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4.1 Introduction

The continuity, global coverage, and high temporal and spatial resolution of satellite

data make them an important tool for monitoring and characterizing the habitat

and ecosystems that influence marine resources. Remotely-sensed variables such as

sea-surface temperature (SST), sea-surface height, ocean colour, ocean winds and

sea ice, characterize critical habitats that influence marine resources. Most of the

physical features that are important to ecosystems, such as ocean fronts, eddies,

convergence zones, river plumes and coastal regions, cannot be resolved adequately

without satellite data. Similarly, satellite data are crucial for resolving the timing

of processes such as upwelling, harmful algal blooms (HABs), seasonal transitions

and El Niño events. Satellite ocean colour is particularly important, since it is the

only remotely-sensed property that directly measures a biological component of the

ecosystem. For example, chlorophyll derived from ocean colour data can be used

to observe changes in the timing and magnitude of the phytoplankton blooms that

can affect future fish populations via recruitment (Platt et al., 2003; Friedland et

al., 2008), to classify the productivity of the oceans (Pauly and Christensen, 1995;

Sherman et al., 2005), to detect interannual differences in the frontal structures that

are important to fisheries (Polovina et al., 2001; Bograd et al., 2004) and to map the

spatial extent of the part of the ocean experiencing reduced productivity during El

Niño events (Wilson and Adamec, 2001). This Chapter shows some specific examples

of how satellite data have been applied to improve the management of fisheries.
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4.2 Fisheries Management: Changing the Paradigm

Traditionally, fisheries management strategies have focussed on a single species in

relative geographic isolation. However, neither one fish species, nor its fishery, exist

in isolation. Both the fish and its fishery are embedded in an interacting network

of plants, animals (including humans) and non-living components. Thus, there is

growing recognition that an integrated approach is needed: one that considers the

cumulative impacts from various sources, and from potentially conflicting uses, to

manage the entire ecosystem, and one that moves beyond political boundaries. A

key conceptual difference between an ecosystem-based approach to management

and conventional approaches is the focus on sustainability of all components of

the ecosystem, not just those that are targeted by fisheries. The need for this

broader approach, which demands a better understanding of the structure and

function of the entire ecosystem, has become apparent as many fisheries, including

some closely managed ones, have declined when management has tried to treat the

target species in isolation. Factors such as fisheries, pollution, coastal development,

harvest pressure, predator-prey and other ecological interactions, and watershed

management all need to be taken into account (Sherman et al., 2005; Ruckelshaus et

al., 2008). A variety of systems have been developed to define different ecosystems

or provinces in the ocean. The large marine ecosystem (LME) concept is widely used

in the coastal ocean (Sherman and Alexander, 1986; Sherman, 1991; 1993; Duda and

Sherman 2002; Sherman and Hempel 2008), and a number of different approaches

have been used to define ecological provinces within the open ocean (Ryther, 1969;

Sieburth et al., 1978; Longhurst, 1995; Platt and Sathyendranath, 1999; Devred et al.,

2007; Spalding, et al., 2007).

The availability of global coverage of SST and chlorophyll from satellites has

been instrumental in classifying marine ecological regions. The world’s oceans

have traditionally been poorly sampled using shipboard sampling, partially due to

the inherent logistical difficulties involved with shipboard sampling of such vast

areas, and also due to the fact that the ocean is highly dynamic, making many

oceanic features impossible to resolve adequately either temporally or spatially with

shipboard sampling. Oceanographic satellite data solves many of these problems,

and the amount of satellite oceanographic data available has expanded tremendously

in recent years. The challenge, however, is in interpreting the relationship between

the fundamental satellite measurement, i.e. the amount of chlorophyll-a in the

surface ocean, and the higher trophic levels (Figure 4.1).

4.2.1 Large marine ecosystems

Large marine ecosystems (LMEs) are regions of the world’s oceans encompassing

areas from river basins and estuaries to the seaward boundaries of continental

shelves and the outer margins of the major ocean current systems. The physical
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Figure 4.1 Schematic showing simplified pathway between fish populations
and properties that can be inferred from satellite ocean-colour data, such as
phytoplankton type and size. There can be many different levels in the link
between phytoplankton and the top of the trophic food chain. See also Figures
2.10 and 2.12.

extent and boundaries of the LMEs are based on bathymetry, hydrography, pro-

ductivity and trophic relationships (Sherman and Alexander, 1986; Sherman, 1991;

Sherman et al., 2007; Sherman and Hempel, 2008). Within the boundaries of the

64 LMEs (Figure 4.2) are the highest levels of global primary production and 80%

of the world’s annual fisheries yield (Garibaldi and Limongelli, 2003; Sherman et

al., 2009). However, overfishing, destruction of marine habitats, and accelerated

pollution loading has dramatically reduced the biomass and diversity of the coastal

ocean to a point that ecosystems are being severely degraded, and the dependency

of coastal communities on marine resources for livelihoods and protein is being

threatened (Duda and Sherman, 2002).

The LME concept is a strategic approach for resource managers to characterize

ecosystems and develop management approaches that can provide a basis for

cooperation among the different countries managing a shared ecosystem. The LME

management approach has developed a 5-module methodology with indicators

of (i) productivity, (ii) fish and fisheries, (iii) pollution and ecosystem health, (iv)

socioeconomics, and (v) governance to analyze ecosystem-wide changes (Sherman

and Hempel, 2008). The productivity module is especially important, as primary

productivity is related to the carrying capacity of an ecosystem for supporting fish

resources and fisheries (Pauly and Christensen, 1995). Using satellite chlorophyll

and SST data the primary productivity of the LMEs can be calculated at a high

spatial resolution, and its seasonal and interannual variability can be monitored.

Satellite data provide a large-scale physical and biological context to understand

better the changes in fish stock populations. A crucial component of the satellite
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Figure 4.2 Outline of the 64 Large Marine Ecosystems of the world showing
fisheries catch abundance for 2000-2004 (adapted from http://www.lme.noaa.
gov/).

data is the time-series, which provides a baseline from which significant anomalies

from the climatological seasonal cycles can be determined, as well as long-term

increases or decreases in different ecosystem variables. For example, satellite

SST and chlorophyll, and their spatial and temporal trends, are some of the key

indicators in the biannual advisory reports produced on the current status of the

northeast U.S. LME (http://www.nefsc.noaa.gov/omes/OMES/).

4.2.2 Open ocean provinces

Many LMEs fall within the coastal waters (see Figure 4.2) where primary productivity

is generally higher than in the open gyres. However, to manage fisheries on a global

scale requires a methodology for defining the boundaries of the large open-ocean

ecosystems. The simplest system is a box defined by lines of longitude and latitude,

but for fisheries management it is imperative that the distribution of both the

fish stock and its key habitat are also taken into account (Halliday and Pinhorn,

1990). And for an ecosystem-based approach to management, information about

the ecological structure and the physical environment also needs to be utilized.

A seminal classification of global marine ecological provinces was developed by

Longhurst (1995; 1998; 2007), who used satellite chlorophyll data, in conjunction

with other datasets, to delineate rectilinear regions in the ocean with similar phys-

ical and biological seasonal patterns. However, ecological provinces are not fixed

temporally, but rather have significant seasonal and interannual variability. Recently

Devred et al. (2007), using ocean-colour data, developed a method to determine

the instantaneous boundaries of marine ecological provinces (Fig 4.3). From this

http://www.lme.noaa.gov/
http://www.lme.noaa.gov/
http://www.nefsc.noaa.gov/omes/OMES/
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analysis, not only is the climatological position of the provinces determined, but

also their seasonal and interannual variability.

Figure 4.3 Ecological partitions of the northwest Atlantic Ocean, (a) static
partition according to Longhurst (1998); (b) dynamic partition according to
Devred et al. (2007), for 16 to 31 October 2001; (c) static partition of the
Northwest Fisheries Organisation (see Halliday and Pinhorn, 1990). Figure
modified from Platt and Sathyendranath (2008).

A related approach to defining oceanic provinces is on the basis of the dominant

type of phytoplankton population. Typically, smaller phytoplankton (nanoplankton)

dominate in the ocean gyres, and larger phytoplankton (microplankton) dominate in

coastal areas (Ryther, 1969). These different ecosystems also have differing numbers

of average trophic levels. For example, Ryther (1969) assigned a representative

number of five trophic levels in oceanic provinces, three in coastal provinces and

one and a half in upwelling provinces. The short food chain in the upwelling zones,

where a majority of the world’s fish yield comes from, implies a better ability to

relate satellite-derived measurements of chlorophyll to fish production. But even in

oligotrophic environments the food web relevance of nano- and picophytoplankton,

through microbial food webs, has been shown to be a crucial issue for local and

regional fisheries (Mousseau et al., 1989; Rossi et al., 2006; De Figueiredo et al.,

2007).

Various methods have been proposed to identify phytoplankton size classes from

phytoplankton absorption characteristics that are retrievable from ocean-colour data

(Ciotti et al., 2002; Devred et al., 2006; Uitz et al., 2008). Vidussi et al. (2001) used a

number of pigment biomarkers to classify natural populations of phytoplankton

according to the fractions of pico-, nano- and microphytoplankton present. Uitz et

al. (2006) used these indices of phytoplankton to demonstrate common patterns

relating chlorophyll concentration with phytoplankton size structure: the general

trend is for phytoplankton size classes to shift from picophytoplankton-dominated

waters under oligotrophic conditions towards predominance of microphytoplank-

ton with increasing chlorophyll concentration. Since chlorophyll concentration is
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readily available from remote sensing, this provides a method to estimate probable

phytoplankton size class structure from satellite-derived chlorophyll data. Nair

et al. (2008) have reviewed the use of ocean-colour data to obtain information on

phytoplankton size class, and Brewin et al. (2009) have compared various methods

for estimating phytoplankton size class structure from satellite data.

Cell size is an important predation criterion, since most fish larvae are visual

predators, but phytoplankton biomass and composition also play a role in food web

dynamics. For example, a diet composed exclusively of diatoms can negatively affect

both the growth and survival of some fish larvae and the hatching and reproduction

of copepods, which are an important food source for the early larval stages of many

carnivorous species (Hunter, 1981; Kleppel et al., 1991; Kleppel, 1993; Ban et al.,

1997; St. John et al., 2001). Upwelling systems alternate between being dominated by

sardines or anchovies, and it has been suggested that changes in the phytoplankton

community structure are involved, with dinoflagellates supporting a sardine regime,

and diatoms supporting an anchovy regime (Cury et al., 2008). These results argue

for an approach to fisheries applications of ocean-colour data that is based not only

on the total concentration of chlorophyll-a, but also on phytoplankton composition.

For the classification of ecological provinces to be useful for fisheries manage-

ment, it is necessary to first show that distributions of pelagic biota do in fact follow

the same patterns and boundaries. Despite the large disparity between the temporal

and spatial resolution of fish population data relative to that of satellite data, a

mirroring of the pattern of defined ecological provinces has been observed at higher

trophic levels. The distribution of species of tuna inferred from long-line catch

statistics shows a partitioning along Longhurst’s province boundaries (Royer and

Fromentin, 2007; Corbineau et al., 2008). For example, yellowfin tuna dominate in

the provinces of the western tropical oceans; the tropical provinces with shallower

thermoclines are the domain of bigeye tuna in the Pacific and the Atlantic, while

albacore tuna dominate in the central gyral provinces of each ocean basin, and

bluefin tuna are largely restricted to the higher latitude provinces (Fontenau, pers.

comm.). Such concordance must be made with caution, for other factors — such as

administrative restrictions on long-lining in certain areas — may easily confuse the

result.

4.2.3 Marine managed areas

Marine managed areas (MMAs) are an important aspect of ecosystem-based ap-

proaches to fisheries management. MMAs range in overall management approach

from marine reserves, which are relatively rare ‘no-take’ areas that prohibit all

extractive uses, to more common ‘multiple use’ areas, such as marine sanctuaries

and marine protected areas, where a variety of activities are managed to ensure

the sustainability of the marine resources. Both chlorophyll and turbidity from

ocean-colour satellites are key indicators of oceanographic habitat that are used in
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the biogeographical assessment of waters within marine sanctuaries. Areas of con-

sistent upwelling, and the locations of persistent fronts, both features of biological

importance, can be determined using satellite SST data, for use in coastal man-

agement (Stegmann et al., 2006). Delineating upwelling and frontal areas, and the

seasonal expansion and contraction of their boundaries have been used in designing

strategies for identifying the locations of new MMA regions and in monitoring their

effectiveness (Alpine and Hobday, 2007).

4.2.4 Coral reef monitoring

Coral reef ecosystems support a high diversity of coral, fish, and benthic species,

with corals forming the structural and ecological foundation of the reef system.

Coral reefs are sensitive to their environment (temperature, light, water quality, and

hydrodynamics), and as a result of both anthropogenic and climate impact (Kleypas

et al., 2001), they are among the most threatened coastal ecosystems worldwide

(Pandolfi et al., 2003; Hoegh-Guldberg et al., 2007). Corals have a symbiotic relation-

ship with a microscopic organism, zooxanthallae, which provides the corals with

oxygen and a portion of the organic compounds they produce through photosynthe-

sis. When stressed, many reef inhabitants expel their zooxanthallae en masse. The

polyps of the coral are left bereft of pigmentation and appear nearly transparent on

the animal’s white skeleton, a phenomenon referred to as coral bleaching.

Severe bleaching events can have dramatic long-term effects on the coral. Recov-

ery rates appear to differ with species, and the time required to attain full recovery

of symbiotic algae varies from as little as two months to as much as one year. When

the level of environmental stress is high and sustained, the corals may die. Since the

late nineteen eighties, coral bleaching related to thermal stress has become more

frequent and more severe. High SSTs associated with the 1997 to 1998 El Niño

caused bleaching in much of the world’s oceans, particularly in the Indian Ocean

and in the western Pacific. Other major bleaching events occurred around the Great

Barrier Reef and northwestern Hawaiian Islands in 2002, and in the Caribbean in

2005 (Figure 4.4).

With the capability of providing synoptic views of the global oceans in near-

real-time and the ability to monitor remote reef areas, satellite remote sensing

has become a key tool for coral-reef managers and scientists (Mumby et al., 2004;

Maina et al., 2008; Maynard et al., 2008). Since 1997, NOAA has been producing

near-real-time, web-accessible, satellite-derived SST products to monitor globally the

conditions that might trigger coral bleaching from thermal stress. Currently NOAA’s

Coral Reef Watch Program provides operational products such as SST anomalies,

bleaching HotSpot anomalies, Degree Heating Weeks (see Figure 4.4), and Tropical

Ocean Coral Bleaching Indices to the global coral reef community (Strong et al.,

2006). These products provide an effective early warning system globally, but are

not always accurate in predicting the severity of a bleaching event at the regional
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Figure 4.4 Map of an unusual heating in the Caribbean for the summer of 2005
when a massive bleaching event occurred. Results are presented as anomalies
of sea-surface temperature (SST) above the expected summer-time maximum,
over a one week period, expressed as ‘Degree Heating Weeks’ (DHWs). One DHW
is equivalent to one week of SST greater than expected summertime maximum
by 1◦C. DHWs greater than 10 indicate the existence of high and persistent SST,
with a high probability that coral reefs may be undergoing severe bleaching,
and possible mortality.

scale (McClanahan et al., 2007; Maynard et al., 2008). CSIRO’s ReefTemp project

produces satellite-derived bleaching risk indices specifically for Australia’s Great

Barrier Reef (Maynard et al., 2008).

4.2.5 Use of remote sensing within an ecosystem-based approach to
management

Most of the coastal fishery resources within the Lesser Antilles are fully exploited

or overexploited (especially those of higher commercial value), and the demand for

fish (including pressures from tourism and recreation fishing) continues to grow.

As a result, both fishers and the governments in the region are actively working

to expand their fisheries. In line with current thinking, the governments of the

region opted to pursue this expansion under the framework of management using

an ecosystem-based approach to fisheries.

The countries involved requested assistance from the Food and Agriculture

Organization (FAO) to help with the development of the data, information systems

and models necessary to assess the status of the regional pelagic ecosystem and

associated fisheries. They also requested recommendations toward implementing

an ecosystem-based approach to management. The result was the Lesser Antilles

Pelagic Ecosystem (LAPE) project. The project compiled new and published scientific

information needed to provide the scientific basis for recommendations towards

ecologically-sustainable development of the pelagic fisheries in the Lesser Antilles.

The project integrated information about fisheries, primary production, trophic
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relationships and other ecological factors using the Ecopath model (Christensen

et al., 2005) to estimate the flows of energy to, and within, the pelagic community.

At the base of this trophic model was the estimation of primary production for

the LAPE project study area. Primary production was computed on a synoptic

scale for the LAPE area from satellite chlorophyll data, in conjunction with field

measurements made during the LAPE project (Platt et al., 2008). Annual mean

primary production was quite low for the LAPE area, approximately 99 g C m−2

y−1 (Figure 4.5a). The highest primary production was found in the southern-most

areas, adjoining the coast of Venezuela and Trinidad. These areas have enriched

nutrient supplies driven by the outflows of the Orinoco and, to a lesser extent,

Amazon Rivers. Primary production increased in summer months and decreased

Figure 4.5 (a) Primary production map for May 2006 for the LAPE study area.
Parameters are heterogeneously assigned using the Nearest-Neighbour Method
(Platt et al., 2008). The sampling stations of the photosynthetic parameters are
superimposed. (b) Seasonal cycle of primary production (black), sea-surface tem-
perature (red) and chlorophyll-a concentration (green) estimated from remote
sensing in 2006.

in the winter, as a result of seasonal variation in chlorophyll concentration, solar

irradiance and both photosynthetic and biomass profile parameters (Figure 4.5b).

Seasonal variation in river outflows is also suspected to impact the annual pattern in

both chlorophyll concentration and primary production (Muller-Karger and Aparicio

Castro, 1994).

The LAPE is a relatively low productivity ecosystem and many of the important

commercial fisheries within it depend on species that migrate from other areas. Thus

a substantial fraction of the biomass available in the area is imported and derived

from primary production elsewhere. These species are also subject to fisheries in

the other parts of their ranges and effective management for these fisheries will

require inclusion of LAPE fisheries in the relevant international fisheries bodies e.g.

International Commission for Conservation of Atlantic Tunas.
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4.3 Marine Hazards

Because of the synoptic and frequent measurements, satellite remote sensing in the

visible provides effective means to monitor marine hazards such as harmful algal

blooms (HABs), oil spills, and turbidity events, which can all be serious threats to

marine ecosystems. Since these hazards often (although not always) have unique

optical signals compared to their surrounding environment, they can be monitored

with remote sensing.

4.3.1 Harmful algal blooms

Harmful algal blooms (HABs) are blooms of toxin-producing algae that can have

negative impacts on humans, marine organisms or coastal economies. HAB events

can result in the closure of shellfish beds and beaches, extensive fish kills, death to

marine mammals and seabirds, and alteration of marine habitats (see Chapter 9 in

IOCCG, 2008, and Chapter 6, this volume, for examples). As a consequence, HAB

events adversely affect commercial and recreational fishing, tourism, and valued

habitats, creating a significant impact on local economies and the livelihood of

coastal residents. Advanced warning of HABs increases the options for managing

these events and minimizing their harmful impact on society.

Because of the large spatial scale and high frequency of observations needed

to assess bloom location and movements, ocean-colour satellite data are a key

component in HAB forecasting. ‘New’ blooms can be identified by a chlorophyll

anomaly method that accounts for the complex optical properties in coastal waters

that can confound some satellite chlorophyll algorithms (Stumpf et al., 2003; Tom-

linson, et al., 2004). For some coastal waters with high amounts of organic matter,

fluorescence data from the MODIS satellite has the potential for providing a better

estimate of the bloom extent (Hu et al., 2005). However, because persistent blooms

can escape detection, and not all high chlorophyll features are HABs, definitive

identification of a HAB generally requires in situ water sampling. Despite these limi-

tations, satellite ocean colour has proven an effective tool to monitor HABs, which is

done operationally in the U.S. by NOAA and in Europe by the Nansen Environmental

and Remote Sensing Centre

4.3.2 Oil spills

Synthetic Aperture Radar (SAR) data has been the most useful satellite sensor for

operational oil spill detection because of its wide coverage, high spatial resolution,

and its ability to measure both through clouds and at nighttime (Fingas and Brown,

1997; 2000; Liu et al., 2000; Brekke and Solberg, 2005). However, the temporal repeat

of SAR data is poor outside of the polar regions, and there is a narrow window of

sea states (winds of 1.5 to 6 m s−1) where the method is effective at detecting oil
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spills (Hu et al., 2003; Brekke and Solberg, 2005). Coarse spatial resolution, cloud

cover issues and the need for visible light have generally restricted the usefulness

of ocean-colour data for oil spill detection (Fingas and Brown, 1997, 2000; Hu et al.,

2003). However, recent work with the MODIS 250-m resolution imagery (MODIS has

two bands at 250 m resolution) has demonstrated the utility of medium-resolution

ocean-colour radiometry data to detect relatively large oil spill slicks in turbid

waters because of the near daily coverage (Hu et al., 2009). These MODIS bands were

designed for land applications, but they are very promising for coastal monitoring

applications since their high spatial resolution allows detection of such features in

the coastal ocean.

4.3.3 Turbidity events

Turbidity or sediment resuspension events, often caused by storms or high winds,

can be easily recognized from ocean-colour imagery because of the high backscat-

tering signals of the suspended sediments (Acker et al., 2004; Hu and Muller-Karger,

2007). For example, after the passage of Hurricane Dennis in July 2005, significant

sediment resuspension covered nearly the entire west Florida shelf. Such turbidity

events, followed by algal blooms resulting from elevated nutrients, can lead to

hypoxic conditions resulting in benthic mortality (Adjeroud et al., 2001). MODIS

250-m data have been used to estimate turbidity and sediment concentrations at

higher spatial resolution (Hu et al., 2004; Miller and McKee, 2004; Chen et al., 2007),

extending such applications to moderately sized estuaries.

4.4 Protected Species Research and Management

In the late 1980s, field programmes monitoring monk-seal pup survival, sea-bird

reproductive rates, and reef-fish densities in the northwestern Hawaiian Islands

indicated ecosystem changes had occurred. However, due to a lack of oceanographic

data at relevant space and time scales, it was difficult to construct comparable

environmental indicators, or envision how environmental variation might be coupled

with the higher trophic-level changes (Polovina et al., 1994). The launch of the

SeaWiFS ocean-colour sensor in 1997 allowed assessment of basin-wide biological

variability across the Pacific. From SeaWiFS imagery, it was shown that during

the winter, the boundary between the cool, high surface chlorophyll, vertically-

mixed water in the north and the warm, low surface chlorophyll, vertically stratified

subtropical water in the south (Polovina et al., 2001) was located at the northern

atolls of the Hawaiian Archipelago (Kure, Midway and Laysan Atolls). This boundary

has been termed the ‘transition zone chlorophyll front’ (TZCF) (Polovina et al., 2001).

In some years the TZCF remains north of these northern atolls throughout

the year, while in other years the TZCF shifts far enough south during the winter

to encompass these atolls with higher chlorophyll water. The ecosystem of the
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northern atolls is more productive when the TZCF is in a more southerly location

relative to its long term winter position, and vice versa. Specifically during a winter

when the TZCF was shifted south of its average position, monk seal pup survival 2

years later increased (Baker et al., 2007). The 2-year time lag probably represents

the time needed for enhanced primary productivity to propagate up the food web

to monk seal pup prey. Should management action, such as a head start program,

be developed to improve pup survival, a 2-year forecast based on satellite ocean

colour can be used to predict the years when low survival is likely and hence when

management intervention is needed.

4.4.1 TurtleWatch, a tool to reduce turtle bycatch in the longline fishery

A pelagic longline fishery based in Hawaii occasionally catches several species

of sea turtles, with the threatened loggerhead sea turtle (Caretta caretta) histori-

cally accounting for the majority of the turtle bycatch. Since 1997, Argos-linked

transmitters have been attached to loggerhead sea turtles caught and released by

longline vessels (Polovina et al., 2000) to characterize migration and forage areas

of loggerheads, with the ultimate aim of spatially separating the fishery from the

loggerheads. In recent years the number of tracked turtles has been augmented by

releasing hatchery-reared loggerheads provided by the Port of Nagoya Aquarium,

Nagoya, Japan. To characterize turtle habitat it is necessary to place the tracks

Figure 4.6 Seasonal climatological habitat map for pelagic loggerhead sea
turtles in the north Pacific based on Pathfinder SST, SeaWiFS chlorophyll and 3
magnetic variables. Blue areas represent a high probability of finding loggerhead
sea turtles. Modified from Kobayashi et al. (2008).

within an environmental context. Satellite SST, ocean colour, altimetry, and wind

data have all been important in defining the oceanographic habitat of turtles within

the north Pacific (Polovina et al., 2000; 2004; 2006; Kobayashi et al., 2008), allowing
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determination of seasonal habitat maps (Figure 4.6).

It is now possible to predict the areas with a high probability of loggerhead and

longline interactions, by combining information on loggerhead habitat accrued from

analyzing turtle track data, environmental satellite data, and fisheries and fisheries

bycatch data (Howell et al., 2008). In 2006, NOAA released an experimental product

called TurtleWatch (see Howell et al., 2008 and www.pifsc.noaa.gov/eod/turtlewatch.

php), which uses satellite oceanographic data to map, in near-real time, areas with a

high probability of loggerhead and longline interactions, so that fishers can avoid

them.

Figure 4.7 The TurtleWatch product. SST represented as a colour background,
geostrophic currents estimated from satellite altimetry shown as black arrows,
and the zone with the highest probability of bycatch of loggerhead sea turtles
is shown in brown (defined as the area between 63.5◦F and 65.5◦F). Longline
fisheries should be restricted from these areas to lower bycatch rates.

This information benefits both the turtles and the fishers, who operate under

strict limits on the number of turtle interactions allowed. The area of the highest

probability of loggerhead bycatch, hence the area the fishers should avoid, represents

the area between the 63.5 and 65.5◦F isotherms (Figure 4.7). The TurtleWatch tool

is generated and distributed daily in near-real time since the zone with the high

probability of loggerhead bycatch is a temporally-dynamic feature. The TurtleWatch

product is also provided to fishers onboard, via the GeoEye commercial fisheries

information system.

4.4.2 Right whale forecasts

With fewer than 400 individuals left, the north Atlantic right whale (Eubalaena

glacialis) is one of the most endangered whale populations (Kraus et al., 2005). This

population spends much of its time in U.S. and Canadian waters, with the winter

calving grounds off of Florida, Georgia, and South Carolina, and feeding grounds

in the Gulf of Maine. The recovery of this population is limited by high mortality,

especially due to ship strikes and entanglements in fishing gear. Because its habitat

www.pifsc.noaa.gov/eod/turtlewatch.php
www.pifsc.noaa.gov/eod/turtlewatch.php
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overlaps with lucrative fishing grounds and shipping lanes of major U.S. ports,

reducing mortality is politically and economically challenging (Kraus et al., 2005).

The current management strategy involves limiting adverse impacts by requiring

modifications to fishing gear or vessel speeds in regions and time periods when

whales are likely to be present. Thus, all management options require knowing

when and where whales are likely to be. The question is how to identify these likely

regions within a dynamic ocean environment?

A new approach to locating right whales combines synoptic information from

satellites with a model of the right whales’ main prey. Right whales feed on small

crustaceans called copepods, especially the large and abundant species Calanus

finmarchicus. High numbers of whales are typically found in regions of high copepod

concentrations (Pendleton et al., 2009). Many important rates in Calanus’s life cycle

can be estimated using satellite data. The time required for an egg to develop

into an adult is related to temperature, with shorter generation times in warmer

water. Chlorophyll, which is a proxy for phytoplankton, the main food of Calanus,

determines how quickly a female copepod can produce eggs. By combining the rate

information derived from satellite data with reconstructions of the ocean currents

from a computer model, estimated maps of Calanus abundance can be produced

and related to right whale distributions (Pershing et al., 2009a,b). An initial test of

this system forecasted that, due to the cold winter in 2008, the Calanus population

would be delayed, and that whales would arrive on their main spring feeding ground

east of Cape Cod three weeks later than normal. While a full analysis of the data

is underway, it appears that the whales arrived close to when the model predicted.

These forecasts are currently being expanded to include a wider area of space and

time and will soon be able to incorporate observations of both copepods and whales.

4.5 Concluding Remarks

Given that many of the capabilities of ocean-colour data are still being actively

researched, much of this potential has yet to be incorporated in an operational way

into fisheries management. For example the ability to assess phytoplankton size,

functional type and physiology from ocean-colour data is a relatively recent develop-

ment in remote sensing, and many of the methods are yet to be validated extensively.

However, satellite ocean-colour data has been instrumental in documenting how the

recruitment mechanism can transfer phytoplankton fluctuations up the food chain

to higher trophic levels (Platt et al., 2003; Friedland et al., 2008; and Chapter 3 of this

volume). These observations serve as key examples of how phytoplankton variability

is a crucial component of the pelagic ecosystem, and a measure of its temporal

and spatial variability should be incorporated into ecosystem-based management

(Watson et al., 2003; Levin et al., 2009).
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