
dates for data from a given sensor. It may be called man-
ually, and is called automatically if a get.dap.data
call fails. These functions are adapted (with permission)
from the xtractomatic R program provided by Dave
Foley and Cindy Bessey, NOAA Southwest Fisheries
Science Center, Environmental Research Division, Pacific
Grove, California. The xtractomatic program pro-
vides an alternative method of retrieving satellite data.
It can be downloaded at http://coastwatch.pfel.noaa.gov/
coastwatch/CWBrowserWW360.jsp?get.

Miscellaneous Functions
Several other simple miscellaneous functions that are

included in rcalcofi are likely to be useful to other

184

Figure 4. Mean sea surface temperature for the eight-day period centered
on 16 April 2006. Original data were Pathfinder measurements expressed in
longitude and latitude at 5.5 km resolution, and contained in the example
data set named TPH_ssta_8day_20060416. The data were gridded to
cell sizes of 3-1/3 lines by 10 stations in the CalCOFI coordinate system
using the pixelize.spatialdat function. Data were plotted using
the spimageplot function with a custom panel that included the
panel.spgridplot function to create the black grid that is superim-
posed on the image.

Weber lo final:• CALCOFI SETUP  11/28/09  5:12 PM  Page 184



WEBER AND MCCLATCHIE: CALCOFI DATA IN R
CalCOFI Rep., Vol. 50, 2009

researchers working with CalCOFI data. The most fre-
quently used of these are probably calculate.mld,
c a l c u l a t e . d i s t a n c e . o f f s h o r e ,
cols.to.zmatrix, and zmatrix.to.cols. The
calculate.mld function returns an estimate of mixed-
layer depth, given density, and water depth, following the
procedure described by Kara et al. (2000). The calcu-
late.distance.offshore function calculates the
nearest distance from shore (as represented by a
SpatialPolygons object) for each point in a matrix
of locations. The cols.to.zmatrix, and zmatrix
.to.cols functions convert spatial data between col-
umn (matrix or data frame) formats and the list format
used by functions such as image and contour.

DISCUSSION
The rcalcofi package has reached a level of de-

velopment where it may be useful to other researchers,
despite relatively limited testing as part of our own re-
search. We anticipate that additional refinement will be
needed and welcome any bug reports as they are dis-
covered. Although the package was developed with analy-
sis of CalCOFI data in mind, much of the functionality
is likely to be useful for other types of data. The spatial
plotting functions may be particularly useful for other
areas of fisheries and oceanographic research.

Some of the functionality of the package can be ac-
complished more computationally efficiently using GIS
software or other programs. Although it is often conve-
nient to conduct analyses using pure R solutions rather
than working interactively between R and other pro-
grams, alternative approaches may be preferable when
working with very large data sets. For such cases, the
Spatial task view on the CRAN website provides an up-
to-date list of applications that work well with R.

We consider rcalcofi to be primarily a package of
convenience functions rather than one that introduces
major new functionality. The authors of the core soft-
ware and packages upon which rcalcofi relies have
done most of the difficult programming. Users should

not overlook existing functionality outside of the pack-
age when analyzing CalCOFI data. For example, stan-
dard graphics or standard lattice graphics may be as
simple to use as our plotting functions in some cases
when all data are in the same coordinate system.

ACKNOWLEDGMENTS
We thank E. Archer for reviewing the manuscript.

This work was supported in part by a grant from the
U.S. Integrated Ocean Observing System program. We
thank C. Oliver of NOAA and J. Everett of Ocean
Associates, Inc. for administering funding.

LITERATURE CITED
Baddeley, A., and R. Turner. 2005. Spatstat: an R package for analyzing spa-

tial point patterns. J. Statist. Software. 12:1–42.
Bivand, R. S., Pebesma, E. J., and Gómez-Rubio, V. 2008. Applied spatial

data analysis with R. Springer, New York, 374 pp.
Eber, L. E., and R. P. Hewitt. 1979. Conversion algorithms for the CAL-

COFI station grid. Calif. Coop. Oceanic Fish. Invest. Rep. 20:135–137.
Furrer, R. D. Nychka, and S. Sain. 2009. fields: Tools for spatial data. R

package version 5.02. http://www.image.ucar.edu/Software/Fields.
Kara, A. B., P. A. Rochford, and H. E. Hurlburt. 2000. An optimal defi-

nition for ocean mixed layer depth. J. Geophys. Res. Oceans 105:
16803–16821.

Keitt, T. H., R. S. Bivand, E. J. Pebesma, and B. Rowlingson. 2008. rgdal:
Bindings for the Geospatial Data Abstraction Library. R package version
0.5-30. http://www.gdal.org, http://rgdal.sourceforge.net/, http://
sourceforge.net/projects/rgdal/.

Lewin-Koh, N. J., R. S. Bivand, E. J. Pebesma, E. Archer, A. Baddeley,
H. Bibiko, S. Dray, D. Forrest, P. Giraudoux, D. Golicher, V. Gómez
Rubio, P. Hausmann, T. Jagger, S. P. Luque, D. MacQueen, A. Niccolai,
and T. Short. 2009. maptools: Tools for reading and handling spatial objects.
R package version 0.7–21.

Murrell, P. 2006. R graphics. Taylor and Francis, Boca Raton, Florida,
301 pp.

Pebesma, E. J., and R. S. Bivand. 2005. Classes and methods for spatial data
in R. R News 5. http://cran.r-project.org/doc/Rnews.

R Development Core Team. 2008. R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0, URL http://www.R-project.org.

Sarkar, D. 2008. Lattice: multivariate data visualization with R. Springer,
New York. http://lmdvr.r- forge.r- project.org/.

Sarkar, D. 2009. lattice: Lattice Graphics. R package version 0.17-20.
Wessel, P., and W. H. F. Smith. 1996. A global self-consistent, hierarchical,

high-resolution shoreline database. J. Geophys. Rsch. 101:8741-8743.
http://www.soest.hawaii.edu/wessel/gshhs/gshhs.html.

185

Weber lo final:• CALCOFI SETUP  11/28/09  5:12 PM  Page 185



Weber lo final:• CALCOFI SETUP  11/28/09  5:12 PM  Page 186


