
SWFSC CTC Final Report
Algorithms and Software for

Parentage-based tagging

FINAL REPORT SUBMITTED TO:

Pacific Salmon Commission’s Chinook Technical Committee (US Section) for
Funding under the Letter of Agreement (LOA)

12 MARCH 2010

PROJECT TITLE:

Computational algorithms and user-friendly software for
parentage-based tagging of Pacific salmonids

PRINCIPAL INVESTIGATOR:

Eric C. Anderson
Fisheries Ecology Division

Southwest Fisheries Science Center
110 Shaffer Road

Santa Cruz, CA 94920-1211

FOR WORK ORIGINALLY PROPOSED FOR THE PERIOD:

1 June 2008 through 31 May 2009

1



Contents

Reiteration of Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Statistical and Computational Advances 6

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Data, notational conventions, and preliminaries . . . . . . . . . . . . . . . . . . . . . 8

Overview of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Forward-backwards algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Simulation assessment of p-value for a single kid i . . . . . . . . . . . . . . . . . . . . 18

Using p-values in the False Discovery Rate procedure . . . . . . . . . . . . . . . . . . 19

Treatment of missing data and extension to multiple populations . . . . . . . . . . . 20

II Software Description and Documentation 21

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Input File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Basic genotype data file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2



SWFSC CTC Final Report
Algorithms and Software for

Parentage-based tagging

Optional columns in the data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Specifying π via spawner population sizes in the data set . . . . . . . . . . . . . . . 27

Running snppit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Running Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Example Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Understanding the Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Output to the screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III Hatchery and Fishery Simulations 34

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Simulated Hatcheries and Allele Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Genetic Simulation Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chinook Demography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Simulated Hatchery Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Spawning, Fishery, and Genetic Sampling . . . . . . . . . . . . . . . . . . . . . . . . 38

Analysis With snppit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Number of Sampled Fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Accuracy of Parentage Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3



SWFSC CTC Final Report
Algorithms and Software for

Parentage-based tagging

REITERATION OF OBJECTIVES

The 1985 Pacific Salmon Treaty (PST) mandates that salmon fishery management should provide an
appropriate allocation of harvest to the United States and Canada and should prevent overfishing
and encourage rebuilding of Pacific salmon stocks. These are difficult management challenges
because most salmon harvest occurs in the ocean where fish from different stocks are intermingled.
For the last 30 years, the primary tool for distinguishing fish from different stocks, and for estimating
stock-, age-, and fishery-specific harvest and mortality rates, has been the coded wire tag (CWT).
These tiny tags are implanted in a known fraction of juvenile fish produced in various rivers and
hatcheries. When those fish are caught, the code on the tag may be read under a microscope
to reveal the age of the fish, the location of its origin, and possibly the group with which it was
released from a hatchery. Data from this massive effort are used to parameterize simulation models
that guide seasonal fishery management decisions. While CWTs have been instrumental in the
implementation of the PST, the CWT program currently faces great challenges, most notably from
federal and state laws requiring mass-marking of hatchery-produced salmon. Since mass-marking
will make the recovery of CWTs from fisheries and terminal escapements more difficult and costly,
the Pacific Salmon Commission (PSC) has been investigating alternatives to CWTs and ways to
complement the CWT program.

Genetic methods have been used for salmon management since the 1980’s, and emerging genetic
technologies hold great promise. Genetic Stock Identification (GSI), first with protein polymor-
phisms, and now with microsatellites and single nucleotide polymorphisms (SNPs), can yield reliable
estimates of the proportion of fish from different stocks or “reporting groups” in mixed stock fish-
eries. However, GSI cannot provide the data on age and release group that is required for today’s
fisheries management models. Only a single genetic method has been proposed that could supply
age and release group data like CWTs: the method of Parentage Based Tagging (PBT—formerly
called Full Parental Genotyping) proposed by Anderson and Garza (see Hankin et al., 2005, pp. 79–
90). The PBT method involves genotyping hatchery broodstock with SNPs and recording their
genotypes in a data base of parents. Genotypes taken from fishery samples can be compared to this
data base, and, if the parents of the fishery sample are found, this provides the age and hatchery
of origin of the fishery sample, and can also be used to determine the release group. The feasibility
of parentage inference on such a large scale was demonstrated in Anderson & Garza (2006), and
there are now numerous federal and state labs pursuing, or proposing, projects to validate the PBT
concept and demonstrate its use. However, there is currently no software capable of efficiently
analyzing the data from these projects.

In this study, I built on the mathematical methods introduced in Anderson & Garza (2006) to
develop a software package capable of the large scale, likelihood-based, parentage inference re-
quired to make SNP-based PBT both feasible and economical. This software provides important
savings in genotyping costs for all PBT studies. Previously available parentage methods based on
likelihood methods were unable to handle such large problems and the simpler methods, based
on Mendelian incompatibilities, though possibly applicable to large scale parentage inference could
require up to 45% more SNP markers to achieve the same power as a likelihood-based analysis (An-
derson & Garza, 2006). Thus, our software implementing likelihood-based parentage could save
roughly $40,000 to $150,000 in genotyping costs, per study, depending on the number of individuals
genotyped.
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In this study we accomplished the following:

1. Developed a software program optimized to rapidly search for feasible parent-offspring trios in
a large, parent data base, and then developed (and implemented in software) the mathematical
machinery to compute the likelihood for those trios, conditional on their being feasible under
the terms of the rapid search. These conditional distributions were then used to compute
p-values for individuals parent-offspring trio assignments, and these were used in a False
Discovery Rate framework that allows control of the Type I error rate, even in the absence
of prior knowledge about the fraction of sampled parents.

2. Extended the method and software to handle missing data (a ubiquitous feature of real data
that isn’t well accounted for in any existing methods) and to simultaneously handle multiple
hatchery populations with different allele frequencies at the SNPs under study. This ensures
that the software will be scalable to PBT on a very large (i.e., coastwide) scale.

3. Developed methods to sharpen parentage inferences in the face of related individuals occurring
in the parent database. This was done by incorporating a prior on the expected fraction of
different relationship categories.

4. Rigorously tested the methods and software developed, and applied the software to PBT
simulations at a California-coastwide scale using allele frequencies estimated from 96 SNPs
developed at the SWFSC lab.

5. Compiled the program for both Mac OS X and Windows operating systems. The software
and its source code are freely available from
http://swfsc.noaa.gov//staff.aspx?Division=FED&id=740.

OVERVIEW

The following report is divided into three parts. The first is the technical, mathematical description
of the method. The second describes the software implementation and documents how to use the
software. The third part describes the large set of simulations using the software which verify that
it can handle very large data sets and that it provides good results.
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INTRODUCTION

Likelihood-based pedigree reconstruction methods are increasingly used in studies of natural pop-
ulations (Pemberton, 2008). The scale of these studies is growing as molecular ecologists adopt
new and more efficient genotyping technologies from the fields of human and medical genetics. In
particular, the recent development of single nucleotide polymorphism (SNP) markers in non-model
organisms has enabled the rapid genotyping of many thousands of individuals in commercially
important species such as Pacific salmon (Elfstrom et al., 2006), Atlantic salmon (Hayes et al.,
2007), beef cattle (Heaton et al., 2002), and pigs (Fahrenkrug et al., 2002). This capacity makes it
possible to reconstruct pedigree relationships with genetic data from amongst tens of thousands of
candidate parents (Anderson & Garza, 2006) and is revolutionizing the management of livestock
operations and hatchery-propagated fish populations. It is only a matter of time before similar
genotyping capacity is realized in many other species; however, the likelihood-based methods in
use today were not designed for parentage inference on a very large scale, and many are not com-
putationally efficient enough to handle large quantities of data. This paper introduces a number of
novel statistical and computational approaches to likelihood-based parentage inference with SNPs
that improve upon currently-available methods and that are efficient enough to allow the rapid and
accurate calculation of statistical confidence for individual parentage assignments, even when the
number of candidate parents is very large.

Thompson (1976b) introduced likelihood methods for pedigree reconstruction in human popula-
tions. These methods were first adapted and applied to nonhuman populations in Meagher &
Thompson (1987). This approach to pedigree reconstruction employs the log-odds (LOD)—the log
of the probability of the offspring and putative-parent genotypes under the hypothesis of parentage
divided by the probability under the hypothesis that the offspring is unrelated to the putative
parent(s)—and focuses on parentage inference in two steps: 1) the identification of parent-offspring
pairs, then 2) the identification of parent-pair + offspring trios from amongst the putative parent-
offspring pairs having high LODs. Meagher & Thompson (1986) showed that conducting step 2
using only high-LOD parent-offspring pairs is statistically justifiable, and Thompson & Meagher
(1987) investigated approaches to mitigate the fact, noted by Thompson (1976a), that a full sibling
of the offspring, when not excluded from parentage on the basis of Mendelian incompatibility, gives
a higher LOD score on average than the true parent. This work did not, however, describe a means
for estimating the statistical confidence in individual parentage assignments.

Marshall et al. (1998) extended the likelihood-based approaches of Meagher & Thompson (1987)
by allowing for genotyping error, and by developing a Monte Carlo scheme to estimate statistical
confidence in parentage assignments. The method and its revisions (Kalinowski et al., 2007),
implemented in the user-friendly software program cervus, have been instrumental in advancing
the practice of likelihood-based parentage, and, as the de facto standard method of parentage
inference amongst molecular biologists, cervus has been used in hundreds of natural population
studies. Nonetheless, the statistical approaches implemented within cervus, and in most other
related, likelihood-based and Bayesian methods, (e.g., Neff et al., 2001; Duchesne et al., 2002;
Cercueil et al., 2002; Hadfield et al., 2006) could be improved in several ways. Here we develop
methods that allow the following four improvements, which we enumerate below to allow referencing
them later in the paper.

7



SWFSC CTC Final Report
Algorithms and Software for

Parentage-based tagging

1. The LOD scores computed by cervus are identical whether or not there is any prior prob-
ability that the sample includes putative parents that are related in some way to the true
parents or to the offspring. It would be preferable to include, as suggested by Thompson &
Meagher (1987), terms in the LOD for the possibility of related but nonparental individuals
amongst the putative parents.

2. Statistical significance of individual parentage assignments are assessed by comparing the
observed LOD of the trio with the simulated distribution of LODs expected marginally for
a trio drawn randomly from a population with similar allele frequencies, rates of missing
data, and rates of occurrence of related individuals; however, the genotype of each individual
offspring is held constant when comparing it to multiple possible parents, so that the relevant
null distribution is the distribution of trio LODs conditioned on the offspring genotype.

3. The significance values computed by cervus are posterior predictive values and, as such,
require that the user specify, as a prior probability, the fraction of possible parents in the
population that are included in the genetic sample. While this fraction may be known in
some closed study populations, in others it might not be known at all. For such cases, we
explore the adaptive control of the false discovery rate (Benjamini & Hochberg, 1995, 2000)
as an alternative.

4. Finally, as the scale of the parentage inference problem grows (more putative parents and more
offspring) the simulation procedure in cervus requires a very large amount of time, making
it unattractive to apply to large scale problems in Pacific salmon fisheries management. Our
methods reduce running times by orders of magnitude.

Improvements 1 and 3 require only minor adjustments to existing methods. Improvements 2 and 4
require more novel methods. We develop an approach based upon the simulation of distributions
of LODs conditioned on a maximum number of Mendelian incompatibilities in a trio. This is made
efficient by adopting methods from the analysis of hidden Markov chains (Baum et al., 1970). Such
an approach is computationally feasible for SNP markers, and we focus upon SNPs entirely in this
paper.

In the following section we define notation and describe the statistical method. Subsequently we
evaluate the method using simulated data.

METHODS

Data, notational conventions, and preliminaries

We assume that individuals in the study are diploids with genetic data at L independently seg-
regating SNP loci. At each locus ` there are two alleles: one labeled 0 and having frequency q`
in the population under study and the other labeled 1 and having the frequency p` = 1 − q`. At
each locus the genotype g of an individual is the number of 1 alleles it carries (i.e., g = 0, 1, or
2), or, if the individual was not successfully genotyped at the locus, g = •. We have a list O of
offspring individuals whose parents we wish to infer from amongst a collection of possible fathers
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(S for “sires”) and mothers (D for “dams”). There may be individuals in O whose parents are
not in S or D . Our goal is to infer, for every individual i in O the pair of i’s parents, if present in
both S and D . In our application, we are not interested, for example, in inferring only the father
when the mother is not in D because in fish hatcheries one can ensure that the mates of every
female included in D are in S , and vice-versa. There might additionally be information about the
possible matings (C for “crosses”) between the members of S and D and there may be additional
data, collectively H , such as age information that can be used to exclude certain individuals from
parentage.

Being interested in inferring parent pairs by likelihood, a basic unit whose probability is of interest
is the trio of putative youth, father, and mother. At the `th locus the genotype of such a trio is the
triplet (gkid

` , gpa
` , gma

` ) which we will denote by a`, the values of which we will write without commas
(e.g., a` = 000 or a` = 10•). Note that the superscript kid, pa, and ma refer to the putative youth,
putative father and putative mother, respectively. When all individuals are successfully genotyped
the 27 possible states of a` are the set A = {000, 001, 002, 010, . . . , 221, 222}. When as many as
three individuals in the trio can have missing data at the locus the 64 possible states are the set
A • = {000, 001, 002, 00•, 010, . . . , ••2, •••}. For values of a` ∈ A the probability of a` depends on
the allele frequency p`, the genotyping error rate at the locus µ`, and the true relationship r of the
members of the trio. We denote this probability P (a`|r) taking the dependence on p` and µ` as
always implicit. These probabilities are easily computed for any possible model of genotyping error
and any r by simply summing over the genotypes of any relevant but unobserved individuals in
the pedigree describing r and over the unobserved true genotypic states underlying the observed,
possibly erroneous genotypes. Details can be found in the appendix of Anderson & Garza (2006).
We will make use of P (a`|r, gkid), the conditional probability of a` given r and the genotype of the
kid in the trio. This probability is proportional to P (a`|r) for all states a` consistent with gkid

and 0 otherwise, so is also computed easily. Over L independently-segregating loci which are not
in linkage disequilibrium in the population, the probability of a = (a1, . . . , aL) given r is simply a
product, P (a|r) =

∏L
`=1 P (a`|r). Again, the dependence on µ = (µ1, . . . , µL) and p = (p1, . . . , pL)

may be omitted in the notation, but is implicit.

We assume that the data missing at any member of a trio are missing at random and do not attempt
to model the missing data. Instead, the missing data are merely omitted, and hence the probability
of the observed data at a locus given missing data at some members of the trio is computed by
summing the values of P (a`|r) for a` ∈ A over the unobserved members. For example, we define

P (a` = 1•2|r) =
2∑

k=0

P (gkid = 1, gpa = k, gma = 2|r)

and the extensions to data missing at other members (or at more members) of the trio or to
conditioning on gkid are obvious.

A cornerstone of our method involves excluding parent-offspring pairs and trios on the basis of
Mendelian incompatibility and then conducting Monte Carlo simulation of LODs conditional on
the fact that trios were not excluded by such a screening. We introduce some notation to describe
that here. We let v(a`) be a vector of three binary components whose values indicate the manner
in which the observed genotypes of a trio are, or are not, compatible with Mendelian inheritance
between a mother, father, and offspring. v(a`) always depends on a` and so the a` may sometimes
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Table 1: Patterns of Mendelian incompatibility v with corresponding trio genotype states a`.

v a` ∈ A Additional a` ∈ A •

(0, 0, 0) 000 001 010 00• 01• 0•0 0•1 0•• 10•
011 101 102 11• 12• 1•0 1•1 1•2 1••
110 111 112 21• 22• 2•1 2•2 2•• •00
120 121 211 •01 •02 •0• •10 •11 •12
212 221 222 •1• •20 •21 •22 •2• ••0

••1 ••2 •••

(0, 0, 1) 100 122

(0, 1, 1) 002 012 210 0•2 2•0
220

(1, 0, 1) 020 021 201 02• 20•
202

(1, 1, 1) 022 200

be dropped from the notation. The first element of v is 1 if pa and kid are Mendelian-incompatible
and 0 otherwise; the second element of v is 1 if ma and kid are incompatible and 0 otherwise; the
third element of v is 1 if either pa or ma are incompatible, considered alone, with kid, or, when
taken together, pa and ma are not compatible as a pair of parents for kid. Values of v are written
with commas like v = (1, 0, 1). An individual with missing data at a locus is deemed to provide no
evidence that can be used to declare Mendelian incompatibility. There are 5 possible values of v,
each one corresponding to a subset of A and A • as summarized in Table 1.

The probability that v at locus ` takes a values v∗ is computed by a sum over genotype states a`:

P (v(a`) = v∗|r) =
∑

a′:v(a′`)=v∗

P (a′`|r).

The same holds when conditioning on gkid:

P (v(a`) = v∗|r, gkid) =
∑

a′:v(a′`)=v∗

P (a′`|r, gkid).

We also develop notation to express the cumulative number of Mendelian incompatibilities observed
at the first k SNP loci in a trio having genotypes a. This is v(k)(a) =

∑k
`=1 v(a`), and may be

written simply as v(k). The components of this vector are written as v(k)
1 , v(k)

2 , and v
(k)
3 , and if

we write v(k) ≤ v∗(k) it means that v(k)
1 ≤ v

∗(k)
1 , v(k)

2 ≤ v
∗(k)
2 , and v

(k)
3 ≤ v

∗(k)
3 . The analogous

convention holds if we write v(k) ≥ v∗(k).
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In many parentage applications, the log likelihood ratio or LOD, Λ(a) = log[P (a|QQ)/P (a|UU)]
is employed to compare candidate parents of an individual. Here QQ denotes the hypothesis
that pa and ma are the true parents of kid and UU denotes the hypothesis that pa and ma are
completely unrelated to kid. This statistic is most appropriate when all trios in the sample are
either QQ or UU , which will seldom be the case because many individuals in a finite population
will be related to some degree. In such cases a preferable test statistic will be the posterior
probability of parentage for a trio, as suggested by Thompson & Meagher (1987). Denoting by
R the set of relationships amongst a trio that will be considered, and assuming that a prior
probability πr is available for all r ∈ R and

∑
r∈R πr = 1, the posterior probability of parentage

is P (QQ|a,π) = πQQP (a|QQ)/[
∑

r∈R πrP (a|r)]. In fish hatchery applications, there is typically
enough information on sizes of spawning populations in the past, that a reasonable estimate of
π = (πr)r∈R can be made. A recursive method for doing so in populations semelparous organsims
with overlapping age structure, like salmon, was developed, but will not be described here.

In the populations that we study, we determined by simulation that there are 18 trio relationship
categories which, given their expected chances of occurrence and their probability of being mistaken
for a parental trio, should be included in R. In populations with different demographic structure it
may be beneficial to include more or fewer trio relationships in R. In all 18 of these categories, the
individuals are assumed to be noninbred, so we do not consider categories in which, for example,
a candidate father is both a sibling and the true father of the putative offspring; however, such
trio categories could be accommodated without great difficulty. The first nine trio relationship
categories involve situations in which ma or pa share a unilineal relationship to a noninbred kid
through the true parents. Following Anderson & Garza (2006) these are the C-type relationships
all of which may be denoted by Cpa

ma where pa and ma are placeholders for the relationship (Se
for self, Si for full sibling, U for unrelated) between pa and a true parent and ma and the other
true parent, respectively. For example, the QQ relationship is CSe

Se and the U relationship is CU
U,

and we will refer to them as such for the remainder of the paper. The next eight trio relationship
categories that we consider are those in which exactly one of ma or pa is related as a full sibling or
as a half sibling with kid and the other candidate parent is related unilineally to the true parents
of kid through a relationship (Se, Si, or U) with one of the true parents. We denote these trio
relationships by F (for full sibling) or H (for half sibling) adorned with a superscript or subscript
Se, Si, or U, if the candidate that does not have the full- or half-sibling relationship with kid is pa
or ma, respectively. For example, FSi indicates that pa is the full sibling of kid and ma is the full
sibling of the true mother (or the true father), and HU indicates that ma is a half-sibling of kid and
pa is unrelated to either of the true parents. The final trio relationship that we consider is FF—both
pa and ma are full siblings of kid. Some of these 18 relationship categories may contain up to two
underlying pedigree relationships owing to the fact that, in some cases, the candidate parents may
be related to the true parents of like or opposite sex. This distinction becomes important when
predicting π recursively. The 18 categories and the 22 states underlying them are enumerated and
described in Table 2.

Using the notation for relationships above, our test statistic for assessing confidence in an assign-
ment of parentage of a kid to a pa and ma having trio genotypes of a is the probability:

P (CSe
Se|a) =

πCSe
Se
P (a|CSe

Se)∑
r∈R πrP (a|r) . (1)
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Table 2: Relationship categories in R and the relationships underlying them. In the Type column,
the subscript refers to the putative female parent and the subscript refers to the putative male
parent.

PFR idx Type 〈pa, s〉 〈pa, d〉 〈ma,d〉 〈ma, s〉 〈〈pa, kid〉〉 〈〈ma, kid〉〉 Flat Text Name

0 CSe
Se Se U Se U – – C Se Se

1 CSe
Si Se U Si U – – C Se Si

2 CSi
Se Si U Se U – – C Si Se

3 CSe
U Se U U U – – C Se U

4 CU
Se U U Se U – – C U Se

5 CSi
Si Si U Si U – – C Si Si

5 CSi
Si U Si U Si – – C Si Si

6 CSi
U Si U U U – – C Si U

6 CSi
U U Si U U – – C Si U

7 CU
Si U U Si U – – C U Si

7 CU
Si U U U Si – – C U Si

8 CU
U U U U U – – C U U

9 FSe Se – – – – F Se F

10 FSe – – Se – F – F Se

11 HSe – – Se – H – H Se

12 HSe Se – – – – H Se H

13 FSi – – – Si F – F Si

13 FSi – – Si – F – F Si

14 FSi – Si – – – F Si F

14 FSi Si – – – – F Si F

15 FU – – U U F – F U

16 FU U U – – – F U F

17 FF – – – – F F F F
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This form is convenient and familiar. It is also functionally equivalent to using a LOD or a likelihood
ratio criterion for an alternative hypothesis of parental relationship (CSe

Se) versus a null hypothesis
of “non-parental” relationship (i.e., {R\CSe

Se}—the set R excluding CSe
Se). This equivalence follows

from the fact that (1) is monotonically increasing with the likelihood ratio

P (a|CSe
Se)∑

r∈{R\CSe
Se}

(πr/πCSe
Se

)P (a|r) .

Overview of the method

Here we give an overview of our method, providing further detail on certain aspects and calculations
in subsequent sections. The main steps are as follows:

1. Data are read in and values of parameters are initialized:

• The genotypes of the individuals in S and D are used together to make an estimate of
p` for each locus by the posterior mean given a Beta(1

2 ,
1
2) prior and the data in S and

D . This estimate is taken to be the value p` used in all probability calculations in the
preceding and following sections.

• Values of µ`, ` = 1, . . . , L, are assumed known from other sources of data, experiments,
or prior beliefs.

• Values of π are estimated from demographic data and from assumptions or estimates
of variance in reproductive success. These estimates of π are used in the method as if
known without error.

2. A value of v(L), denoted v(L)max, is chosen such that, given µ and p there is only a small
probability, βMI, that a truly parental trio will have a v(L) with any of its three components
exceeding the corresponding component of v(L)max. That is:

1− βMI =
∑

a`∈A , `=1,...,L

I{v(L)(a) ≤ v(L)max}P (a|CSe
Se) (2)

where I{x} is the indicator function returning 1 if x is true and 0 otherwise. The superscript
MI stands for “Mendelian Incompatibility.” βMI is the rate at which truly parental trios will
not be identified in our parentage inference exercise due to the fact that they have too many
Mendelian incompatibilities. In practice, we use values of βMI on the order of 0.001. The
sum in (2) is calculated efficiently via a recursion which is the forward step of the forward-
backwards algorithm described later.

3. Each individual i in O is compared against every male in S that is a potential father of i
according to H , and a list Pas(i) is maintained of those potential fathers j having no more
than v(L)max

1 Mendelian incompatibilities with i. Likewise, each i is compared to every female
in D that qualifies as a potential mother of i according to H , and a list Mas(i) is made of
potential mothers k having no more than v

(L)max
2 Mendelian incompatibilities with i.
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4. The genotype of each i in O is compared to every pair (j, k) of j ∈ Pas(i) and k ∈ Mas(i) such
that j and k are a possible mated pair according to C , and a list Pairs(i) is maintained of
all parent pairs such that the trio they form with i has v(L) ≤ v(L)max. Let N (i) denote the
number of elements in Pairs(i), and take the elements of Pairs(i) to be sorted by the largest
to smallest value of P (CSe

Se|a,π). Thus, Pairs(i)
1 is the pair of potential parents with highest

posterior probability of parentage to offspring i.

5. The pair Pairs(i)
1 is assigned parentage to i, and the statistical confidence in that assignment is

assessed by comparison to a “null” distribution approximated via Monte Carlo by simulating
for M replicates N (i) pairs of non-parental genotypes drawn conditional on π and the fact
that they must have no more than v(L)max incompatibilities with i, and recording for each
of the M replicates the highest values of P (CSe

Se|a,π) amongst the N (i) simulated values.
This simulation, described fully in Section I, makes extensive use of the forward-backwards
algorithm.

6. Interpreting the statistical confidence computed in step 5 as p-values, we then use them to
control the false discovery rate (Benjamini & Hochberg, 1995). Even when an estimate of the
fraction of sampled parents is not available, use of the adaptive procedure of Benjamini &
Hochberg (2000) can provide a reasonable estimate of the fraction of Pairsi observed that are
true parent pairs, and this allows for more powerful control of the rate of incorrect parentage
assignments.

Like most methods for inferring parent pairs, we first identify individual males and females with
a good chance of being parents, and then we restrict our attention to the pairs formed from that
small group of males and females. However, instead of using both Mendelian incompatibility and
the parent-offspring LOD to initially screen individual males and females (as done in Meagher &
Thompson 1987), we screen candidate males and females solely on the basis of the number of loci
with Mendelian incompatibilities. At first this may seem disadvantageous compared to using LODs,
however, it allows the assessment of statistical significance of individual parentage assignments by
performing simulations while conditioning on the fact that only N (i) pairs had sufficiently few
Mendelian incompatibilities to be included in Pairs(i). By contrast, it is not clear how one could
efficiently simulate genotypes while conditioning on the LOD exceeding a certain amount.

Typically N (i) is substantially smaller than the number of candidate males or females in the study,
so, each Monte Carlo replicate from the null distribution requires simulating the genotypes of only
N (i) pairs. In large studies this becomes quite important. For example, if there are 104 candidate
males and 104 candidate females, but N (i) is only 10, then each Monte Carlo replicate requires only
10 realizations of genotype pairs. Contrast this with the standard simulation routine of cervus:
each Monte Carlo replicate requires simulating 104 male and 104 female genotypes, each of those
genotypes must be compared to a single offspring genotype, then all 104 males and females must
be sorted, and finally some number of simulated male-female pairs are compared to an individual
offspring genotype.

In the following section we show how to simulate a pair of genotypes conditional on r and v(L)(a) ≤
v(L)max.
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Table 3: Some notation used in the paper

g` genotype at locus `: the number of “1” alleles, or • if missing.
p` the relative frequency of the “1” allele at locus ` in the population.
q` relative frequency of the “0” allele at locus `. q` = 1− p`.
O list of offspring whose parents are to be inferred.
S list of possible fathers (sires).
D list of possible mothers (dams).
C information, if available, detailing which members of S and D could have

mated (crosses).
H other information, like age data, which, if available, could be used to exclude

some parents from parentage with particular offspring.
kid, pa, pa an offspring and a putative father and mother respectively.
a` genotypes at locus ` in a kid, pa, and ma: (gkid

` , gpa
` , gma

` ).
A the 27 possible states a` can take with no missing data.
A • the 64 possible states of a` when missing data is allowed.
µ` the rate of genotyping error at locus `.
L the total number of SNPs in the data set.
p, a, µ (a1, . . . , aL), (p1, . . . , pL), and (µ1, . . . , µL), respectively.
r generically, a relationship between a trio of kid, pa, and ma.
R the set of relationships r given positive prior probability.
πr the prior probability that a kid, pa, and ma drawn at random from the popu-

lation have relationship r.
v(a`) vector of three binary indicators describing patterns of Mendelian incompati-

bility in a kid-pa-ma trio at locus `. Sometimes denoted simply by v.
v(k)(a) cumulative number of Mendelian incompatibilities (of certain types) at loci 1

through k. Also denoted simply by v(k). v(k)(a) = v(k) =
∑k

`=1 v(a`). Has
three components: v(k) = (v(k)

1 , v
(k)
2 , v

(k)
3 )

v(k) ≤ v∗(k) shorthand for componentwise equality/inequality: v(k)
1 ≤ v

∗(k)
1 , v(k)

2 ≤ v
∗(k)
2 ,

and v
(k)
3 ≤ v∗(k)

3 .
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Forward-backwards algorithm

For convenience we define v(0) = (0, 0, 0). This definition merely says that, “Before looking at the
genetic data at any loci, there are zero Mendelian incompatibilities of any type.” It is apparent
that, conditional on r, µ, and p, the variables v(`), ` = 1, . . . , L, form a Markov chain. That is,

P (v(`)|v(0), . . . ,v(`−1)) = P (v(`)|v(`−1)) for ` = 1, . . . , L.

The joint distribution of a and all the v(`)’s respects the directed graph shown in Figure 1(a). The
arrows from each µ` and p` into each v(`) run in the reverse direction of a typical hidden Markov
chain, but the moralized undirected graph [Figure 1(b)] is easily recognized as having the same
undirected graphical structure as a simple hidden Markov chain, especially when collapsing each
v(`) and a`, and each µ` and p` into single (composite) variables, as in Figure 1(c). Therefore, we
can employ the familiar forward-backwards family of algorithms (Baum et al., 1970) to efficiently
compute the marginal probability of v(L) and to simulate values of a conditional on v(L)(a) ≤
v(L)max.

Let V (`)↓ denote the set of all vectors v(`) ≤ v(L)max that can be reached with non-zero probability.
Likewise, let V (`)↑ be the set of all vectors v(`) such that v(`) > v(L)max. We will use V to refer to
the five possible values of v (see Table 1). For the current discussion, we will assume that data are
not missing at any loci at any of the trio members (i.e., a` ∈ A ). We discuss treatment of missing
data in Section I. The probability that v(L) takes a certain value in V (L)↓ can be computed by the
forward step recursion:

P (v(`) = v∗|r) = ∑
v(`−1)∈V (`−1)↓

∑
v′∈V

P (v(`−1)|r)P (v(a`) = v′|r)I{v(`−1) + v′ = v(`)} (3)

for any value v∗ ∈ V (`)↓, for ` = 1, . . . , L. In practice this sum can be calculated for all values of
v∗ ∈ V (`)↓ by iterating over all the terms in the sum only once. Additionally, it is important to
note that, since v(`) ≥ v(`−1) for all `, there is zero probability of reaching any state in V (t)↓ from
any state in V (`)↑ for any t, `. Hence, so long as the elements of v(L)max are not large, the sums in
(3) can be evaluated quite rapidly.

This recursion is evaluated from ` = 1 to L, and the values of P (v(`) = v∗|r) are stored for
later use in the backward step. At the end of the forward step, one has obtained P (v(L) =
v∗|r) for v∗ ∈ V (L)↓. Summing these values yields the probability that a trio of relationship r,
given allele frequencies p and genotyping error rates µ, will have no more than v(L)max Mendelian
incompatbilities:

P (v(L) ≤ v(L)max|r) =
∑

v∗∈V (L)↓

P (v(L) = v∗|r). (4)

The conditional probability of each v(L), given that it is in V (L)↓ is found as follows:

P (v(L) = v∗|r,v∗ ∈ V (L)↓) =
P (v(L) = v∗|r)

P (v(L) ≤ v(L)max|r) . (5)

With (5) specified, we now proceed to the backward step.
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Figure 1: Graphical depictions of the dependence between trio genotypic states, (a1, . . . , aL), and
the vectors, v(`). Shaded nodes (µ` = mutation rate, p` = allele frequency) represent known or
fixed quantities to be conditioned upon; unshaded nodes represent variables that we wish to do
inference for or that we shall integrate over. The dependence on some trio relationship category
r is implicit. (a) The directed graph. (b) Moralized undirected graph. (c) With variables merged
into nodes representing several variables together, this more obviously has a hidden Markov chain
structure. (d) Conditioning on the offspring genotype is straightforward with the addition of nodes
g` for the offspring genotype.
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The goal of the backward step is to simulate a realization of a from its distribution given r, p, µ,
and conditional on v(L) ≤ v(L)max. This is done iteratively starting from ` = L and working back
to ` = 1. Before proceeding, we note that the conditional probability of the observed trio genotypes
given the pattern of Mendelian incompatibility is simple to calculate:

P (a` = a∗|r,v(a`) = v∗) =
P (a` = a∗|r)∑

a′:v(a′)=v∗ P (a` = a′|r) . (6)

The backward step commences by simulating a value of v∗(L) from P (v(L)|r,v∗ ∈ V (L)↓) and then
simulating the value a∗L from P (aL|r,v(aL) = v∗(L)). It proceeds by conducting two analogous
operations for each `, iteratively, from L− 1 to 1:

1. Simulate v∗(`) from a distribution proportional to:

P (v(`) = v∗(`)|r)P (v(a`+1) = v∗(`+1) − v∗(`)|r)
which is defined over all values of v∗(`) ≥ v(0) that may be obtained by subtracting some
v(a`+1) ∈ V from v∗(`+1).

2. Simulate a∗` from P (a`|r,v(a`) = v∗(`)).

At the end of this, a∗ = (a∗1, . . . , a
∗
L) is a realization from P (a|r,v(L)(a∗) ≤ v(L)max)—the distri-

bution of a conditional on having no more than v(L)max Mendelian incompatibilities.

As is evident in the graphical structure of Figure 1d, the forward-backward algorithm above extends
immediately to the case of conditioning both on r and gkid, rather than simply conditioning on r
alone. Thus, the meaning of expressions like P (v(L) ≤ v(L)max|r, gkid), and P (a|r, gkid,v

(L)(a∗) ≤
v(L)max) should be clear.

Simulation assessment of p-value for a single kid i

For a given kid, i, the ma and pa in Pairs(i)
1 are designated as the best candidates to be the true

parents. Let the P (CSe
Se|a) of this pair have the value P (1). If we declare ma and pa in Pairs(i)

1

the true parents, we risk making the (Type I) error of incorrectly rejecting the null hypothesis of
non-parentage, when, in fact Pairs(i)

1 are not the true parents of i. To assess this possibility, we
compute a Type I error rate or “p-value” associated with assigning parentage of each kid, i, to
Pairs(i)

1 . This p-value is the probability that a at least one non-parental pair of potential parents
has a value of P (CSe

Se|a) with kid i that exceeds P (1). In typical implementations of likelihood
based parentage (e.g. CERVUS) this probability is computed by repeatedly simulating genotypes
non-parental to kid i of all possible parent pairs in a simulated parent data base which is the same
size as the actual data base and recording whether P (CSe

Se|a) exceeds P (1) for any (simulated non-
parental) pair. This is computationally very demanding for large scale problems. In our approach,
because we can simulate genotypes for trios conditional on v(L)(a∗) ≤ v(L)max, we need only focus
on simulating a number of parent pairs equal to the number of pairs non excluded by Mendelian
incompatibility with kid i. The procedure for doing so is as follows
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1. Initialize variables.

• Initialize EXCEED = 0.

• Recall that N (i) is the number of possible parent pairs having fewer than v(L)max

Mendelian incompatibilities with kid.

2. Perform the forward step calculations.

• For each r ∈ R compute P (v(L) ≤ v(L)max|r, gkid i)

• Note that this is done conditioning on the offspring genotype.

3. Compute the expected fraction of different trio types conditional on them having fewer than
v(L)max Mendelian incompatibilities with kid i:

• This involves a simple reweighting of π. Writing these expected fractions as π∗r we have:

π∗r =
πrP (v(L) ≤ v(L)max|r, gkid i)∑

k∈R πkP (v(L) ≤ v(L)max|r = k, gkid i)

for all r in R.

4. Repeat the following steps REPS times:

• Repeat the following N (i) times:

– Simulate a relationship r∗ from π∗

– Using the backward algorithm, simulate the genotypes a∗ of a trio from the distri-
bution P (a|r∗, gkid i,v

(L)(a∗) ≤ v(L)max)
– Compute P (CSe

Se|a∗) (using π, not π∗) for this simulated genotype.

• If any of the N (i) values of P (CSe
Se|a∗) exceeded P (i), add 1 to EXCEED.

5. At the end, EXCEED/REPS is a Monte Carlo estimate of the Type I error for assigning kid i
to the ma and pa of Pairs(i).

Using p-values in the False Discovery Rate procedure

After computing p values as described above for every fish i in O, we use the False Discovery Rate
procedure (FDR) to control our rate of False Discoveries (i.e., the fraction of offspring assigned
to parent pairs that are assigned to nonparental pairs). Let m be the total number of offspring
with v(L) ≤ v(L)max for at least one pair of putative parents, and let m0 ≤ m be the number of
those offspring for whom pa and ma in Pairs(1) are not the true parental pair. Then, order these
m offspring from smallest to largest p-value, letting (i) denote the offspring with the i smallest
p-value, p(i). In their seminal paper, Benjamini & Hochberg (1995) showed that, in expectation, a
false discovery rate less than αfdr can be achieved by declaring parentage to offspring (1), . . . , (k),
where (k) is the largest value such that

p(i) <
i

m
αfdr.
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A more powerful approach is possible if the number m0 is known or can be estimated. Benjamini
& Hochberg (2000) provide an ad hoc, but general, graphically-inspired method for estimating m0

which is employed in our software. Armed with an estimate of m0 the FDR can be controlled by
assigning parentage to offspring (1), . . . , (k) where (k) is the largest value such that:

p(i) <
i

m0
αfdr.

The above expressions can be easily inverted to express the FDR as a function of p(i):

αfdr = p(i)m0

i
.

This quantity is reported in the output of the software, so users can choose their own FDR.

Treatment of missing data and extension to multiple populations

There are many ways in which missing data might be handled in the above procedures. We
have chosen a way that seems to give reasonable results without creating too much computational
overhead. First, as described above, we can easily compute the probability of a trio while taking
into account the missing data. For the forward step while assesssing p-values, however, we condition
only on the missing data in the offspring. This is done via a straightforward side effect of the fact
that we condition on the offspring genotype when doing the forward step for assessing p-values. In
the backward step, we incorporate the occurrence of missing data in the members of the Pairsi list
by taking the trio genotypes simulated by the jth iteration of the backward step for a particular
replicate and masking the simulated genotypes by the pattern of missing data in Pairs(j)

i . If there is
a lot of missing data in any individual, we find that the genotype calls in that individual are often
suspect so we have a missing data threshhold that the user may set in our software. If an individual
has more missing data than this threshold (set by default to be 10 SNPs) then it is discarded from
further consideration.

The extension to multiple populations of parents in the parent data base is also quite simple. If
it is unknown a priori which population a collection of offspring came from then each offspring in
that collection is compared to every parent from every population in the parent data base. Each
individual i is assigned to the population that Pairs(1)

i belongs to, and then the analysis proceeds
as before assuming that all N (i) pairs in Pairsi are from the same population as Pairs(1)

i , even if
they were not. The false discovery rates are then accordingly computed as FDRs for the individuals
non-excluded from a particular population.
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INTRODUCTION

The method described in the previous part is implemented in the program snppit which stands
for “SNP Program for Intergenerational Tagging. This software can be downloaded from:
http://swfsc.noaa.gov//staff.aspx?Division=FED&id=740
The distribution of the software includes executable programs for PC and MacOS as well as the
source code and compiling instructions. The distribution also includes this report.

This section of the report describes the use of the program, starting with a description of the input
file format, then documenting how to run the program and the execution options, finally concluding
with a description of the output files.

INPUT FILE FORMAT

snppit takes a single text-based file as input. This file includes the genotypes of the parents in
the data base and the offspring whose parentage is to be determined. It may also include several
keywords which describe additional columns of information which can be included in the file. There
may be multiple sets of possible parents (from different hatcheries, for example) and different sets
of offspring (samples from different fisheries, for example). snppit allows all those different sets of
parents and offspring to be read in from single file.

Basic genotype data file format

The basic format of the data file is that of genetics “two-column” format with a list of locus names
with estimated (or assumed) per-allele genotyping error rates at the top and some additional
keywords like a GENEPOP file. The following is a simple example with only two individuals in
each POP or OFFSPRING set.

NUMLOCI 4
MISSING_ALLELE -9
Locus1 0.003
Locus2 0.007
Locus3 0.005
Locus4 0.002
POP PopName1
FishA 101 102 104 105 102 102 101 101
FishB 102 102 104 104 102 103 101 100
POP PopName2
FishC 101 101 105 105 103 103 100 100
FishD 102 101 104 105 103 102 100 100
POP PopName3
FishE 101 102 104 104 102 103 100 101
FishF 102 102 104 105 103 103 101 101
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OFFSPRING OffSpringCollectionName1 ?
FishG 101 102 104 105 102 103 101 100
FishH 102 102 105 105 102 102 101 100
OFFSPRING OffSpringCollectionName2 PopName1,PopName2
FishI 101 102 104 104 102 103 101 101
FishJ 102 102 105 105 102 102 101 100
OFFSPRING OffSpringCollectionName3 PopName3
FishK 101 102 -9 -9 102 103 101 100
FishL 101 102 105 104 103 103 101 101

The basic required keywords are:

NUMLOCI This must be the first string in the file and must be followed by the number of SNPs
in the data set.

MISSING ALLELE This must be given before the names of the loci and has to be followed by
the string which is used to denote missing data. In this case that string is “-9”.

POP This signifies the beginning of a collection of individuals who should all be treated as coming
from a population with common allele frequencies. This might include individuals from the
same population in different years if there is little allele frequency change expected between
years. Following the POP signifier must be a single string (that includes no white space!)
that is the name given to this population of individuals. This name must be unique (i.e., it
cannot be shared with another population). Note that all of the POP’s must be given before
any OFFSPRING.

OFFSPRING This signifies the beginning of a collection of individuals who are all possible
offspring that are considered together as a group for some reason (perhaps they were all
sampled in the same location, or it is known that their parents must all be from a particular
population) and should be analyzed together as a single group of offspring. Following the
OFFSPRING keyword is the name of this collection of offspring. This name should be
unique. Following that there must be a single string with no white space in it that indicates
the population from which potential parents of the individuals in this offspring collection
might have descended. If these individuals could be the offspring of parents from any of the
populations, then a “?” is appropriate (as used for OffSpringCollectionName1). Otherwise,
the names of the populations that their parents could belong to should be given in a comma-
separated list (with no white space!). The given pop names must match one of the population
names given with a previously issued POP keyword.

Each row beneath a POP or an OFFSPRING keyword should be the genotype of an individual.
This row must start with an individual identifier which can be any string of (non-whitespace) letters
or numbers or text characters less than 100 characters in length. I recommend a word that includes
some non-numerical characters as this makes it easy for the program to test to make sure it is
scanning an individual identifier when it expects to be doing so. The identifier for any individual
should be unique.
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Following the individual identifier there may be a variable number of optional columns (described
in “Optional Columns” below). Following those extra columns there must be 2 × NUMLOCI
columns (delimited by any amount of white space) that give the genotypes. The type of each allele
must be described by an integer between 0 and 999. A useful convention has the nucleotide bases
assigned numbers in alphabetical order (A=1, C=2, G=3, T=4), but any integers between 0 and
999 inclusive will work. Missing data can be represented by any string or number (other than
keywords like POP). If there is one allele missing at a locus the other allele must also be considered
missing. If not, then the program will force the remaining allele to be missing and will issue a
warning to the user, but will not issue an error. To change the string that is used to describe
missing data, the MISSING ALLELE keyword can be used anywhere after the NUMLOCI X line
and the first locus name. For example, if the data file started like:

NUMLOCI 4
MISSING_ALLELE *
Locus1 0.002
Locus2 0.004
...

Then the string * would denote missing data at an allele. Note that regardless of what string you
use to denote missing data, that string must be given twice per locus, because there are two alleles
at each locus to denote as missing. Other good choices for MISSING ALLELE might be ? or NA,
etc. Whatever string is used to denote missing data must be used for missing data throughout the
data set.

The locus names can include any characters except for white space (but don’t be goofball and use
commas in the locus name, since that will make it difficult to parse some of the output!). Therefore,
please remove any spaces or tabs from your locus names before including them in the data set. The
genotyping error rates that follow the locus names are required. Often these genotyping error rates
will not be known with great certainty. However the experience in several labs suggests that with
SNPs in salmon the genotyping error rates are less than 1% per locus. This is a reasonable value to
use. snppit, however, expects the genotyping error rate to be entered in terms of a rate per gene
copy (or per allele). This is 1

2 the per-locus rate. Therefore a 1% per-locus rate is entered as 0.005
to snppit.

Optional columns in the data set

It will typically be useful to include additional data (like age data or spawning date data) for
each individual. For this we have a series of different keywords which may be issued anywhere
between the NUMLOCI X line and the first locus name which indicate the additional number of
optional columns that are expected between the individual identifier and the first allele column of
an individual. Since individuals in the OFFSPRING category will likely be endowed with different
types of data than individuals in the POP category, optional columns are specified separately for
each type of individual using the obviously named keywords below. The keywords which add
optional columns to the POP individual rows are:
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POPCOLUMN SEX This specifies a column for POP individuals that identifies the sex of the
individual. The possible values in the column are M for male or F for female (both uppercase),
or ? for individuals of unknown sex.

POPCOLUMN REPRO YEARS This specifies a column which gives the years in which an
individual produced offspring (or spawned or mated or could have produced offspring, etc.).
Values for this column are year ranges given in a format similar to that of the cut utility in
UNIX. For example, 1947,1953,1955-1960,1965 (note that there is no white space anywhere
in that sequence of numbers) indicates that the individual produced offspring (or spawned
or mated or could have produced offspring, etc.) in the years 1947, 1953, 1955 through
1960, inclusive, and 1965. Other examples include: 1946 or 1946-1953 or 1965,1966 or even
1965-1966 (the latter two signify the same years). When dealing with hatchery-spawned
chinook, typically there will only be a single year, of course; but the functionality for multiple
year spawners is included for steelhead and other organisms. Note that unlike the cut utility,
any numbers appearing in the above date range must be in ascending order. Otherwise the
program will exit with an error. If reproduction-year data are unknown for an individual,
then a ? can be put in this column and the individual will be assumed to be a possible parent
for an offspring of any age.

POPCOLUMN SPAWN GROUP This column is particularly useful for organisms like hatch-
ery salmon which might be spawned together in groups. The value of this column may be
any string up to 500 characters in length. It might, for example, indicate the date upon
which an individual was spawned. Examples of possible values are: “1”, or “1/27/04”, or
“1/27/04-Batch1”, etc. The only restriction is that it must be less than 500 characters in
length and it cannot include any white space. Any individuals within the same spawning
group, in the same population, and spawning in the same years, are considered to be possible
mates of any other individuals in the spawning group. If the spawning group of an individual
is not known, then a ? must be used. In this case, the individual will be considered to be a
possible mate of any other individual in the population who spawned in the same year as the
individual with a ? for his/her spawner group.

The optional extra columns for the OFFSPRING individuals are specified with these keywords:

OFFSPRINGCOLUMN BORN YEAR The value here is the year the individual was born if
known. This should be adjusted for season and gestation period in such a way that if a child
was born in 1955, then it could have been the offspring of a parent with a REPRO YEAR
of 1955. So, it is called BORN YEAR, but it really means “year in which it was conceived”
so that it corresponds directly to years given in the POPCOLUMN REPRO YEARS col-
umn. Note that if there is some uncertainty about the year an individual was born, this
can be captured by giving a range of years, in exactly the format described for POPCOL-
UMN REPRO YEARS.

OFFSPRINGCOLUMN SAMPLE YEAR The year the offspring was sampled. Values for
this column are just integers giving the year, or ?

OFFSPRINGCOLUMN AGE AT SAMPLING This is just the range of possible ages for
an individual given as for POPCOLUMN REPRO YEARS. Note that OFFSPRINGCOL-
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UMN SAMPLE YEAR and OFFSPRINGCOLUMN AGE AT SAMPLING only really make
sense when used together, and are just offered as a possibly more convenient way of expressing
the possible birth-year information of an offspring individual. If there is an OFFSPRING-
COLUMN BORN YEAR, then that column will be used to garner the data about the birth
year of the individual. Otherwise, the birth year of the individual will be computed from the
information in the OFFSPRINGCOLUMN AGE AT SAMPLING and OFFSPRINGCOL-
UMN SAMPLE YEAR columns. If only one of the OFFSPRINGCOLUMN AGE AT SAMPLING
and OFFSPRINGCOLUMN SAMPLE YEAR columns appear in the data set and there is
no OFFSPRINGCOLUMN BORN YEAR the program will print a warning that all offspring
individuals are assumed to have unknown birth years.

Finally, the order of the columns in the POP individual rows or the OFFSPRING individual rows
is given by the order in which the keywords are given between the NUMLOCI X line and the first
POP keyword.

Now, we could make our short sample data set look like

NUMLOCI 4
MISSING_ALLELE #
POPCOLUMN_SEX
POPCOLUMN_REPRO_YEARS
OFFSPRINGCOLUMN_BORN_YEAR
Locus1 0.003
Locus2 0.007
Locus3 0.005
Locus4 0.002
POP PopName1
FishA M 1950 101 102 104 105 102 102 101 101
FishB ? 1950 102 102 104 104 102 103 101 100
POP PopName2
FishC F ? 101 101 105 105 103 103 100 100
FishD M ? 102 101 104 105 103 102 100 100
FishD M ? 102 101 104 105 103 102 100 101
POP PopName3
FishE ? ? 101 102 104 104 102 103 100 101
FishF ? ? 102 102 104 105 103 103 101 101
OFFSPRING OffSpringCollectionName1 ?
FishG 1950 101 102 104 105 102 103 101 100
FishH 1950 102 102 105 105 102 102 101 100
OFFSPRING OffSpringCollectionName2 PopName1,PopName2
FishI 1950 101 102 104 104 102 103 101 101
FishJ 1950 102 102 105 105 102 102 101 100
OFFSPRING OffSpringCollectionName3 PopName3
FishK 1950 101 102 # # 102 103 101 100
FishL 1950 101 102 105 104 103 103 101 101
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Specifying π via spawner population sizes in the data set

The expected fraction of different trio relationship categories amongst randomly drawn trios from
a population is not easily computed. I have developed a recursive algorithm that does this for a
set of inputs that includes past spawning population sizes, the ratio of effective number of breeders
to the census number, the age distribution of spawners in each year, etc. This is a rather difficult
program to use, and, it appears that it is only important to get a reasonable “ballpark” estimate
of π. Therefore, for those conducting parentage in chinook salmon hatchery populations I have
developed a simpler method of obtaining the π parameter for the program. This is done by
specifying the “average” number of spawners per year in the hatchery. This average should be
computed as the average over any years that are between 2 and 5 years before any of the years for
which parents are included from the hatchery in the data set.

To use this option, you first have to include the keyword CHINOOK AVE POP SIZE in the pream-
ble of the data file, after NUMLOCI but before the first locus name. For example the preamble
might then look like:

NUMLOCI 4
MISSING_ALLELE #
POPCOLUMN_SEX
POPCOLUMN_REPRO_YEARS
OFFSPRINGCOLUMN_BORN_YEAR
CHINOOK_AVE_POP_SIZE
Locus1 0.003
Locus2 0.007
...

If you have included the CHINOOK AVE POP SIZE keyword, then for every population you must
give an average number of spawners immediately following the population name and in exactly this
format: “ave sz1300”. This would, for example, mean that the average number of spawners has
been 1300. So, this just necessitates a simple change to the POP lines from something that looks
like:

POP PopName2

to something that looks like:

POP PopName2 ave_sz450

If these population sizes are not give in the data file, then by default the program assumes that the
average number of spawners is 1000. It is also possible to specify π directly on the command line,
but this is an advanced option and is not documented here. If you would like to do so, please send
email to eric.anderson@noaa.gov.
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RUNNING snppit

snppit has been optimized to be run as a command line program in a terminal window (use the
“Command Prompt” application in Windows). The easiest way to do so is to copy the executable
program (snppit for MacOS and snppit.exe for Windows) to a directory, copy the input file
(assume it is named MyDataFile.txt) to that directory, then navigate to that directory on the
command line, and issue this command:

./snppit -f MyDataFile.txt

on MacOS, or

snppit.exe -f MyDataFile.txt

on Windows.

That is really all that needs to be done to run the program, but there are a few other options
available to the program that we will cover here.

First, there is a --dry-run option that reads all of the data in but does not attempt any anal-
ysis. Especially with large data sets, it is worth running the data with the --dry-run op-
tion just to check to make sure that the data are all getting read correctly. After running
with the --dry-run option it is good to check the data summaries that get written to the file
snppit output BasicDataSummary.txt to make sure that the numbers of individuals read in all
look correct, etc..

Another option, --max-par-miss controls the number of missing (i.e., ungenotyped) loci a putative
parent can have before it is dropped from the analysis. For example, if you issue the option,
--max-par-miss 7, then any putative parent with more than 7 missing loci will be dropped from
consideration as a parent. The default value is 10 which is probably a little on the high side. In
our experience, fish with more than about 5 missing loci tend to also have relatively unreliable
genotypes, so it is doubtful whether their offspring could be assigned to them anyway. On the
other hand, a putative parent with many missing data points has fewer loci remaining for good
discrimination and exclusion of its non-offspring—so, you don’t want to consider parents with a lot
of missing data!

Another option can be used to override the population sizes given using the CHINOOK AVE POP SIZE
method: issuing the command --psz-for-all J will set the average pop size for all populations
to J (J should be an integer, like 1300) regardless of the values set in the data file for them.

The --mi-fnr sets the desired false negative rate due to Mendelian incompatibility. Thus, if you
issue --mi-fnr 0.001 then, the program will choose a maximum number of allowable Mendelian
incompatibilities v(L)max (see Part I) so that in none of the populations do you expect to exclude

28



SWFSC CTC Final Report
Algorithms and Software for

Parentage-based tagging

more than 1 out of 1000 correct parent pairs on the basis of Mendelian incompatibility. The default
value is 0.005 , i.e., one out of 200 parent pairs are expected to be incorrectly excluded on the basis
of Mendelian incompatibility. If you set this parameter too low, then the Mendelian exclusion step
will be less stringent and the number of non-excluded possible parent pairs may increase, which
will increase running times.

There are a few other options to snppit but they are not documented here. To find out what they
are, run the program while issuing the --help-full command.

Just to be explicit, a suitable command line using the various options could look like:

RUNNING TIMES

To give a general idea of how long this should take: on simulated data with roughly 250,000
parents from 10 populations in the parent data base, with spawner groups of size 100, and inferring
parentage for about 20,000 fish from a fishery, it requires about 1.5 or 2 hours to complete the run
on a Mac with a 3 GHz processor.

EXAMPLE DATA SET

The distribution comes with an example data set named ExampleDataFile1.txt that includes 10
different parental populations named ParentPool 0. . . ParentPool 9 and two different offspring
collections. One is named FisherySample 19. It is a sample from a mixed fishery taken in
year 19 (years here are from years of a simulation—you can use actual years, like 2004, for your
own values!), consequently, the fish in it could have come from any of the 10 parental popula-
tions; therefore, immediately following its name is a ?. The other offspring sample is named
InRiverSampleYear19 Pop 0or1. It is a sample in which you can be reasonably sure that all the
members of it are either from ParentPool 0 or ParentPool 1. Thus, immediately following it
name in the OFFSPRING-tagged line is the list of populations: ParentPool 0,ParentPool 1.

The preamble for ExampleDataFile1.txt reads like:

NUMLOCI 96
MISSING_ALLELE *
POPCOLUMN_SEX
POPCOLUMN_REPRO_YEARS
POPCOLUMN_SPAWN_GROUP
OFFSPRINGCOLUMN_SAMPLE_YEAR
OFFSPRINGCOLUMN_AGE_AT_SAMPLING

Accordingly, the POP individuals have a column for M/F/? to denote sex of the individual; a
column giving the spawning year of the individual (in this case those values are a single one of a
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number between 14 and 17, inclusive); and a spawning group column. In this file spawning groups
are just designated with numbers between 0 and 8 inclusive. The OFFSPRING individuals all have
a column giving the year that they were sampled, which in this case is 19 for all of them; they also
have a column giving the possible ages of the fish at sampling, which in this case is 2-5 for all the
offspring—this simply means that any fish caught in the fishery (or in the in-river sample) could
be between the ages of 2 and 5, inclusive.

You should study the file ExampleDataFile1.txt carefully and make sure that you understand its
format completely before making your own data set.

UNDERSTANDING THE OUTPUT

Output to the screen

snppit prints a small amount of information out the screen while it is running—just enough to let
you know that it is doing something. The part that typically takes the longest is that of computing
p-values by simulation. The screen fills with dots to represent progress. It should be self explanatory.
When run on the ExampleDataFile1.txt using the command snppit -f ExampleDataFile1.txt
the output to the screen looks like:

DATA HAVE BEEN READ. SUMMARIES APPEAR IN: snppit_output_BasicDataSummary.txt

COMPUTING AN APPROPRIATE S-MAX

Compiling trio type probabilities for 10 parental collections

0.........

Performing Forward Step on 10 Collections of Trio Probabilities

0.........

EXCLUDING SINGLE PARENTS. COLLECTION 1 FisherySample_19 with 161 indivs in collection.

Done with individual index:

0...................................................................................................

100............................................................

EXCLUDING SINGLE PARENTS. COLLECTION 2 InRiverSampleYear19_Pop_0or1 with 18 indivs in collection.

Done with individual index:

0.................

FINDING NON EXCLUDED PARENT PAIRS. COLLECTION 1 FisherySample_19 with 161 indivs in collection.

Done with individual index:

0...................................................................................................

100............................................................

FINDING NON EXCLUDED PARENT PAIRS. COLLECTION 2 InRiverSampleYear19_Pop_0or1 with 18 indivs in collection.

Done with individual index:

0.................

COMPUTING THE FORWARD STEP AND PREPARING FOR BACKWARD STEP FOR ALL POPULATIONS

Compiling trio type probabilities for 10 parental collections

0.........

Performing Forward Step on 180 Collections of Trio Probabilities

0...................................................................................................

100...............................................................................

COMPUTING POSTERIORS: COLLECTION 1 FisherySample_19 with 161 indivs in collection.

Done with individual index:

0...................................................................................................

100............................................................

COMPUTING POSTERIORS: COLLECTION 2 InRiverSampleYear19_Pop_0or1 with 18 indivs in collection.

Done with individual index:

0.................

COMPUTING P-VALUES BY SIMULATION: COLLECTION 1 FisherySample_19 with 161 indivs in collection

Done with individual index:
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0...................................................................................................

100............................................................

COMPUTING P-VALUES BY SIMULATION: COLLECTION 2 InRiverSampleYear19_Pop_0or1 with 18 indivs in collection

Done with individual index:

0.................

PERFORMING FALSE DISCOVERY RATE CORRECTIONS

PRINTING FINAL PARENTAGE REPORT

SNPPIT PROGRAM EXECUTION COMPLETED.

Output is in the following files:

snppit_output_ParentageAssignments.txt -- Main output file that gives false disovery rates for all offspring with the most likely parents

snppit_output_BasicDataSummary.txt -- Basic information about the data that got read in.

snppit_output_ChosenSMAXes.txt -- Information about the smax vectors used in the analysis.

snppit_output_FDR_Summary.txt -- Offspring assigned to parents in each population, ranked by false discovery rate.

snppit_output_PopSizesAnPiVectors.txt -- Information about the sizes of the populations and the expected fraction of different trios thereby implied.

snppit_output_TrioPosteriors.txt -- Posterior probs for all non-excluded parent pairs of every offspring in the data file.

Questions, etc.? Send them to eric.anderson@noaa.gov

Output files

Most of the important output from snppit is directed to files that will be written in the directory
where the program was run. These output files all start with snppit output and end with a .txt
extension. These files and a description of each are as follows:

snppit output ParentageAssignments.txt — Main output file that gives false discovery rates
for all offspring with the most likely parents.

snppit output BasicDataSummary.txt — Basic information about the data that got read in.

snppit output ChosenSMAXes.txt — Information about the smax vectors used in the analysis.

snppit output FDR Summary.txt — Offspring assigned to parents in each population, ranked by
false discovery rate.

snppit output PopSizesAnPiVectors.txt — Information about the sizes of the populations and
the expected fraction of different trios thereby implied.

snppit output TrioPosteriors.txt — Posterior probs for all non-excluded (by Mendelian in-
compatibility) parent pairs of every offspring in the data file.

These files are all tab delimited txt files and can be imported into Excel, for example. The names
of the columns are mostly self-explanatory, but the headings are defined here in alphabetical order,
along with an explanation of which files they occur in:

FDC.est.to.pop (FDR Summary) The estimated upper bound on the total number of false dis-
coveries of parentage assignments to a particular population if you set your FDR cutoff just
above this particular individual.
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FDR (FDR Summary, ParentageAssignments) The false discovery rate associated with accepting
the current individual’s parentage assignment but none of the individuals with higher p-values.

GivenPopSize (PopSizesAnPiVectors) The value of the pop size specified for this population.

Kid (FDR Summary, ParentageAssignments, TrioPosteriors) A column of identifiers of kids.

KidMiss (ParentageAssignments, TrioPosteriors) The number of ungenotyped loci in the
kid of a trio.

LOD (ParentageAssignments, TrioPosteriors) The natural logarithm of the likelihood of
the parental trio hypothesis divided by the likelihood of the non parental hypothesis for a
trio.

MI.Kid.Ma (ParentageAssignments, TrioPosteriors) The number of Mendelian incompat-
ibilities between the kid and the ma in a trio.

MI.Kid.Pa (ParentageAssignments, TrioPosteriors) The number of Mendelian incompati-
bilities between the kid and the pa in a trio.

MI.Trio (ParentageAssignments, TrioPosteriors) The total number of Mendelian incom-
patibilities in a trio. This is v(L)

3 .

Ma (FDR Summary, ParentageAssignments, TrioPosteriors) A column of identifiers for ma’s.

MaMiss (ParentageAssignments, TrioPosteriors) The number of ungenotyped loci in the
ma of a trio.

MaxP.Pr.Relat (ParentageAssignments) The trio relationship having highest posterior prob-
ability. See the “Flat Text Name” column of Table 2 for an explanation of symbols for trio
relationship.

MendIncLoci (ParentageAssignments) A column holding a comma-separated list of the names
of loci at which there were Mendelian incompatibilities at the inferred trio.

OffspCollection (ParentageAssignments, TrioPosteriors) The name of the offspring collec-
tion that the kid is from.

P.Pr.Max (ParentageAssignments) The posterior probability of the trio relationship having
the highest posterior probability.

P.Pr.RRRRR (ParentageAssignments, TrioPosteriors) The posterior probability of trio
relationship RRRRR. See the “Flat Text Name” column of Table 2 for an explanation of
symbols for trio relationships.

Pa (FDR Summary, ParentageAssignments, TrioPosteriors) A column of identifiers for pa’s.

PaMiss (ParentageAssignments, TrioPosteriors) The number of ungenotyped loci in the pa
of a trio.

PiVectorElements.... (PopSizesAnPiVectors) This sits atop a list of prior probabilities for
the different possible trio relationships.
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PopName (FDR Summary, ParentageAssignments, PopSizesAnPiVectors) The name of the
population that the ma and pa are from.

PopSizeSetBy (PopSizesAnPiVectors) The method by which the population sizes were set.

PopSizeUsedForPi (PopSizesAnPiVectors) The actual population size used to compute the
π vector. This will typically be a little smaller than the GivenPopSize, owing to the fact that
the π values have been precomputed for just a limited set of population sizes.

Pvalue (FDR Summary, ParentageAssignments) The p value computed by simulation for a trio.

Rank (TrioPosteriors) For a given kid, this is the rank of the parent pair when ranked from
largest to smallest posterior probability of being parental.

RankInFDR (FDR Summary) Amongst all the kids assigned to parents within a given parental
population, this is the rank of the individual when sorted from smallest to largest p-value
(and hence also in the FDR).

SpawnYear (ParentageAssignments) The year in which the parent pair or a trio spawned.
Note that in the case of multiple-year spawners, this is simply the earliest year in which both
parents are known to have spawned—there could be other years when they both spawned!
This is not an issue with semelparous species like chinook.

TotMaNonExc (ParentageAssignments) The total number of putative mothers that were not
excluded by Mendelian incompatibility with the kid.

TotPaNonExc (ParentageAssignments) The total number of putative fathers that were not
excluded by Mendelian incompatibility with the kid.

TotPairsNonExc (ParentageAssignments) The total number of putative parent pairs that
were not excluded by Mendelian incompatibility with the kid.

TotUnkNonExc (ParentageAssignments) The total number of putative parents of unknown
sex that were not excluded by Mendelian incompatibility with the kid.
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INTRODUCTION

Simulations were undertaken with the dual objectives of 1) ensuring that the snppit software works
correctly and can handle large inference problems, and 2) assessing how accurately we can expect
to infer the parentage of hatchery fish should parentage based tagging (PBT) be undertaken on
a very large scale. To parameterize these simulations, we used allele frequencies estimated from
10 different populations for the 96 SNPs that comprise the Southwest Fisheries Science Center’s
standardized panel of SNPs selected for utility in PBT and genetic stock identification (GSI) from
California to Washington. The populations used in the simulation extend from the Sacramento
River in the south to the Lower Columbia River in the north and are described in “Simulated
Hatcheries and Allele Frequencies” below.

Pedigrees over multiple generations connecting the fish in these simulated hatcheries and genetic
data upon those fish were generated using the program spip (Anderson & Dunham, 2005). A
chosen fraction of the fish spawned at each hatchery were included in the parent data base. A
fraction of their offspring were intercepted in simulated fisheries. These aspects of the simulations
are described in “Genetic Simulation Procedures.” The parentage of fish in these simulations was
assessed using the program snppit as described in the section “Analysis With snppit” The outcome
of this is reported in “Results.”

SIMULATED HATCHERIES AND ALLELE FREQUENCIES

The SWFSC Molecular Ecology Team at the Fisheries Ecology Division has been actively involved
in SNP discovery for PBT. Some 100 new SNP assays for chinook have been developed in our
group. These were added to SNPs previously discovered by the PSC-funded GAPS SNP discovery
efforts, and from this combined set of SNPs, 96 were chosen on the basis of ease of genotyping and
on minor allele frequency in California populations. We chose SNPs primarily to have a high minor
allele frequency (and thus be useful for PBT); however some weight was given to selecting SNPs
that showed large allele frequency differences between certain stocks, and which, consequently, will
be useful for genetic stock identification. The complete details of this panel of 96 SNPs will be
given in a forthcoming publication (Clemento et al. in prep). Here, however, I summarize in Table 4
the frequency of SNPs from 10 populations that we use to parameterize our simulations for PBT
accuracy assessment.

It is remarkable to note that, although these SNPs were selected largely for their utility for PBT
in California, the final column in Table 4 shows that the power of these SNPs for PBT is still quite
high farther to the north, for example in the Lower Columbia populations and in the Chetco.
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GENETIC SIMULATION PROCEDURES

Chinook Demography

For our simulations of hatchery chinook, we used an “average” chinook life history. The elements
of this life history are as follows, each aspect being named by the spip command used to generate
it:

[-A 5] The maximum age of any individual is 5 years. There are no spawners of age 6 years or
older.

[--fem-prob-repro 0 0 .3 .6 1.0] Females of age 3 during the spawning season have a 30%
probability of spawning. 4 year olds have a 60% probability of spawning, and any remaining
females of age 5 have a 100% probability of spawning.

[--male-prob-repro 0 0.05 .45 .61 1.0] A small fraction (5%) of age-2 males spawn as jacks
each year. Males of age 3 during the spawning season have a 45% probability of spawning. 4
year olds have a 61% probability of spawning, and any remaining males of age 5 have a 100%
probability of spawning.

[--fem-postrep-die 1 1 1 1 1] All females die after spawning.

[--male-postrep-die 1 1 1 1 1] All males die after spawning.

[-f 0 0 .5 1 1] On average, females of age 3 produce only half as many offspring as do females
of age 4 or 5.

[-m 0 .5 1 1 1] On average males spawned at age 2 as jacks have only half the fitness as do
males spawned at age 3, 4, or 5.

[--fem-rep-disp-par .25] Within any age group of females, the ratio of the expected number
of offspring to the variance in the number of offspring is .25. This corresponds roughly to
creating a ratio of effective number of female spawners (of a given age) to the actual number
of female spawners (of a given age) equal to 1/4. This is in the range of Ne/N ratios computed
for salmon populations. This is important to model, since it increases the fraction of related,
but non-parental, trios in the population.

[--male-rep-disp-par .25] As with females, the effective number of male spawners of a given
age class is roughly one quarter of the actual number of male spawners.

Simulated Hatchery Sizes

To reflect a range of hatchery sizes, as indicated in Table 4, each set of allele frequencies was
simulated in a population that was either Large, Medium, or Small in size. The sizes of these
simulated hatcheries are expressed in terms of the average number of male and female spawners
in each generation shown in Table 5. The Large hatcheries correspond to a handful of very large
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Table 5: Average number of male and female spawners under the Large, Medium, and Small
hatchery scenarios.

Sex and Age Large Medium Small

Male 2 yrs 336 135 31
Male 3 yrs 2,594 1,038 253
Male 4 yrs 1,767 696 174
Male 5 yrs 999 401 97

Female 3 yrs 1,823 723 182
Female 4 yrs 2,314 915 230
Female 5 yrs 1,373 541 136

Total Male 5,696 2,270 555
Total Female 5,510 2,179 548

Total Male+Female 11,206 4,449 1,103

hatcheries, such as the fall chinook programs at Feather River Hatchery or Coleman National
Fish Hatchery. The Medium hatcheries are meant to represent smaller scale hatcheries which still
produce in the several millions of smolts each year, for example Feather River Hatchery’s spring
chinook program, or the Trinity River fall chinook hatchery program. Finally, the Small hatcheries
mimic small programs propagating possibly endangered or threatened runs like the Sacramento
River Winter Run program at Coleman National Fish Hatchery.

Spawning, Fishery, and Genetic Sampling

All individuals in the spawning pool each year were mated together randomly according to two
different mating policies. The first was full-factorial mating in spawner groups of four males and
four females (SG4). Under this scenario, there are four females and four males in each spawning
group, and all 16 possible matings are done. The second scenario was one-by-one mating (SG1),
in which each female was mated with exactly 1 randomly selected male, and no male was spawned
with more than one female.

Regardless of the mating policy, the genotypes of the spawned fish were aggregated together in
groups of approximately 100 males and 100 females that could possibly be mates with one another.
This corresponds to a situation in which 100 males and 100 females are spawned each day, and the
day of spawning is recorded for each individual. The term that has been used by us in the SWFSC
for this type of data organization is “day-bucketing” referring to the practice of saving all the male
and female tissue samples from each day in separate ethanol-filled containers. Thus, for any single
“day” of spawning at a hatchery, there are 100×100 = 104 pairs of parents that must be considered
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as possible parent pairs in the parent data base.

The simulations were run for 21 years forward in time. This “warm-up” period allows the accrual
of relatedness between members of the population which could, in theory, make it more difficult to
correctly infer parentage. In years 14 to 17, a fraction of approximately G of the spawners were
sampled. Values of G explored were 0.25, 0.5, and 1.0. Spawners were not sampled randomly;
rather, to achieve G = 1.0, fish were sampled on all spawning days. For G = 0.5 spawners were
sampled only every other day of spawning, and for G = 0.25 spawners were sampled only every
fourth day of spawning. In this way, we ensured that the mates of any male (or female) in the
parent data base would also be included in parent the data base.

Every year, males and females of age ≥ 2 were subjected to a 10% probability of being captured in
a fishery, genotyped, and included in a fishery sample for that year. The fish sampled this way in
spawning year 19 (i.e., those fish that could be 2-year-olds born of parents that spawned at year
17, 3-year-olds born of parents spawned at year 16, 4-year-olds born of parents spawned at year
15, or 5-year-olds born of parents spawned at year 14) were included in our fishery sample. These
were the fish whose parentage was assessed from parents in the parent data base. This represents
the difficult case in which the fishery sample is a mixture of unknown proportions of fish from
10 different hatcheries. If PBT is successful here, than it will certainly perform well in inferring
parents of fish returning to a particular hatchery when there is strong prior probability that the
fish were produced at the hatchery to which they are returning.

Genotyping error was simulated by processing the data set once it was in snppit format. I used a
program written in C which changed the type of each SNP allele in the data set, independently, with
probability 0.005. This corresponds to a per-locus genotyping error rate of about 1%—considerably
higher than is believed to afflict most SNPs genotyped on a Fluidigm EP-1 platform (the genotyping
platform being adopted as the standard choice for salmon studies). Since the simulated genotyping
error rate was, perhaps, higher than what will ultimately be realized in real data, it is possible that
greater accuracy of parentage assignments can be obtained in practice than reported here in the
simulations.

Analysis With snppit

For each replicate a data set was compiled in snppit format that included both the parent data
base and the fishery sample. With complete sampling (G = 1.0), the size of each of these files
was about 100 Mb in text format. These data sets were analyzed by snppit . With complete
sampling (G = 1.0) snppit required roughly 1.5 hours to analyze each replicate data set. For
smaller values of G the size of the parent data base was smaller and each replicate took less time
(roughly 30 minutes for G = 0.5 and 10 for G = 0.25). The output of snppit was used to assign
fish to parents so as to maintain a false discovery rate of less than 1 in 200. We say that our
“desired” false discovery rate was less than 0.005. The results were compared with the simulated
pedigrees and the accuracy of the parentage assignments was compared. Additionally, the number
of individuals in the fishery with parents in the parent data base that were not included amongst
the set of parentage assignments was recorded.
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Table 6: Representative numbers of fish in the parent data base under the approximate sampling
fractions G. These are rounded numbers from a single replicate simulation experiment. Variation
between replicates was small. The total parent data base size is the number of parent genotypes
from all possible years of spawners at all the hatcheries.

Hatchery Size G = 1.0 G = 0.5 G = 0.25

Large 44,750 22,600 11,500
Medium 17,800 9,100 4,800
Small 4,400 2,400 1,600

Total Parent Data Base Size: 219,000 111,500 58,600

The --mi-fnr option of snppit was set so that 0.005 was the expected fraction of offspring having
so many Mendelian incompatibilities with their true parents that they would be discarded from
further consideration on the basis of Mendelian incompatibility alone.

snppit can take, as an advanced input, the fraction of trios, formed by randomly drawing individu-
als from the parental generation and from the fishery sample, expected to be of different relationship
types (the types in R from Part I). These fractions were estimated by a simple recursive program
(not described here) using the demographic parameters and observed numbers of spawners in the
simulated hatchery each year. Thus, the probabilities πr (for r ∈ R) were estimated for Large,
Medium, and Small hatcheries using data that will typically be available in hatchery programs
(approximate number of spawners of different ages each year, average number of males mates per
female spawned, approximate Ne/N ratio, etc.).

RESULTS

Number of Sampled Fish

The number of fish sampled for the parent data base and from the fishery varied little between
replicate runs or between the different mating policies. Of course, the parent data base was smaller
when a smaller fraction, G, of the parents was sampled. The fishery sample was always around
18,900 fish. Table 6 shows representative numbers of sampled fish from a single replicate under
the different sampling fractions. These numbers represent, to my knowledge, the largest parentage
inference exercises—simulated or real—attempted by any software. Previous tests on other available
software programs showed that other programs are unable to handle data sets of this size (or even
much much smaller, in some cases).
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Accuracy of Parentage Assignments

In almost all simulations, the fraction of offspring assigned to parents that were assigned to the
incorrect parents (i.e., the false discovery rate) was less than 1 in 200. This is an excellent result,
since individuals were assigned parentage so as to maintain a desired false discovery rate of less
than 1 in 200. Additionally, in almost all cases the rate at which offspring whose parents were in
the parent data base were not assigned parentage (the false negative rate) was less than 0.1. With
100% sampling of the parents, this false negative rate was appreciably lower. The results for mating
policy SG1 are shown in Figure 2 and the results for mating policy SG4 are in Figure 3. It appears
that accuracy was slightly reduced in the SG1 case relative to the SG4 case. This is likely due to
the fact that under the SG1 scenario, all siblings are full siblings, whereas under the SG4 policy,
only a quarter of siblings are full siblings, on average, and the remaining ones are half siblings. Full
siblings of the true parents (or off the kid) in the parent data base may be misidentified as parents.

CONCLUSIONS AND DISCUSSION

It is apparent that the software is capable of handling large PBT scenarios with ease, and that
a panel of 96 SNPs provides adequate power for inferring the parents of fishery samples. At the
SWFSC we are currently undertaking the genotyping necessary to develop the parent data bases for
select chinook hatcheries in California. It is also quite clear that the procedure for controlling the
false discovery rate works in the sense that very few of the replicates had a higher rate of incorrect
parentage assignments than the desired FDR of 0.005. However, in some cases, it appears that the
actual false discovery rates imposed are conservative. If one is concerned primarily with avoiding
incorrect parentage assignments, this is all right. However, if one is also concerned about the false
negative rate (the rate at which the parents of offspring are not identified in the parent data base,
even when they are in it), then the conservative feature of the FDR procedure employed here is
unfortunate, since it increases the false negative rate.

One of the drawbacks of this method is that there does not seem to be an easily-implemented way to
accurately estimate the false negative rate. This may become problematic in fisheries management
contexts since some estimate of the false negative rate will be required in order to expand the
samples to provide an estimate of total fishery impacts on any particular stock. The false negative
rate could, of course, be estimated using simulations like those undertaken here, but it seems that
a direct estimate may be preferable. In fact, future elaboration of this work in a fully-Bayesian
framework may provide better estimates of the total fraction of fish from different stocks and year
classes in a particular fishery. This might also ultimately use more of the information in the data
and thus also provide more accurate parentage assignments. The implementation of such a scheme
would not be trivial, especially while accounting for the multiple possible trio relationship categories
and large parent data base size. However, the experience gained in this project will benefit any
future endeavors in the Bayesian framework.

A further area that will benefit from extra work is in creating a joint analysis of parentage inference
and genetic stock identification—individuals that can be identified to parent pair are assigned back
to their parents, while those whose parents cannot be identified might still be assigned to the
correct population. Such an inference problem leads to an interesting hierarchical mixture model
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Figure 2: Results from SG1 mating policy. Left column of panels shows the true rate of false
discovery (i.e., true fraction of all parentage assignments that were incorrect); right column shows
the fraction of offspring with parents in the data base that were not assigned to their parents (the
false negative rate). Top row is for G = 1.0, middle is G = 0.5, and bottom is G = 0.25. Each dot
in a plot is the result specific to one of the ten hatcheries in one of the replicate runs. Results for
hatchery #1 (see first column in Table 4) are at a height of 1, and for hatchery 10 at a height of
10, with others in between.
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Figure 3: Results from SG4 mating policy. Left column of panels shows the true rate of false
discovery (i.e., true fraction of all parentage assignments that were incorrect); right column shows
the fraction of offspring with parents in the data base that were not assigned to their parents (the
false negative rate). Top row is for G = 1.0, middle is G = 0.5, and bottom is G = 0.25. Each dot
in a plot is the result specific to one of the ten hatcheries in one of the replicate runs. Results for
hatchery #1 (see first column in Table 4) are at a height of 1, and for hatchery 10 at a height of
10, with others in between.
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and certain computational challenges, but it would allow the greatest leverage of genetic data for
fisheries management. These are currently topics being investigated in my research group.
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