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Abstract

This paper reviews the use of STAMP (Structural Time Series Analyser, Modeler
and Predictor) for modeling time series data using state-space methods with unobserved
components. STAMP is a commercial, GUI-based program that runs on Windows, Linux
and Macintosh computers as part of the larger OxMetrics System. STAMP can estimate a
wide-variety of both univariate and multivariate state-space models, provides a wide array
of diagnostics, and has a batch mode capability. The use of STAMP is illustrated for the
Nile river data which is analyzed throughout this issue, as well as by modeling a variety
of oceanographic and climate related data sets. The analyses of the oceanographic and
climate data illustrate the breadth of models available in STAMP, and that state-space
methods produce results that provide new insights into important scientific problems.

Keywords: STAMP, state space methods, unobserved components, Nile river, Pacific decadal
oscillation, north Pacific high, El Niño.

1. STAMP

STAMP (Structural Time Series Analyser, Modeler and Predictor) is a commercial, graph-
ical user interface (GUI)-based package for the analysis of both univariate and multivariate
state-space models written by Koopman, Harvey, Doornik, and Shephard (2009). It runs on
Windows, Macintosh and Linux operating systems as part of the larger OxMetrics System,
a software system for (econometric) data analysis and forecasting (Doornik 2009). The au-
thors are some of the leading researchers in the field of state-space modeling, and as such the
algorithms used in STAMP, as well as the features available for analysis of model fit, tend to
stay current with the state of the art in the literature.

A strength of STAMP is the large variety of models that can be analyzed, both univariate and
multivariate. The univariate models include structural component models as well as time-
varying regressions, and the multivariate models include “common trends”, “common cycles”,
“common seasons” and “seemingly unrelated time series equations” (SUTSE), with exoge-
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nous variables and interventions. STAMP also provides an extensive array of test statistics,
residual, and auxiliary residual graphics after estimation for assessing model fit. For multi-
variate models STAMP allows the user to select components by equation, to select regressors
and interventions by equation, to define separate dependence structures for each component,
provides for a wide choice of variance matrices, and permits higher order multivariate com-
ponents. Only some of these features are illustrated in this article, but STAMP provides a
complete package for linear, Gaussian state-space model estimation.

OxMetrics integrates STAMP into a larger class of related models, and provides a broad
suite of graphics, data transformation options, and data arithmetic options. And although
STAMP is primarily GUI-based, OxMetrics provides a language for batch processing. Even
more so, as shown below, as a model is created in the GUI, STAMP generates the code that
will produce the same model in batch mode.

In Section 2 the Nile river data, that are analyzed in all the articles in this special issue,
are modeled using STAMP. For purposes of “full disclosure” the Nile river data are analyzed
extensively in the manual that comes with STAMP 8.2, and the analysis in Section 2 follows
the analysis therein. Even so, all the steps in the analysis are straightforward given the tools
provided by STAMP and the end result would be the same with or without the analysis
in the manual. All the analyses in Section 2 were done using STAMP 8.2 on a 2.2 GHz
Intel Core 2 Duo Macbook Pro, and all graphics in that section are either unretouched from
what is produced in STAMP 8.2 or use features for editing the graphics that are supplied by
OxMetrics. In Section 3 oceanographic and climate indices are analyzed using state-space
models in an area where the uses of these methods are just beginning to come to fore. In
Section 4 state-space models are combined with subspace identification techniques to analyze
a large-scale space-time dataset.

2. Nile river

OxMetrics can import a variety of formats including Excel and Lotus spreadsheets, comma
separated (.csv) files, Gauss and Stata files, a variety of text formats as well as its own
native format. The Nile river volume data were provided in one of the text file formats that
OxMetrics supports, making import of the data easy. As part of the data import, the time
and time interval of the data are defined, and that information is carried along in the rest of
the analyses and graphics. STAMP is started within OxMetrics.

The initial STAMP dialog (Figure 1) allows the user to select other dialogs that change
options or settings for the various stages of data modeling. Selecting “Formulate” to define
the initial model, a screen comes up allowing the user to choose which variables to include in
the model, and what role they will play (“X” or “Y”), the latter being necessary for certain
classes of models, such as a state-space model with a fixed effect or a time-dependent regression
(Figure 2).

Having chosen which variables to use in the model, a dialog comes up with options for what
components to include in the model (Figure 3).

A nice feature of STAMP is the wide range of models that can be estimated, and the fact
that it is kept up-to-date with new research, such as allowing higher “orders” in both the level
and the cycle (see Harvey and Trimbur 2003). Kitagawa and Gersch (1996, for example) have
long advocated that many series are better fit with a higher order of differencing in the level
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Figure 1: Initial window when starting STAMP from within OxMetrics.

Figure 2: Window in STAMP for choosing the variables to be included in the analysis and
the role the variables will play in the analysis.
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Figure 3: Window in STAMP for selecting model components.

Value q ratio

Level 1469.18 0.09731
Irregular 15098.5 1.000

Table 1: Maximum likelihood estimates of the variances in the local level model for the
Nile river data. The q ratio is the relative variance of the level and irregular, that is, the
signal-to-noise ratio.

term. The default model is the “basic structural model” (BSM), a model which includes a
stochastic level and slope as well as a stochastic seasonal component, and a BSM without
the seasonal component was used as the initial model to estimate the Nile river data. In the
notation of equation (4) in Commandeur, Koopman, and Ooms (2011) the initial model is:

yt = µt + εt (1)

µt+1 = µt + νt + ξt (2)

νt+1 = νt + ζt. (3)

For this model the maximum likelihood estimate of the slope was zero (with no variance), so
the model was re-estimated with just a stochastic local level (Table 1).

An important feature of STAMP is that although it is GUI based, it also can be run in batch
mode using a scripting language that is part of OxMetrics. Even more so, as you select a
model in the GUI, STAMP automatically generates the code needed to run that model in
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Figure 4: Window showing the generated code for batch processing of the local level model
within STAMP.

batch mode (Figure 4). This is a feature used in Section 4.

The estimated local level model (Figure 5) suggests a mean level that is relatively constant
over long periods with several possible shifts, and this impression is reinforced in the plots of
the standardized residuals (Figure 6) and even more so in the auxiliary residuals (Figure 7).
STAMP has a feature to automatically detect possible points of intervention in a series, and
the local level model was re-estimated with this feature. A level break in 1899 and an outlier
break in 1913 are identified by this automatic feature, the former corresponding to the building
of the Aswan dam, and the latter to a year of extremely low flow in several African rivers
following the high-latitude Katmai eruption.

Re-estimating the local level model to include the interventions produces a model where the
level changes only due to the interventions (Table 2) but the residual graphs show significant
autocorrelations and other signs of periodicity in the residuals. Based on this, a final model
was fit with a fixed level, a stochastic cycle, and the two interventions (Table 3). A stochastic
cycle, in the notation of equation (6) in Commandeur et al. (2011) is defined as:[

ψt
ψ∗t

]
= ρ

[
cosλc sinλc
− sinλc cosλc

] [
ψt−1
ψ∗t−1

]
+

[
κt
κ∗t

]
, t = 1, . . . , T, (4)

where ψt and ψ∗t are the states, λc is the frequency, in radians, in the range 0 < λc ≤ π, κt
and κ∗t are two mutually uncorrelated white noise disturbances with zero means and common
variance σ2κ, and ρ is a damping factor. The damping factor ρ in (1) accounts for the time over
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Figure 5: Nile local level model components with confidence intervals.
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Figure 6: Nile local level model standardized residuals.
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Value q ratio

Level 0.00000 0.00000
Irregular 14124.7 1.000

Coefficient RMSE t value Prob

Outlier 1913(1) −399.52109 119.68141 −3.33821 [0.00120]
Level break 1899(1) −242.22887 26.52156 −9.13328 [0.00000]

Table 2: Maximum likelihood estimates of the variance and regression terms in the local level
model with interventions for the Nile river data. RMSE is the residual mean square error and
the q ratio is the relative variance of the level and irregular, that is, the signal-to-noise ratio.
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Figure 7: Nile local level model auxiliary residuals.

which a higher amplitude event (consider this to be a “shock” to the series) in the stochastic
cycle will contribute to subsequent cycles. A stochastic cycle has changing amplitude and
phase, and becomes a first order autoregression if λc is 0 or π. Moreover, it can be shown
that as ρ → 1, then σ2κ → 0 and the stochastic cycle reduces to the stationary deterministic
cycle:

ψt = ψ0 cosλct+ ψ∗0 sinλct, t = 1, . . . , T. (5)

The cycle has a period of 6.65 years and a damping factor of 0.26034 (Figure 8), and all of the
test statistics (Table 4), residual diagnostics (Figures 9), and auxiliary residual diagnostics
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Figure 8: Nile cycle model with interventions.

(Figure 10 ) for this model suggest a good fit both to the data and to the assumptions of the
model. The roughly seven year cycle is consistent with a number of processes in the atmo-
sphere and ocean, and conditions in the Nile have been correlated with drought conditions in
the Southwest United States, for example, based on these teleconnections (Cayan, Dettinger,
Diaz, and Graham 1998; Jiang, Mendelssohn, Schwing, and Fraedrich 2002).
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Value q ratio

Cycle 13885.1 1.00000
Period 6.65169

Damping Factor 0.26034
Irregular 0.000 0.000

Coefficient RMSE t value Prob

Outlier 1913(1) −377.86552 119.51526 −3.16165 [0.00209]
Level break 1899(1) −243.28229 30.02332 −8.10311 [0.00000]

Table 3: Maximum likelihood estimates of the variance and regression terms in the cycle with
interventions model for the Nile river data.

Summary statistics Nile river volume

T 100.00
p 4.0000

Std. error 118.68
Normality 0.36671
H(32) 0.80242
DW 1.9483
r(1) 0.011016
q 12.000
r(q) −0.070861

Q(q, q − p) 5.7131
R2 0.51811

Table 4: Test statistics for the cycle with interventions model for the Nile river data. T is
the number of time periods, p the number of parameters, std.error is the square root of the
prediction error variance, Normality is the Bowman-Shenton statistic of the third and fourth
moments of the residuals, H(32) is a measure of heteroskedasticity, DW is the Durbin-Watson
test, r(1) is the estimated residual lag 1 autocorrelation, Q(q, q−p) is the Box-Ljung statistic
based on the first q autocorrelations, r(q) is the lag q autocorrelation, and R2 is a goodness
of fit measure.
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Figure 9: Nile cycle model showing the variety of residual diagnostics available in STAMP.
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Figure 10: Auxiliary residual diagnostics for the Nile cycle model showing the variety of
diagnostic tools available in STAMP.
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3. Ocean and climate indices

New statistical methods are often demonstrated to produce results that differ from those of
previous methods, but it is unclear that these differences are of any importance to the subject
matter at hand. In this section, we use state-space methods to examine oceanographic and
climate related indices, and show that the use of these models produce significant scientific
insight. All of the univariate modeling was done using STAMP, while the subspace identifi-
cation procedure was performed in MATLAB on the output from univariate models estimated
by STAMP.

3.1. Pacific decadal oscillation

The Pacific decadal oscillation (PDO) is defined as the first principal component (or as called
in the oceanography literature“Empirical orthogonal function”or“EOF”) of monthly 5-degree
sea surface temperature (SST) anomalies after removal of the monthly global mean of the
anomalies (Mantua, Hare, Zhang, Wallace, and Francis 1997). There has been much discussion
as to what the PDO represents, with some authors calling any decadal-scale dynamic in the
ocean the PDO, while others say the PDO is simply red noise (autoregressive) and is consistent
with an oceanographic model where the atmosphere is white and the ocean is red (see for
example Pierce 2001; Rudnick and Davis 2003). If the latter is true, the PDO is stationary
and does not represent any shifts in the climate dynamics.

To examine this question, a series of models were estimated for the PDO, including models
with a fixed and a stochastic level, models with a fixed and a stochastic seasonal component,
and each of those in combination with an AR(1) component and a stochastic cycle. This type
of analysis can be readily carried out in STAMP given the large class of models and model
statistics it provides and by utilizing the batch language to automate the estimation of the
different models. The “best” model, based on AIC and BIC statistics as well as examination
of the residuals, was a model with a stochastic level, a stochastic cycle, and a fixed seasonal
component (Figure 11). What is clear is that while the largest amount of the variance is
contained in the higher frequency stochastic cycle term, there is a significant trend in the
series.

The same set of analyses that were carried out for the PDO were also done for an index of the
north Pacific high (NPH) pressure center, with the same model (stochastic level, stochastic
cycle, and fixed seasonal) being selected as the best model. The estimated levels in the
two series (Figure 11) as well as the estimated stochastic cycles (not shown) are almost
identical. So while there is a significant trend and cyclic component in the PDO, these
components are capturing the dynamics in the region of the north Pacific influenced by the
NPH. An interesting question is to what degree the feedback occurs in each direction (the
ocean influencing the atmosphere or the atmosphere influencing the ocean).

3.2. El Niño

This section follows Mendelssohn, Bograd, Schwing, and Palacios (2005). There has been
recent speculation that El Niño events, at least measured by two indices, the southern os-
cillation index (SOI) (see for example Philander 1990) and the NINO3 index (Mann, Gille,
Bradley, Hughes, Overpeck, Keimig, and Gross 2000), have been increasing both in frequency
and intensity over time (see for example Trenberth and Hoar 1997). The SOI is defined as
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Figure 11: Estimated cycle and level for the Pacific decadal oscillation (PDO) and comparison
with the estimated north Pacific high (NPH) level.

the anomalies of the difference in the pressure at Darwin, Australia and Tahiti. The relative
change in the pressures is believed to be associated with shifts in the wind fields, and a nega-
tive anomaly signifying El Niño periods while a positive anomaly signifying La Niña periods.
The NINO3 series is defined as the average sea surface temperature over a large area of the
tropical Pacific, viewed as a measure of the overall surface heat in the tropical Pacific waters.
It has been suggested that the NINO3 is exhibiting an increased frequency of warm events.

To examine these questions, the same estimation process used in Section 3.1 was used to
estimate a “best fit” model for the NINO3 series, for the SOI, and for the component series of
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c. Cycles
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Figure 12: a. The estimated trend terms for the negative of the southern oscillation
index (SOI) (blue, [−0.58, 0.019]), Darwin pressure (red, [97.8, 101.25]), yearly NINO3
(green, [−0.104, 0.575]), and the negative of the northern oscillation index (NOI)I (black,
[−0.53, 0.53]). The numbers in brackets give the range of each of the variables on the y-axis.
b. The estimated NINO3 trend (black) and trend plus stochastic cycle (red). c. Stochastic
cycles for Darwin (red) and Tahiti (blue). d. Stochastic cycles for Darwin and Tahiti, and El
Niño events.

the SOI (i.e., the Darwin and Tahiti pressures). Again the local level model with a stochastic
cycle term was the best fit to the data, except for the Tahiti pressure series where a fixed
level model was preferred over a model with a stochastic level. The trends in the series
are very similar (Figure 12a,b), in particular the Darwin pressure trend and the SOI trend,
which is not surprising since Tahiti pressure has a constant mean. What is more surprising is
that the stochastic cycles are very close (Figure 12c), and the El Niño events can be discerned
equally as well if not better just from Darwin pressures rather than from the more complicated
index (Figure 12d). The smoothed residuals for the stochastic cycle suggest that more recent
events are in the tails of the distributions, but the overall impression from the residual and
auxiliary residual plots is that this model provides a reasonable fit to the data series. Since
the stochastic cycle is stationary, this analysis shows no significant increase in the frequency
of El Niño events. Rather there has been warming trend in tropical SST, and this has caused
SST anomalies to similarly increase.
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4. Large space-time datasets

The univariate methods of the previous sections in theory extend to multivariate problems
by defining “common trends” or “common cycles”, parameterized the same way but of lower
dimension than the observed data (see for example Harvey 1989, Chapter 8, and Durbin and
Koopman 2001, Chapter 3) . These methods work for small to medium sized problems, but
after that the Kalman filter/smoother calculations become impractical, although recent ad-
vances in dynamic factor models may change this (see for example Jungbacker and Koopman
2008; Koopman and Massmann 2009). Large problems can occur in oceanography and cli-
mate and atmospheric sciences, where data are on a space-time grid. Even a 5-degree grid,
such as was used to calculate the PDO, can have several hundred series with over 1000 time
periods. We have developed an approximate but useful method of dealing with these types
of problems by combining state-space decompositions with subspace identification techniques
(descriptions of these methods can be found in Akaike 1975; Larimore 1983; Van Overschee
and De Moor 1996) .

Subspace identification techniques are used to derive approximate maximum likelihood esti-
mates for the more general dynamic linear Gaussian model of the form:

yt = Ztαt + εt (6a)

αt+1 = Ttαt +Rtηt (6b)

where the observation equation (6a) has yt a p× 1-vector of the observed data, Zt is a p×m
matrix which relates the data to the unobserved components αt, which is a vector of dimension
m × 1, and all the error terms are zero mean Gaussian random variables, as given in the
introductory paper of this volume.

The evolution of the unobserved components or states αt is governed by the initial value α1

and the state equation (6b). The matrix Tt is a m×m transition matrix and the m×1-vector ηt
is another independent, identically distributed Gaussian random variable; see Shumway and
Stoffer (2006, Chapter 6) for further details on the state-space model and how the unknown
parameters can be estimated using the EM algorithm.

There are many ways to derive the results for subspace identification techniques, but one
follows Akaike (1975) and Larimore (1983) by looking at the canonical variate analysis between
the past y−t and the future y+t at a given time t defined as:

y−t =


yt0
yt0+1

...
yt−1

 , y+t =


yt
yt+1

...
yT

 (7)

where t0 is for a given lag p the time period t − p and T for a given lead q the time period
t+ q, by solving the generalized singular value decomposition for the matrices J, L defined as:

JΣppJ
> = I; LΣffL

> = I (8)

JΣpfL
> = P = diag(p1, . . . , pr, 0, . . . , 0) (9)
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Figure 13: Comparison of the negative of sea surface temperature (SST) common trend 2
(bold solid line) with the trend for the NINO3 series (dashed line) from Mendelssohn et al.
(2005) and the trend in north Pacific sea ice extent (light solid line).

where Σpp = cov(y−t , y
−
t
>

), Σff = cov(y+t , y
+
t
>

), and Σpf = cov(y−t , y
+
T
>

).

Letting

Λ(k) = cov(yt+k, yt) (10)

be the lag k covariance matrix this can be shown to be the equivalent of performing a regular
singular value decomposition on the system Hankel matrix defined as:


Λ(1) Λ(2) Λ(3) . . . Λ(ν)
Λ(2) Λ(3) Λ(4) . . . Λ(ν + 1)
Λ(3) Λ(4) . . . . . . . . .
. . . . . . . . . . . . . . .

Λ(ν + 1) . . . . . . . . . Λ(2ν)

 (11)

In linear dynamic models the Hankel matrix plays a central role in determining the dimension
of the system, and the system matrices can be estimated from the singular value decompo-
sition. When the generalized singular value decomposition is used, which is computationally
more stable and efficient, the system state is then estimated as Jy−(t) and the system matri-
ces of the dynamic linear Gaussian model are estimated either by multivariate regression or
through algebraic identities that relate the matrices of the model with those obtained from
the decomposition. The relationship between subspace identification methods and maximum
likelihood based methods of estimating state-space models is discussed in Ninness and Gibson
(2000) and Smith and Robinson (2000).

Subspace identification techniques are designed to operate on raw, stationary data, and will
not necessarily produce the types of components used in state-space decompositions, in par-
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ticular the higher frequency terms will tend to mask lower frequency modes. To deal with
this problem, we use the following procedure:

1. Estimate a univariate model at each location, in the case using the batch mode ability
in STAMP.

2. Calculate the partial residual series by removing the estimated seasonal and cyclic terms
for “common trend”, the estimated trend and seasonal terms for “common cycles” etc.

3. Perform the subspace identification procedure on the partial residual series.

This procedure was carried out on the raw 5-degree data used in the calculation of the PDO.
Interestingly, in this analysis, the fourth common trend is identical to the trend of the PDO,
showing that EOFs do not necessarily capture the dominant dynamic modes of a system.
The second common trend (Figure 13) is the most interesting. As can be seen, it is almost
identical to the estimated trend for the NINO3 series as well as for the trend estimated for
Arctic sea ice extent. Here we have identified a global warming-like trend that extends from
the tropics to the extra-tropics to the arctic, a sobering result.

5. Conclusions

STAMP provides a powerful, flexible, easy to use and up-to-date environment to perform
state-space analysis of time series data, and can help produce real scientific results. STAMP
shares an algorithmic base with SsfPack in Ox, and with the S+FinMetrics in the S-PLUS
environment. The mix of GUI based analysis and batch mode allows it to be used for a
wide assortment of analyses, and the integration into OxMetrics provides additional features,
including data transformations, data arithmetic, graphics and other analyses.

STAMP is a commercial product, which may be a drawback for some users. However other
“free” packages, such as SsfPack, require a fee for government and industrial users, and are
only free to academic users. I have found STAMP simple to use and very handy when you
want to quickly but deeply explore a dataset, examine different models, and have an array
of information to help guide the model fitting process. Now that STAMP runs on Windows,
Macintosh, and Linux operating systems, it is an even more appealing software package. If
there is one feature that needs to be added to STAMP it is the ability to use the simulation
smoother to estimate certain classes of non-Gaussian and nonlinear models, a feature available
in the companion SsfPack package (Koopman, Shephard, and Doornik 1999).
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